On the Importance of Combined Scratch/Acoustic Emission Test Evaluation: SiC and SiCN Thin Films Case Study
Abstract
:1. Introduction
2. Acoustic Emission Introduction
Acoustic Emission Signal
3. Instrumentation and Methods
3.1. Acoustic Emission Setup
3.2. Scratch Test Setup
4. Advanced Scratch Test Evaluation
4.1. Combined Approach—Dynamic Revealed
4.2. Extended Approach—Failure Type Revealed
4.3. AE as a Tool for First Failure Detection
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Larsson, M.; Hollman, P.; Hedenqvist, P.; Hogmark, S.; Wahlström, U.; Hultman, L. Deposition and microstructure of PVD TiN—NbN multilayered coatings by combined reactive electron beam evaporation and DC sputtering. Surf. Coat. Technol. 1996, 86–87 Pt 1, 351–356. [Google Scholar] [CrossRef]
- Reddy, I.N.; Reddy, V.R.; Sridhara, N.; Rao, V.S.; Bhattacharya, M.; Bandyopadhyay, P.; Basavaraja, S.; Mukhopadhyay, A.K.; Sharma, A.K.; Dey, A. Pulsed rf magnetron sputtered alumina thin films. Ceram. Int. 2014, 40, 9571–9582. [Google Scholar] [CrossRef]
- Kamata, K.; Maeda, Y.; Yasui, K.; Moriyama, M. Preparation of Si3N4—SiC films by plasma CVD. Int. J. High Technol. Ceram. 1986, 2, 236. [Google Scholar] [CrossRef]
- Kleps, L.; Caccavale, F.; Brusatin, G.; Angelescu, A.; Armelao, L. LPCVD silicon carbide and silicon carbonitride films using liquid single precursors. Vacuum 1995, 46, 979–981. [Google Scholar] [CrossRef]
- Matthews, A.; Leyland, A. Developments in PVD tribological coatings. In Proceedings of the 5th ASM Heat Treatment and Surface Engineering Conference in Europe, Gothenburg, Sweden, 7–9 June 2000; p. 12. [Google Scholar]
- Bescher, E.; Mackenzie, J. Sol-gel coatings for the protection of brass and bronze. J. Sol-Gel Sci. Technol. 2003, 26, 1223–1226. [Google Scholar] [CrossRef]
- Kozuka, H.; Almeida, R.M.; Sakka, S. Handbook of Sol-Gel Science and Technology Processing Characterization and Applications V. I: Sol-gel Processing; Springer: New York, NY, USA, 2005. [Google Scholar]
- Zajícová, V.; Exnar, P.; Staňová, I. Properties of hybrid coatings based on 3-trimethoxysilylpropyl methacrylate. Ceramics-Silikáty 2011, 55, 221–227. [Google Scholar]
- Kuo, D.-H.; Yang, D.-G. Plasma-enhanced chemical vapor deposition of silicon carbonitride using hexamethyldisilazane and nitrogen. Thin Solid Films 2000, 374, 92–97. [Google Scholar] [CrossRef]
- American Society for Testing and Materials. ASTM D907-15 Standard Terminology of Adhesives; American Society for Testing and Materials: West Conshohocken, PA, USA, 2015. [Google Scholar]
- Pulker, H.K.; Perry, A.J.; Berger, R. Adhesion. Surf. Technol. 1981, 14, 25–39. [Google Scholar] [CrossRef]
- Mittal, K.L. Adhesion Measurement of Films and Coatings; VSP: Utrecht, The Netherlands, 1995. [Google Scholar]
- Chapman, B.N. Thin-film adhesion. J. Vac. Sci. Technol. 1974, 11, 106–113. [Google Scholar] [CrossRef]
- Chopra, K.L. Thin Film Phenomena; McGraw-Hill: New York, NY, USA, 1969. [Google Scholar]
- Campbell, D.S. Handbook of Thin Film Technology; Maissel, L.I., Glang, R., Eds.; McGraw-Hill: New York, NY, USA, 1970. [Google Scholar]
- Jacobsson, R. Measurement of the adhesion of thin films. Thin Solid Films 1976, 34, 191–199. [Google Scholar] [CrossRef]
- Katz, G. Adhesion of copper films to aluminum oxide using a spinel structure interface. Thin Solid Films 1976, 33, 99–105. [Google Scholar] [CrossRef]
- Loh, R.L.; Rossington, C.; Evans, A.G. Laser technique for evaluating spall resistance of brittle coatings. J. Am. Ceram. Soc. 1986, 69, 139–142. [Google Scholar] [CrossRef]
