Investigation of a Simplified Mechanism Model for Prediction of Gallium Nitride Thin Film Growth through Numerical Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Procedure for the Numerical Modeling
2.2. Introduction for 0-Dimensional Analysis
2.3. Introduction for 2-Dimensional (2-D) Analysis
2.3.1. 2D Numerical Assumption
2.3.2. Boundary Condition
3. Results and Discussion
3.1. Computation of the Complete Mechanism Model
3.2. Development of the Complete Mechanism Model
3.3. Mechanism Optimization
3.4. Numerical Analysis of the 2-D Model
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Liua, B.L.; Lachab, M.; Jia, A.; Yoshikawa, A.; Takahashi, K. MOCVD growth of device-quality GaN on sapphire using a three-step approach. J. Cryst. Growth 2002, 234, 637–645. [Google Scholar] [CrossRef]
- Seki, Y.; Tanno, K.; Lida, K.; Ichiki, E. Properties of epitaxial GaAs layers from a tri-ethyl gallium and arsine system. J. Solid State Sci. Technol. 1975, 122, 1108–1112. [Google Scholar]
- Saxena, R.R.; Aebi, V.; Cooper, C.B.; Ludowise, M.J.; Vander Plas, H.A.; Cairns, B.R.; Maloney, T.J.; Borden, P.G.; Gregory, P.E. High-efficiency AlGaAs/GaAs concentrator solar cells by organometallic vapor phase epitaxy. J. Appl. Phys. 1980, 51, 4501–4503. [Google Scholar] [CrossRef]
- Amano, H.; Kito, M.; Hiramatsu, K.; Akasaki, I. P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation. J. Appl. Phys. 1989, 28, L2112–L2114. [Google Scholar] [CrossRef]
- Nakamura, S. GaN Growth Using GaN Buffer Layer. J. Appl. Phys. 1991, 30, L1705–L1707. [Google Scholar] [CrossRef]
- Nakamura, S.; Mukai, T.; Senoh, M.; Iwasa, N. Thermal Annealing Effects on P-Type Mg-Doped GaN Films. J. Appl. Phys. 1992, 31, L139–L142. [Google Scholar] [CrossRef]
- Nakamura, S.; Mukai, T.; Senoh, M. Candela-class high-brightness InGaN/AIGaN double-heterostructure blue-light-emitting. Appl. Phys. Lett. 1994, 64, 1687–1689. [Google Scholar] [CrossRef]
- Hu, C.K.; Chien, H.I.; Li, T.T. Numerical analysis for the growth of epitaxy layer in a large-size MOCVD reactor. Key Eng. Mater. 2015, 656, 515–519. [Google Scholar] [CrossRef]
- Hu, C.K.; Tomi, T.; Lin, Y. The optimization of thermal flow field in a large-size MOCVD reactor. ECS Trans. 2013, 52, 1021–1026. [Google Scholar] [CrossRef]
- Safvi, S.A.; Redwing, J.M.; Tischler, M.A.; Kuech, T.F. GaN Growth by Metallorganic Vapor Phase Epitaxy. J. Electrochem. Soc. 1997, 144, 1789–1796. [Google Scholar] [CrossRef]
- Theodoropoulos, C.; Mountziaris, T.J.; Moffat, H.K.; Han, J. Design of gas inlets for the growth of gallium nitride by metalorganic vapor phase epitaxy. J. Cryst. Growth 2000, 217, 65–81. [Google Scholar] [CrossRef]
