Improvement of Wear Performance of Nano-Multilayer PVD Coatings under Dry Hard End Milling Conditions Based on Their Architectural Development
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structural Analysis
3.2. Mechanical Properties
3.2.1. Residual Stress
3.2.2. Micro-Mechanical Properties
3.2.3. Analytical Modeling of Micro-Scratch Test Data
3.2.4. Tool Life and Wear Performance Studies
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bouzakis, K.-D.; Michailidis, N.; Skordaris, G.; Bouzakis, E.; Biermann, D.; M’Saoubi, R. Cutting with coated tools: Coating technologies, characterization methods and performance optimization. CIRP Ann. Manuf. Technol. 2012, 61, 703–723. [Google Scholar] [CrossRef]
- Fox-Rabinovich, G.S.; Yamamoto, K.; Beake, B.D.; Kovalev, A.I.; Aguirre, M.H.; Veldhuis, S.C.; Dosbaeva, G.K.; Wainstein, D.L.; Biksa, A.; Rashkovskiy, A. Emergent behavior of nano-multilayered coatings during dry high-speed machining of hardened tool steels. Surf. Coat. Technol. 2010, 204, 3425–3435. [Google Scholar] [CrossRef]
- Fox-Rabinovich, G.S.; Yamamoto, K.; Beake, B.D.; Gershman, I.S.; Kovalev, A.I.; Aguirre, M.H.; Veldhuis, S.C.; Dosbaeva, G.; Endrino, J.L. Hierarchical adaptive nano-structured PVD coatings for extreme tribological applications: the quest for non-equilibrium states and emergent behavior. Sci. Technol. Adv. Mater. 2012, 13, 043001. [Google Scholar] [CrossRef] [PubMed]
- Fox-Rabinovich, G.S.; Endrino, J.L.; Agguire, M.H.; Beake, B.D.; Veldhuis, S.C.; Kovalev, A.I.; Gershman, I.S.; Yamamoto, K.; Losset, Y.; Wainstein, D.L.; et al. Mechanism of adaptability for the nano-structured TiAlCrSiYN-based hard PVD coatings under extreme frictional conditions. J. Appl. Phys. 2012, 111, 064306. [Google Scholar] [CrossRef]
- Fox-Rabinovich, G.S.; Beake, B.D.; Yamamoto, K.; Aguirre, M.H.; Veldhuis, S.C.; Dosbaeva, G.; Elfizy, A.; Biksa, A.; Shuster, L.S. Structure, properties and wear performance of nano-multilayered TiAlCrSiYN/TiAlCrN coatings during machining of Ni-based aerospace super alloys. Surf. Coat. Technol. 2010, 204, 3698–3706. [Google Scholar] [CrossRef]
- Beake, B.D.; Fox-Rabinovich, G.S.; Losset, Y.; Yamamoto, K.; Agguire, M.H.; Veldhuis, S.C.; Endrino, J.L.; Kovalev, A.I. Why can TiAlCrSiYN-based adaptive coatings deliver exceptional performance under extreme frictional conditions? Faraday Discuss. 2012, 156, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Bouzakis, K.-D.; Makrimallakis, S.; Katirtzoglou, G.; Skordaris, G.; Gerardis, S.; Bouzakis, E.; Leyendecker, T.; Bolz, S.; Koelker, W. Adaption of graded Cr/CrN-interlayer thickness to cemented carbide substrates’ roughness for improving the adhesion of HPPMS PVD films and the cutting performance. Surf. Coat. Technol. 2010, 205, 1564–1570. [Google Scholar] [CrossRef]
- Voevodin, A.A.; Zabinski, J.S.; Muratore, C. Recent advances in hard, tough, and low friction nanocomposite coatings. Tsinghua Sci. Technol. 2005, 10, 665–679. [Google Scholar] [CrossRef]