- Rickerby, D.S. A review of the methods for the measurement of coating-substrate adhesion. Surf. Coat. Technol. 1988, 36, 541–557. [Google Scholar] [CrossRef]
- Valli, J. A review of adhesion test methods for thin hard coatings. J. Vac. Sci. Technol. A Vac. Surf. Films 1986, 4, 3007–3014. [Google Scholar] [CrossRef]
- Chalker, P.R.; Bull, S.J.; Rickerby, D.S. A review of the methods for the evaluation of coating-substrate adhesion. Mater. Sci. Eng. A 1991, 140, 583–592. [Google Scholar] [CrossRef]
- Sinha, S.K. 180 years of scratch testing. Tribol. Int. 2006, 39, 61. [Google Scholar] [CrossRef]
- Bull, S.J. Techniques for improving thin film adhesion. Vacuum 1992, 43, 517–520. [Google Scholar] [CrossRef]
- Laugier, M. The development of the scratch test technique for the determination of the adhesion of coatings. Thin Solid Films 1981, 76, 289–294. [Google Scholar] [CrossRef]
- Burnett, P.J.; Rickerby, D.S. The relationship between hardness and scratch adhession. Thin Solid Films 1987, 154, 403–416. [Google Scholar] [CrossRef]
- Laugier, M.T. An energy approach to the adhesion of coatings using the scratch test. Thin Solid Films 1984, 117, 243–249. [Google Scholar] [CrossRef]
- Burnett, P.J.; Rickerby, D.S. The scratch adhesion test: An elastic-plastic indentation analysis. Thin Solid Films 1988, 157, 233–254. [Google Scholar] [CrossRef]
- Bull, S.J.; Rickerby, D.S.; Matthews, A.; Leyland, A.; Pace, A.R.; Valli, J. The use of scratch adhesion testing for the determination of interfacial adhesion: The importance of frictional drag. Surf. Coat. Technol. 1988, 36, 503–517. [Google Scholar] [CrossRef]
- Kendall, K. The adhesion and surface energy of elastic solids. J. Phys. D Appl. Phys. 1971, 4, 1186. [Google Scholar] [CrossRef]
- Schwarzer, N.; Duong, Q.H.; Bierwisch, N.; Favaro, G.; Fuchs, M.; Kempe, P.; Widrig, B.; Ramm, J. Optimization of the scratch test for specific coating designs. Surf. Coat. Technol. 2011, 206, 1327–1335. [Google Scholar] [CrossRef]
- Hegadekatte, V.; Huber, N.; Kraft, O. Finite element based simulation of dry sliding wear. Model. Simul. Mater. Sci. Eng. 2005, 13, 57. [Google Scholar] [CrossRef]
- Hegadekatte, V.; Huber, N.; Kraft, O. Modeling and simulation of wear in a pin on disc tribometer. Tribol. Lett. 2006, 24, 51. [Google Scholar] [CrossRef]
- Steiner, L.; Bouvier, V.; May, U.; Hegadekatte, V.; Huber, N. Modelling of unlubricated oscillating sliding wear of DLC-coatings considering surface topography, oxidation and graphitisation. Wear 2010, 268, 1184–1194. [Google Scholar] [CrossRef]
- Holmberg, K.; Ronkainen, H.; Laukkanen, A.; Wallin, K.; Erdemir, A.; Eryilmaz, O. Tribological analysis of TiN and DLC coated contacts by 3D FEM modelling and stress simulation. Wear 2008, 264, 877–884. [Google Scholar] [CrossRef]
- Holmberg, K.; Ronkainen, H.; Laukkanen, A.; Wallin, K. Friction and wear of coated surfaces—scales, modelling and simulation of tribomechanisms. Surf. Coat. Technol. 2007, 202, 1034–1049. [Google Scholar] [CrossRef]
- Holmberg, K.; Laukkanen, A.; Ronkainen, H.; Wallin, K.; Varjus, S.; Koskinen, J. Tribological contact analysis of a rigid ball sliding on a hard coated surface: Part I: Modelling stresses and strains. Surf. Coat. Technol. 2006, 200, 3793–3809. [Google Scholar] [CrossRef]
- Beake, B.D.; Vishnyakov, V.M.; Valizadeh, R.; Colligon, J.S. Influence of mechanical properties on the nanoscratch behaviour of hard nanocomposite SiN/Si3N4 coatings on si. J. Phys. D Appl. Phys. 2006, 39, 1392. [Google Scholar] [CrossRef]