- Sun, J.; Redwing, J.M.; Kuech, T.F. Transport and Reaction Behaviors of Precursors during Metalorganic Vapor Phase Epitaxy of Gallium Nitride. Phys. Status Solidi A 1999, 176, 693–698. [Google Scholar] [CrossRef]
- Hirako, A.; Kusakabe, K.; Ohkawa, K. Modeling of Reaction Pathways of GaN Growth by Metalorganic Vapor-Phase Epitaxy Using TMGa/NH3/H2: System: A Computational Fluid Dynamics Simulation Study. J. Appl. Phys. 2005, 44, 874–879. [Google Scholar] [CrossRef]
- Parikh, R.P.; Adomaitis, R.A. An overview of gallium nitride growth chemistry and its effect on reactor design: Application to a planetary radial-flow CVD system. J. Cryst. Growth 2006, 286, 259–278. [Google Scholar] [CrossRef]
- Sengupta, D.; Mazumderb, S.; Kuykendall, W.; Lowry, S.A. Combined ab initio quantum chemistry and computational fluid dynamics calculations for prediction of gallium nitride growth. J. Cryst. Growth 2005, 279, 369–382. [Google Scholar] [CrossRef]
- Creighton, J.R. Vapor pressures of the adducts formed during AlGaN organometallic vapor-phase epitaxy. J. Electron. Mater. 2002, 25, 1337–1340. [Google Scholar] [CrossRef]
- Theodoropoulos, C.; Ingle, N.; Mountziaris, T.; Chen, Z.Y.; Liu, P.; Kioseoglou, G.; Petrou, A. Kinetic and transport modeling of the metallorganic chemical vapor deposition of InP from trimethylindium and phosphine and comparison with experiments. J. Electrochem. Soc. 1995, 142, 2086–2094. [Google Scholar] [CrossRef]
- Karpov, S.Y. Advances in the Modeling of MOVPE Processes. J. Cryst. Growth 2003, 248, 1–7. [Google Scholar] [CrossRef]
- Talalaev, R.A.; Yakovlev, E.V.; Karpov, S.Y.; Makarov, Y.N. On low temperature kinetic effects in metal–organic vapor phase epitaxy of III–V compounds. J. Cryst. Growth 2001, 230, 232–238. [Google Scholar] [CrossRef]
- Karpov, S.Y.; Prokofyev, V.G.; Yakovlev, E.V.; Talalaev, R.A.; Makarov, Y.N. Novel approach to simulation of group-III nitrides growth by MOVPE. MRS J. Nitride Semicond. Res. 1999, 4, 1–7. [Google Scholar] [CrossRef]
- Yakovlev, E.V.; Shpolyanskiy, Y.A.; Talalaev, R.A.; Karpov, S.Y.; Makarov, Y.N.; Bergunde, T.; Lowry, S.A. Modeling. Fundamental Gas-Phase and Surface Chemistry of Vapor Deposition II/Process Control, Diagnostics and Modeling in Semiconductor Manufacturing IV; Swihart, M.T., Allendorf, M.D., Meyyappan, M., Eds.; The Electrochemical Society: Atlantic, NJ, USA, 2001; Volume 2001–2013, pp. 292–300. [Google Scholar]