- Skordaris, G.; Bouzakis, K.-D.; Charalampous, P.; Bouzakis, E.; Paraskevopoulou, R.; Lemmer, O.; Bolz, S. Brittleness and fatigue effect of mono- and multilayer PVD films on the cutting performance of coated cemented carbide inserts. CIRP Ann. Manuf. Technol. 2014, 63, 93–96. [Google Scholar] [CrossRef]
- Chan, K.S.; He, M.Y.; Hutchinsson, J.W. Cracking and stress redistribution in ceramic layered composites. J. Mater. Sci. Eng. 1993, 167, 57–64. [Google Scholar] [CrossRef]
- He, M.Y.; Evens, A.G.; Hutchinsson, J.W. Crack deflection at an interface between dissimilar elastic materials: Role of residual stresses. Int. J. Solids Struct. 1994, 31, 3443–3455. [Google Scholar] [CrossRef]
- Chen, J.; Li, H.; Beake, B.D. Load sensitivity in repetitive nano-impact testing of TiN and AlTiN coatings. Surf. Coat. Technol. 2016, 308, 289–297. [Google Scholar] [CrossRef]
- Astakhov, V.P.; Davim, J.P. Tools (geometry and material) and tool. In Machining: Fundamentals and Recent Advances; Davim, J.P., Ed.; Springer: London, UK, 2008; pp. 29–57. [Google Scholar]
- Hassani, S.; Bielawski, M.; Beres, W.; Martinu, L.; Balazinski, M.; Sapieha, J.E.K. Predictive tools for the design of erosion resistant coatings. Surf. Coat. Technol. 2008, 203, 204–210. [Google Scholar] [CrossRef]
- Bruet, B.J.F.; Song, J.; Boyce, M.C.; Ortiz, C. Materials design principles of ancient fish armour. Nat. Mater. 2008, 7, 748–756. [Google Scholar] [CrossRef] [PubMed]
- Fox-Rabinovich, G.; Kovalev, A.; Aguirre, M.H.; Yamamoto, K.; Gershman, I.; Rashkovskiy, A.; Endrino, J.L.; Beake, B.; Veldhuis, S.; Dosbaeva, G.; et al. Evolution of self-organization in nano-structured PVD coatings under extreme tribological conditions. Appl. Surf. Sci. 2014, 297, 22–32. [Google Scholar] [CrossRef]
- Fox-Rabinovich, G.; Kovalev, A.; Veldhuis, S.; Yamamoto, K.; Endrino, J.L.; Gershman, I.S.; Rashkovskiy, A.; Aguirre, M.H.; Wainstein, D.L. Spatio-temporal behaviour of atomic-scale tribo-ceramic films in adaptive surface engineered nano-material. Sci. Rep. 2015, 5, 8780. [Google Scholar] [CrossRef] [PubMed]
- Welzel, U.; Ligot, J.; Lamparter, P.; Vermeulen, A.C.; Mittemeijer, E.J. Stress analysis of polycrystalline thin films and surface regions by X-ray diffraction. J. Appl. Crystallogr. 2005, 38, 1–29. [Google Scholar] [CrossRef]
- Ming, Z.; Hairlin, S.; Jiawen, H. Elastic modulus of TiN films investigated with Kroner model and X-ray diffraction. Trans. Nonferrous Met. Soc. Chin. 2001, 1, 63–66. [Google Scholar]
- Yamamoto, K.; Kujime, S.; Fox-Rabinovich, G. Effect of alloying element (Si,Y) on properties of AIP deposited (Ti,Cr,Al)N coating. Surf. Coat. Technol. 2008, 203, 579–583. [Google Scholar] [CrossRef]
- Yamamoto, K.; Sato, T.; Takahara, K.; Hanaguri, K. Properties of (Ti,Cr,Al)N coatings with high Al content deposited by new plasma enhanced arc-cathode. Surf. Coat. Technol. 2003, 174–175, 620–626. [Google Scholar] [CrossRef]
- Carvalho, N.J.M.; Zoestbergen, E.; Kooi, B.J.; de Hosson, J.T.M. Stress analysis and microstructure of PVD monolayer TiN and multilayer TiN/(Ti,Al)N coatings. Thin Solid Films 2003, 429, 179–189. [Google Scholar] [CrossRef]