- Beake, B.D.; Endrino, J.L.; Kimpton, C.; Fox-Rabinovich, G.S.; Veldhuis, S.C. Elevated temperature repetitive micro-scratch testing of AlCrN, TiAlN and AlTiN PVD coatings. Int. J. Refract. Met. Hard Mater. 2017, 69, 215–226. [Google Scholar] [CrossRef]
- Fox-Rabinovich, G.S.; Kovalev, A.I.; Aguirre, M.H.; Beake, B.D.; Yamamoto, K.; Veldhuis, S.C.; Endrino, J.L.; Wainstein, D.L.; Rashkovskiy, A.Y. Design and performance of AlTiN and TiAlCrN PVD coatings for machining of hard to cut materials. Surf. Coat. Technol. 2009, 204, 489–496. [Google Scholar] [CrossRef]
- Bull, S.J.; Rickerby, D.S.; Robertson, T.; Hendry, A. The abrasive wear resistance of sputter ion plated titanium nitride coatings. Surf. Coat. Technol. 1988, 36, 743–754. [Google Scholar] [CrossRef]
- Perry, A.J.; Pulker, H.K. Hardness, adhesion and abrasion resistance of TiO2 films on glass. Thin Solid Films 1985, 124, 323–333. [Google Scholar] [CrossRef]
- Guruvenket, S.; Azzi, M.; Li, D.; Szpunar, J.A.; Martinu, L.; Klemberg-Sapieha, J.E. Structural, mechanical, tribological, and corrosion properties of a-SiC:H coatings prepared by PECVD. Surf. Coat. Technol. 2010, 204, 3358–3365. [Google Scholar] [CrossRef]
- Borrero-López, O.; Hoffman, M.; Bendavid, A.; Martin, P.J. Mechanical properties and scratch resistance of filtered-arc-deposited titanium oxide thin films on glass. Thin Solid Films 2011, 519, 7925–7931. [Google Scholar] [CrossRef]
- Beake, B.D.; Liskiewicz, T.W. Comparison of nano-fretting and nano-scratch tests on biomedical materials. Tribol. Int. 2013, 63, 123–131. [Google Scholar] [CrossRef]
- Das, D.K.; Srivastava, M.P.; Joshi, S.V.; Sivakumar, R. Scratch adhesion testing of plasma-sprayed yttria-stabilized zirconia coatings. Surf. Coat. Technol. 1991, 46, 331–345. [Google Scholar] [CrossRef]
- Chen, S.-Y.; Ma, G.-Z.; Wang, H.-D.; He, P.-F.; Wang, H.-M.; Liu, M. Evaluation of adhesion strength between amorphous splat and substrate by micro scratch method. Surf. Coat. Technol. 2018, 344, 43–51. [Google Scholar] [CrossRef]
- Brostow, W.; Lobland, H.E.H. Materials: Introduction and Applications; John Wiley & Sons: New York, NY, USA, 2017. [Google Scholar]
- Sola, R. Post-treatment surface morphology effect on the wear and corrosion resistance of nitrided and nitrocarburized 41 CrAlMo7 steel. La Metall. Ital. 2010, 5, 21–31. [Google Scholar]
- Sola, R.; Giovanardi, R.; Parigi, G.; Veronesi, P.; Berto, F. A novel methods for fracture toughness evaluation of tool steels with post-tempering cryogenic treatment. Metals 2017, 7, 75. [Google Scholar] [CrossRef]
- Sola, R.; Poli, G.; Veronesi, P.; Giovanardi, R. Effects of surface morphology on the wear and corrosion resistance of post-treated nitrided and nitrocarburized 42CrMo4. Metall. Mater. Trans. A 2014, 45, 2827–2833. [Google Scholar] [CrossRef]
- Jensen, H.; Jensen, U.M.; Sorensen, G. Reactively sputtered Cr nitride coatings studied using the acoustic emission scratch test technique. Surf. Coat. Technol. 1995, 74–75, 297–305. [Google Scholar] [CrossRef]
- Yamamoto, S.; Ichimura, H. Effects of intrinsic properties of TiN coatings on acoustic emission behavior at scratch test. J. Mater. Res. 2011, 7, 2240–2247. [Google Scholar] [CrossRef]
- Benayoun, S.; Hantzpergue, J.J.; Bouteville, A. Micro-scratch test study of TiN films grown on silicon by chemical vapor deposition. Thin Solid Films 2001, 389, 187–193. [Google Scholar] [CrossRef]