- Crose, M.; Kwon, J.S.; Tran, A.; Christofides, P.D. Multiscale modeling and run-to-run control of PECVD of thin film solar cells. Renew. Energy 2017, 100, 129–140. [Google Scholar] [CrossRef]
- Crose, M.; Tran, A.; Christofides, P.D. Multiscale Computational Fluid Dynamics: Methodology and Application to PECVD of Thin Film Solar Cells. Coatings 2017, 7, 22. [Google Scholar] [CrossRef]
- Evans, G.H.; Greif, R. A Numerical Model of the Flow and Heat Transfer in a Rotating Disk Chemical Vapor Deposition Reactor. J. Heat Transf. 1987, 109, 928–935. [Google Scholar] [CrossRef]
- Zuo, R.; Zhang, H.; Liu, X.L. Transport phenomena in radial flow MOCVD reactor with three concentric vertical inlets. J. Cryst. Growth 2006, 293, 498–508. [Google Scholar] [CrossRef]
- Soong, C.Y.; Chyuan, C.H.; Tzong, R.Y. Thermo-Flow Structure and Epitaxial Uniformity in Large-Scale Metalorganic Chemical Vapor Deposition Reactors with Rotating Susceptor and Inlet Flow Control. J. Appl. Phys. 1998, 37, 5823–5834. [Google Scholar] [CrossRef]
- Fotiadis, D.I.; Kieda, S.; Jensen, J.F. Transport phenomena in vertical reactors for metalorganic vapor phase epitaxy. J. Cryst. Growth 1990, 102, 441–470. [Google Scholar] [CrossRef]
- Thompson, A.G.; Stall, R.A.; Zawadzki, P.; Evans, G.H. The scaling of CVD rotating disk reactors to large sizes and comparison with theory. J. Electron. Mater. 1996, 25, 1487–1494. [Google Scholar] [CrossRef]
- Dauelsberg, M.; Martin, C.; Protzmann, H.; Boyd, A.R.; Thrush, E.J.; Käppeler, J.; Heuken, M.; Talalaev, R.A.; Yakovlev, E.V.; Kondratyev, A.V. Modeling and process design of III-nitride MOVPE at near-atmospheric pressure in close coupled showerhead and planetary reactors. J. Cryst. Growth 2007, 298, 418–424. [Google Scholar] [CrossRef]
- Zhong, S.Q.; Ren, X.M.; Huang, Y.Q.; Wang, Q.; Huang, H. Numerical studies on flow and thermal fields in MOCVD reactor. Chin. Sci. Bull. 2009, 55, 560–566. [Google Scholar] [CrossRef]
- Lin, C.H.; Cheng, W.T.; Lee, J.H. Effect of embedding a porous medium on the deposition rate in a vertical rotating MOCVD reactor based on CFD modeling. Int. Commun. Heat Mass Transf. 2009, 36, 680–685. [Google Scholar] [CrossRef]
- Mitrovic, B.; Parekh, A.; Ramer, J.; Merai, V.; Armour, E.A.; Kadinski, L.; Gurary, A. Reactor design optimization based on 3D modeling of nitrides deposition in MOCVD vertical rotating disc reactors. J. Cryst. Growth. 2006, 289, 708–714. [Google Scholar] [CrossRef]
- Mitrovic, B.; Gurary, A.; Kadinski, L. On the flow stability in vertical rotating disc MOCVD reactos under a wide range of process parameters. J. Cryst. Growth 2006, 287, 656–663. [Google Scholar] [CrossRef]