- Fox-Rabinovich, G.S.; Veldhuis, S.C.; Dosbaeva, G.K.; Yamamoto, K.; Kovalev, A.I.; Wainstein, D.L.; Gershman, I.S.; Shuster, L.S.; Beake, B.D. Nanocrystalline coating design for extreme applications based on the concept of complex adaptive behavior. J. Appl. Phys. 2008, 103, 083510. [Google Scholar] [CrossRef]
- Mayrhofer, P.H.; Mitterer, C.; Hultman, L.; Clemens, H. Microstructural design of hard coatings. Prog. Mater. Sci. 2006, 51, 1032–1114. [Google Scholar] [CrossRef]
- Bielawski, M. Residual stress control in TiN/Si coatings deposited by unbalanced magnetron sputtering. Surf. Coat. Technol. 2006, 200, 3987–3995. [Google Scholar] [CrossRef]
- Schwarzer, N.; Pharr, G.M. On the evaluation of stresses during nanoindentation with sharp indenters. Thin Solid Films 2004, 469–470, 194–200. [Google Scholar] [CrossRef]
- Schwarzer, N.; Chudoba, T.; Pharr, G.M. On the evaluation of stresses for coated materials during nanoindentation with sharp indenters. Surf. Coat. Technol. 2006, 200, 14–15. [Google Scholar] [CrossRef]
- Schwarzer, N. Analysing nanoindentation unloading curves using pharr’s concept of the effective indenter shape. Thin Solid Films 2006, 494, 168–172. [Google Scholar] [CrossRef]
- Schwarzer, N.; Duong, Q.-H.; Bierwisch, N.; Favaro, G.; Fuchs, M.; Kempe, P.; Widrig, B.; Ramm, J. Optimization of the scratch tests for specific coating designs. Surf. Coat. Technol. 2011, 206, 1327–1335. [Google Scholar] [CrossRef]
- Matthews, A.; Jones, R.; Dowey, S. Modelling the deformation behaviour of multilayer coatings. Tribol. Lett. 2001, 11, 103–106. [Google Scholar] [CrossRef]
- Hovsepian, P.E.; Reinhard, C.; Ehiasarian, A.P. CrAlYN/CrN superlattice coatings deposited by the combined high power impulse magnetron sputtering/unbalanced magnetron sputtering technique. Surf. Coat. Technol. 2006, 201, 4105–4110. [Google Scholar] [CrossRef]
- Veprek, S.; Veprek-Heijman, M.J.G. Industrial applications of superhard nanocomposite coatings. Surf. Coat. Technol. 2006, 202, 5063–5073. [Google Scholar] [CrossRef]
Machine | Tool | Cutting Parameters | ||||
---|---|---|---|---|---|---|
Speed (m/min) | Feed (mm/tooth) | Axial Depth (mm) | Radial Depth (mm) | Coolant | ||
Three-axis vertical milling center (Matsuura FX-5, Matsuura Machinery Corporation1-1, Fukui-City, Japan) | Mitsubishi carbide ball nose end mills C-2SB, D = 10 mm | 600 | 0.06 | 5 | 0.6 | Dry conditions |
Coating | Architecture | Stress (GPa) |
---|---|---|
TiCrAlN monolayer | Monolayer, 3 microns thick | −5.65 ± 0.3 |
TiCrAlSiYN monolayer | Monolayer, 3 microns thick | −6.17 ± 1.2 |
TiCrAlN/TiCrAlSiYN multilayer | Multilayer, 2 microns thick | −7.09 ± 0.6 |
TiCrAlN/TiCrAlSiYN bimultilayer | Bi-multilayer, 2 microns thick | −6.99 ± 0.5 |
TiCrAlN/TiCrAlSiYN bimultilayer | Bi-multilayer, 3 microns thick | −6.50 ± 0.4 |
Coating | Thickness, (microns) | Hardness (GPa) | Elastic Modulus (GPa) | Plasticity Index | H/E Ratio | H3/E2 Ratio | CPRs Parameter Lc1(Lc2 − Lc1) |