A | n | Ea | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
G1 | TMG | = | DMG | + | CH3 | 1.00 × 1047 | −9.18 | 76,996 | ||||
G2 | DMG | = | MMG | + | CH3 | 7.67 × 1043 | −9.8 | 34,017 | ||||
G3 | MMG | = | Ga | + | CH3 | 1.68 × 1030 | −5.07 | 84,030 | ||||
G4 | TMG | + | NH3 | → | TMG:NH3 | 2.28 × 1034 | −8.31 | 3115 | ||||
G5 | TMG | + | NH3 | → | DMG:NH2 | + | CH4 | 1.70 × 104 | 2 | 19,969 | ||
G6 | DMG | + | NH3 | → | DMG:NH3 | 4.08 × 1031 | −7.03 | 3234 | ||||
G7 | DMG | + | NH3 | → | MMG:NH2 | + | CH4 | 5.30 × 105 | 1.56 | 20,744 | ||
G8 | MMG | + | NH3 | → | MMG:NH3 | 7.95 × 1024 | −5.21 | 2094 | ||||
G9 | MMG | + | NH3 | → | GaNH2 | + | CH4 | 8.10 × 105 | 1.3 | 17,722 | ||
G10 | NH3 | + | CH3 | → | NH2 | + | CH4 | 3.31 × 103 | 2.51 | 9859 | ||
G11 | CH3 | + | H2 | → | CH4 | + | H | 1.20 × 1012 | 0 | 12,518 | ||
G12 | TMG | + | H | → | DMG | + | CH4 | 5.00 × 1013 | 0 | 10,036 | ||
G13 | DMG | + | H | → | MMG | + | CH4 | 5.00 × 1013 | 0 | 10,036 | ||
G14 | TMG:NH3 | → | MMG | + | 2CH3 | + | NH3 | 1.33 × 1044 | −8.24 | 77,791 | ||
G15 | CH3 | + | H | + | M | → | CH4 | + | NH3 | 2.40 × 1022 | −1 | 0 |
G16 | 2CH3 | = | C2H6 | 2.00 × 1013 | 0 | 0 | ||||||
G17 | 2H | + | M | = | H2 | + | M | 2.00 × 1016 | 0 | 0 |
Path 1 | A | n | Ea | |||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | MMG | + | N(S) | → | MMG(S) | 1.16 × 105 | 2.98 | 0 | ||
2 | MMG(S) | → | MMG | + | N(S) | 1.12 × 1014 | 0.55 | 107,673 | ||
3 | NH3 | + | MMG(S) | → | COMPM1(S) | 3.35 × 107 | 3.33 | 0 | ||
4 | COMPM1(S) | → | NH3 | + | MMG(S) | 5.70 × 1013 | −0.16 | 8146 | ||
5 | MMG | + | COMPM1(S) | → | CH4 | + | COMPM2(S) | 1.23 × 1010 | 3.22 | 23,446 |
6 | NH3 | + | COMPM2(S) | → | COMPM3(S) | 3.35 × 107 | 3.33 | 0 | ||
7 | COMPM3(S) | → | NH3 | + | COMPM2(S) | 5.70 × 1013 | −0.161 | 8146 | ||
8 | MMG | + | COMPM3(S) | → | CH4 | + | COMPM4(S) | 1.23 × 1010 | 3.22 | 23,446 |
9 | NH3 | + | COMPM4(S) | → | COMPM5(S) | 3.35 × 107 | 3.33 | 0 | ||
10 | COMPM5(S) | → | NH3 | + | COMPM4(S) | 5.70 × 1013 | −0.161 | 8146 | ||
11 | COMPM5(S) | → | CH4 | + | RINGM1(S) | 1.23 × 107 | 3.22 | 23,446 | ||
12 | Ga(S) | + | RINGM1(S) | → | RINGM2(S) | + | N(S) | 3.35 × 107 | 3.33 | 0 |
13 | RINGM2(S) | → | 3H2 | + | 3GaN(B) | + | Ga(S) | 3.68 × 109 | 2.05 | 59,610 |
Path 2 | A | n | Ea | |||||||
14 | CH3 | + | Ga(S) | → | MMG(S) | 1.76 × 109 | 1.39 | 0 | ||
15 | MMG(S) | → | CH3 | + | Ga(S) | 4.54 × 1013 | 0.0346 | 79,480 | ||
16 | NH2 | + | Ga(S) | → | NH2(S) | 3.17 × 108 | 1.83 | 0 | ||
17 | GaNH2 | + | N(S) | → | GaNH2(s) | 2.27 × 106 | 2.247 | 0 | ||
18 | GaNH2(S) | → | GaNH2 | + | N(S) | 4.83 × 1013 | 0.614 | 83,881 | ||
19 | COMPMM1(S) | → | CH4 | + | GaNH2(S) | 1.49 × 1011 | 0.609 | 25,950 | ||
20 | MMG | + | GaNH2(S) | → | COMPMM1(S) | 1.16 × 105 | 2.98 | 0 | ||
21 | NH3 | + | COMPMM1(S) | → | COMPMM2(S) | 3.35 × 107 | 3.33 | 0 | ||
22 | COMPMM2(S) | → | CH4 | + | COMPMM3(S) | 1.49 × 1011 | 0.609 | 25,950 | ||
23 | MMG | + | COMPMM3(S) | → | COMPMM4(S) | 1.16 × 105 | 2.98 | 0 | ||
24 | NH3 | + | COMPMM4(S) | → | COMPMM5(S) | 3.35 × 107 | 3.33 | 0 | ||
25 | COMPMM5(S) | → | CH4 | + | RINGM1(S) | 1.49 × 1011 | 0.609 | 25,950 | ||
26 | NH2(S) | → | NH2 | + | Ga(S) | 1.45 × 1014 | 0.09 | 59,786 | ||
27 | COMPMM1(S) | → | MMG | + | GaNH2(S) | 1.00 × 1014 | 0.55 | 42,819 | ||
28 | COMPMM2(S) | → | NH3 | + | COMPMM1(S) | 5.70 × 1013 | −0.1 | 8146 | ||
29 | COMPMM4(S) | → | MMG | + | COMPMM3(S) | 1.00 × 1014 | 0.55 | 42,819 | ||
30 | COMPMM5(S) | → | NH3 | + | COMPMM4(S) | 5.70 × 1013 | −0.1 | 8146 | ||
31 | Ga | + | N(S) | → | Ga(S) | 1.00 × 1011 | 1.5 | 0 | ||
32 | Ga(S) | + | NH2(S) | → | GaNH2 | + | Ga(S) | 1.00 × 1025 | 0 | 0 |
33 | Ga(S) | → | Ga | + | N(S) | 1.00 × 1013 | 0 | 45,168 | ||
34 | 6CH3 | + | RINGM2(S) | → | COM1(S) | 7.55 × 107 | 2.31 | 0 | ||
35 | COM1(S) | → | 6CH3 | + | RINGM2(S) | 1.00 × 1013 | 0.71 | 45,506 | ||
36 | COM1(S) | → | 6CH4 | + | 3GaN(B) | + | Ga(S) | 4.00 × 1012 | 0 | 49,675 |
Path 3 | A | n | Ea | |||||||
37 | TMG | + | N(S) | → | TMG(S) | 1.16 × 105 | 2.98 | 0 | ||
38 | NH3 | + | TMG(S) | → | TCOM1(S) | 3.35 × 107 | 3.33 | 0 | ||
39 | TCOM1(S) | → | CH4 | + | TCOM2(S) | 1.49 × 1011 | 0.609 | 32,785 | ||
40 | Ga(S) | + | TCOM2(S) | → | TCOM3(S) | + | N(S) | 3.35 × 107 | 3.33 | 0 |
41 | TCOM3(S) | → | 2CH4 | + | GaN(B) | + | Ga(S) | 1.49 × 1011 | 0.609 | 49,675 |
42 | TMG(S) | → | TMG | + | N(S) | 1.12 × 1014 | 0.55 | 49,675 | ||
43 | TCOM1(S) | → | NH3 | + | TMG(S) | 5.70 × 1013 | −0.161 | 11,922 | ||
44 | TMG:NH3 | + | N(S) | → | TCOM1(S) | 1.16 × 105 | 2.98 | 0 | ||
45 | TCOM1(S) | → | TMG:NH3 | + | N(S) | 1.12 × 1014 | 0.55 | 49,675 | ||
46 | TCOM1(S) | → | 2CH3 | + | MMG(S) | + | NH3 +N(S) | 1.12 × 1014 | 0.55 | 10,7673 |
47 | MMGNH3 | + | N(S) | → | COMPM1(S) | 1.16 × 105 | 2.98 | 0 | ||
48 | COMPM1(S) | → | MMG:NH3 | + | N(S) | 1.12 × 1014 | 0.55 | 107,673 | ||
49 | MMG:NH3 | + | COMPM1(S) | → | CH4 | + | COMPM3(S) | 1.23 × 1010 | 3.22 | 23,446 |
50 | MMG:NH3 | + | COMPM3(S) | → | CH4 | + | COMPM5(S) | 1.23 × 1010 | 3.22 | 23,446 |
51 | MMG:NH3 | + | GaNH2(S) | → | COMPMM2(S) | 1.16 × 105 | 2.98 | 0 | ||
52 | MMG:NH3 | + | COMPMM3(S) | → | COMPMM5(S) | 1.16 × 105 | 2.98 | 0 |
Compounds Names | Chemical Formula |