---|---|---|---|---|---|---|---|
Ti0.2Al0.55Cr0.2Si0.03Y0.02N Monolayer | 3 | 29.6 ± 4.5 | 489.8 | 0.47 | 0.060 | 0.108 | 1.6 |
Ti0.25Al0.65Cr0.1N Monolayer | 3 | 25.9 ± 4.8 | 430.7 | 0.49 | 0.060 | 0.093 | 4.8 |
Ti0.2Al0.55Cr0.2Si0.03Y0.02N/ Ti0.25Al0.65Cr0.1N Multilayer [5] | 2 | 28.4 ± 4.5 | 429.0 | 0.46 | 0.066 | 0.124 | 1.9 |
Ti0.2Al0.55Cr0.2Si0.03Y0.02N/ Ti0.25Al0.65Cr0.1N Bi-Multilayer | 2 | 31.6 ± 2.5 | 432.7 | 0.43 | 0.073 | 0.169 | 5.8 |
Ti0.2Al0.55Cr0.2Si0.03Y0.02N/ Ti0.25Al0.65Cr0.1N Bi-Multilayer | 3 | 30.9 ± 2.7 | 474.6 | 0.45 | 0.065 | 0.131 | 3.2 |
Coating | Thickness (microns) | Final Depth (Mean) (microns) | |
---|---|---|---|
30 s | 300 s | ||
Ti0.2Al0.55Cr0.2Si0.03Y0.02N-Monolayer | 3 | 1.4 ± 0.4 | 2.2 ± 0.5 |
Ti0.25Al0.65Cr0.1N-Monolayer | 3 | – | 2.14 ± 0.3 |
Ti0.2Al0.55Cr0.2Si0.03Y0.02N/Ti0.25Al0.65Cr0.1N-Multilayer | 2 | – | 1.8 ± 0.3 |
Ti0.2Al0.55Cr0.2Si0.03Y0.02N/Ti0.25Al0.65Cr0.1N-Bi-Multilayer | 2 | 0.93 ± 0.3 | 1.8 ± 0.3 |
Ti0.2Al0.55Cr0.2Si0.03Y0.02N/Ti0.25Al0.65Cr0.1N-Bi-Multilayer | 3 | 0.84 ± 0.1 | 1.4 ± 0.3 |
Coating | Applied Load or Critical Load | Maximum Normal Stress at Surface (GPa) | Maximum von Mises Stress in Coating (GPa) | Maximum von Mises Stress in Interlayer (GPa) | Maximum von Mises Stress in Substrate (GPa) |
---|---|---|---|---|---|
2 µm bi-multilayer | 2 N | 8.9 | 10.9 | 10.6 | 9.8 |
Lc2 | 9.2 | 11.0 | 11.0 | 10.2 | |
3 µm bi-multilayer | 2 N | 10.2 | 11.6 | 10.4 | 9.7 |
Lc2 | 9.7 | 11.1 | 10.5 | 9.8 | |
3 µm monolayer | 2 N | 10.1 | 11.5 | – | 9.8 |
Lc2 | 9.9 | 11.3 | – | 9.7 | |
2 µm multilayer | 2 N | 9.2 | 11.0 | – | 9.8 |
Lc2 | 9.0 | 10.8 | – | 9.8 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chowdhury, S.; Beake, B.D.; Yamamoto, K.; Bose, B.; Aguirre, M.; Fox-Rabinovich, G.S.; Veldhuis, S.C. Improvement of Wear Performance of Nano-Multilayer PVD Coatings under Dry Hard End Milling Conditions Based on Their Architectural Development. Coatings 2018, 8, 59. https://doi.org/10.3390/coatings8020059
Chowdhury S, Beake BD, Yamamoto K, Bose B, Aguirre M, Fox-Rabinovich GS, Veldhuis SC. Improvement of Wear Performance of Nano-Multilayer PVD Coatings under Dry Hard End Milling Conditions Based on Their Architectural Development. Coatings. 2018; 8(2):59. https://doi.org/10.3390/coatings8020059
Chicago/Turabian StyleChowdhury, Shahereen, Ben D. Beake, Kenji Yamamoto, Bipasha Bose, Myriam Aguirre, German S. Fox-Rabinovich, and Stephen C. Veldhuis. 2018. "Improvement of Wear Performance of Nano-Multilayer PVD Coatings under Dry Hard End Milling Conditions Based on Their Architectural Development" Coatings 8, no. 2: 59. https://doi.org/10.3390/coatings8020059
APA StyleChowdhury, S., Beake, B. D., Yamamoto, K., Bose, B., Aguirre, M., Fox-Rabinovich, G. S., & Veldhuis, S. C. (2018). Improvement of Wear Performance of Nano-Multilayer PVD Coatings under Dry Hard End Milling Conditions Based on Their Architectural Development. Coatings, 8(2), 59. https://doi.org/10.3390/coatings8020059