---|---|
COMPM1(S) | NH3·MMG(S) |
COMPM2(S) | Ga·NH2·MMG(S) |
COMPM3(S) | NH3·Ga·NH2·MMG(S) |
COMPM4(S) | Ga·NH2·Ga·NH2·MMG(S) |
COMPM5(S) | NH3·Ga·NH2·Ga·NH2·MMG(S) |
RINGM1(S) | NH2·Ga·NH2·Ga·NH2·Ga(S) |
RINGM2(S) | (S)NH2·Ga·NH2·Ga·NH2·Ga(S) |
COMPMM1(S) | MMG·GaNH2(S) |
COMPMM2(S) | NH3·MMG·GaNH2·Ga(S) |
COMPMM3(S) | NH2·Ga·NH2·Ga(S) |
COMPMM4(S) | MMG·NH2·Ga·NH2·Ga(S) |
COMPMM5(S) | NH3·MMG·NH2·Ga·NH2·Ga(S) |
TCOM1(S) | NH3·TMG(S) |
TCOM2(S) | NH2·DMG(S) |
TCOM3(3) | (S)NH2·DMG(S) |
COM1(S) | RINGM2(S)·CH3 complex |
Volume Flow Rate | Values |
---|---|
Standard liter per min | – |
TMGa flow rate (µmol/min) | 7.48 × 10−4 |
NH3 flow rate (Slm) | 2 |
H2 flow rate (Slm) | 10 |
Parameter | value |
Initial pressure (torr) | 140 |
Susceptor temperature (K) | 600–1400 |
Reactor initial temperature (K) | 300 |
Gas inlet temperature (K) | 300 |
A | n | Ea (Cal) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | MMG | + | N(S) | → | MMG(S) | 1.16 × 105 | 2.98 | 0 | ||||
2 | MMG(S) | → | MMG | + | N(S) | 1.12 × 1014 | 0.55 | 107,673 | ||||
3 | NH3 | + | MMG(S) | → | COMPM1(S) | 3.35 × 107 | 3.33 | 0 | ||||
4 | COMPM1(S) | → | NH3 | + | MMG(S) | 5.70 × 1013 | −0.16 | 8146 | ||||
5 | COMPM1(S) | → | CH4 | + | COMPM2(S) | 1.23 × 1010 | 3.22 | 23,446 | ||||
6 | COMPM2(S) | → | H2 | + | GaN(B) | + | N(S) | 3.68 × 109 | 2.05 | 59,610 | ||
7 | TMG | + | N(S) | → | TMG(S) | 1.16 × 105 | 2.98 | 0 | ||||
8 | TMG(S) | → | TMG | + | N(S) | 1.12 × 1014 | 0.55 | 49,675 | ||||
9 | NH3 | + | TMG(S) | → | TCOM1(S) | 3.35 × 107 | 3.33 | 0 | ||||
10 | TCOM1(S) | → | NH3 | + | TMG(S) | 5.70 × 1013 | −0.161 | 11,922 | ||||
11 | TCOM1(S) | → | CH4 | + | TCOM2(S) | 1.49 × 1011 | 0.609 | 32,785 | ||||
12 | TCOM2(S) | → | 2CH4 | + | GaN(B) | + | N(S) | 1.49 × 1011 | 0.609 | 49,675 | ||
13 | TMGNH3 | + | N(S) | → | TCOM1(S) | 1.16 × 105 | 2.98 | 0 | ||||
14 | TCOM1(S) | → | TMGNH3 | + | N(S) | 1.12 × 1014 | 0.55 | 49,675 | ||||
15 | TCOM1(S) | → | 2CH3 | + | MMG | + | NH3 | + | N(S) | 1.12 × 1014 | 0.55 | 107,673 |
16 | MMGNH3 | + | N(S) | → | COMPM1(S) | 1.16 × 105 | 2.98 | 0 | ||||
17 | COMPM1(S) | → | MMGNH3 | + | N(S) | 1.12 × 1014 | 0.55 | 107,673 |
Gas Reaction | A | n | Ea (Cal) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | TMG | → | MMG | + | C2H6 | 1.00 × 1047 | −9.18 | 76,996 | ||
2 | TMG | + | N(S) | → | TMG(S) | 1.16 × 105 | 2.98 | 0 | ||
3 | TMG(S) | → | TMG | + | N(S) | 1.12 × 1014 | 0.55 | 49,675 | ||
4 | NH3 | + | TMG(S) | → | TCOM1(S) | 3.35 × 107 | 3.33 | 0 | ||
5 | TCOM1(S) | → | NH3 | + | TMG(S) | 5.70 × 1013 | −0.161 | 11,922 | ||
6 | TCOM1(S) | → | 3CH4 | + | GaN(B) | + | N(S) | 1.49 × 1011 | 0.609 | 49,675 |
7 | MMG | + | N(S) | → | MMG(S) | 1.16 × 105 | 2.98 | 0 | ||
8 | MMG(S) | → | MMG | + | N(S) | 1.12 × 1014 | 0.55 | 107,673 | ||
9 | NH3 | + | MMG(S) | → | COMPM1(S) | 3.35 × 107 | 3.33 | 0 | ||
10 | COMPM1(S) | → | NH3 | + | MMG(S) | 5.70 × 1013 | −0.16 | 8146 | ||
11 | COMPM1(S) | → | H2 | + | GaN(B) | + | N(S) + CH4 | 3.68 × 109 | 2.05 | 59,610 |
Volume Flow Rate | 2D Experiment 1, Case 1 | 2D Experiment 1, Case 2 | 2D Experiment 2 | 2D Experiment 3 |
Standard Condition | ||||
TMGa flow rate (Slm) | 7.48 × 10−4 | 7.48 × 10−4 | 3 × 10−3 | 6.7 × 10−4 |
NH3 flow rate (Slm) | 2 | 2 | 6 | 1 |
H2 flow rate (Slm) | 10 (inner: 5 slm) | 10 (inner: 0.2 slm) | 7.1 | 5 |
Real Condition | ||||
TMGa flow rate (lm) | 6.24 × 10−3 | 6.24 × 10−3 | 1.8 × 10−2 | 6.27 × 10−4 |
NH3 flow rate (lm) | 16.7 | 16.7 | 36 | 0.9345 |
H2 floe rate (lm) | 83.5 | 83.5 | 42 | 0.4672 |
Parameter | 2D Experiment 1, Case 1 | 2D Experiment 1, Case 2 | 2D Experiment 2 | 2D Experiment 3 |
Initial pressure (torr) | 100 | 100 | 140 | 780 torr |
Susceptor temperature (K) | 1273 | 1273 | 1100–1300 | 600–1400 |
Wall temperature (K) | 300 | 300 | 300 | 300 |
Operating density (kg/m3) | 0.0241 | 0.0241 | 0.0665 | 0.1882 |
Initial temperature (K) | 300 | 300 | 300 | 300 |
Rotation rate (RPM) | 0 | 0 | 1200 | 0 |
Complete Model | Reduced Model | New Model |
---|---|---|
10–12 h | 4–6 h | 0.2–0.5 h |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, C.-K.; Chen, C.-J.; Wei, T.-C.; Li, T.T.; Wang, C.-C.; Huang, C.-Y. Investigation of a Simplified Mechanism Model for Prediction of Gallium Nitride Thin Film Growth through Numerical Analysis. Coatings 2017, 7, 43. https://doi.org/10.3390/coatings7030043
Hu C-K, Chen C-J, Wei T-C, Li TT, Wang C-C, Huang C-Y. Investigation of a Simplified Mechanism Model for Prediction of Gallium Nitride Thin Film Growth through Numerical Analysis. Coatings. 2017; 7(3):43. https://doi.org/10.3390/coatings7030043
Chicago/Turabian StyleHu, Chih-Kai, Chun-Jung Chen, Ta-Chin Wei, Tomi T. Li, Ching-Chiun Wang, and Chih-Yung Huang. 2017. "Investigation of a Simplified Mechanism Model for Prediction of Gallium Nitride Thin Film Growth through Numerical Analysis" Coatings 7, no. 3: 43. https://doi.org/10.3390/coatings7030043
APA StyleHu, C. -K., Chen, C. -J., Wei, T. -C., Li, T. T., Wang, C. -C., & Huang, C. -Y. (2017). Investigation of a Simplified Mechanism Model for Prediction of Gallium Nitride Thin Film Growth through Numerical Analysis. Coatings, 7(3), 43. https://doi.org/10.3390/coatings7030043