- Yang, J.; Roa, J.; Odén, M.; Johansson-Jõesaar, M.P.; Esteve, J.; Llanes, L. Substrate surface finish effects on scratch resistance and failure mechanisms of TiN-coated hardmetals. Surf. Coat. Technol. 2015, 265, 174–184. [Google Scholar] [CrossRef] [Green Version]
- Kulikovsky, V.; Vorlicek, V.; Ctvrtlik, R.; Bohac, P.; Suchanek, J.; Blahova, O.; Jastrabik, L. Mechanical and tribological properties of coatings sputtered from SiC target in the presence of CH4 gas. Surf. Coat. Technol. 2011, 205, 3372–3377. [Google Scholar] [CrossRef]
- Kulikovsky, V.; Ctvrtlik, R.; Vorlicek, V.; Zelezny, V.; Bohac, P.; Jastrabik, L. Effect of air annealing on mechanical properties and structure of SiCxNy magnetron sputtered films. Surf. Coat. Technol. 2014, 240, 76–85. [Google Scholar] [CrossRef]
- Hoche, H.; Allebrandt, D.; Bruns, M.; Riedel, R.; Fasel, C. Relationship of chemical and structural properties with the tribological behavior of sputtered SiCN films. Surf. Coat. Technol. 2008, 202, 5567–5571. [Google Scholar] [CrossRef]
- Zhou, Y.; Probst, D.; Thissen, A.; Kroke, E.; Riedel, R.; Hauser, R.; Hoche, H.; Broszeit, E.; Kroll, P.; Stafast, H. Hard silicon carbonitride films obtained by RF-plasma-enhanced chemical vapour deposition using the single-source precursor bis(trimethylsilyl)carbodiimide. J. Eur. Ceram. Soc. 2006, 26, 1325–1335. [Google Scholar] [CrossRef]
- Probst, D.; Hoche, H.; Zhou, Y.; Hauser, R.; Stelzner, T.; Scheerer, H.; Broszeit, E.; Berger, C.; Riedel, R.; Stafast, H.; et al. Development of PE-CVD Si/C/N:H films for tribological and corrosive complex-load conditions. Surf. Coat. Technol. 2005, 200, 355–359. [Google Scholar] [CrossRef]
- Wu, Y.; Zhu, S.; Zhang, Y.; Liu, T.; Rao, Y.; Luo, l.; Wang, Q. The adhesion strength and deuterium permeation property of sic films synthesized by magnetron sputtering. Int. J. Hydrogen Energy 2016, 41, 10827–10832. [Google Scholar] [CrossRef]
- Bhattacharyya, A.S.; Mishra, S.K. Micro/nanomechanical behavior of magnetron sputtered Si–C–N coatings through nanoindentation and scratch tests. J. Micromech. Microeng. 2011, 21, 015011. [Google Scholar] [CrossRef]
- Nazarchuk, Z.; Skalskyi, V.; Serhiyenko, O. Acoustic Emission—Methodology and Application; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Scruby, C.B. An introduction to acoustic emission. J. Phys. E Sci. Instrum. 1987, 20, 946. [Google Scholar] [CrossRef]
- Stulen, F.B.; Kiefner, J.F. Evaluation of acoustic emission monitoring of buried pipelines. In Proceedings of the 1982 Ultrasonics Symposium, San Diego, CA, USA, 27–29 October 1982; pp. 898–903. [Google Scholar]
- Lim, J. In Underground pipeline leak detection using acoustic emission and crest factor technique. In Advances in Acoustic Emission Technology; Shen, G., Wu, Z., Zhang, J., Eds.; Springer: New York, NY, USA, 2015; pp. 445–450. [Google Scholar]
- Bakirov, M.B.; Povarov, V.P.; Gromov, A.F.; Levchuk, V.I. Development of a technology for continuous acoustic emission monitoring of in-service damageability of metal in safety-related NPP equipment. Nucl. Energy Technol. 2015, 1, 32–36. [Google Scholar] [CrossRef]
- Lee, J.-H.; Lee, M.-R.; Kim, J.-T.; Luk, V.; Jung, Y.-H. A study of the characteristics of the acoustic emission signals for condition monitoring of check valves in nuclear power plants. Nucl. Eng. Des. 2006, 236, 1411–1421. [Google Scholar] [CrossRef]
- Minemura, O.; Sakata, N.; Yuyama, S.; Okamoto, T.; Maruyama, K. Acoustic emission evaluation of an arch dam during construction cooling and grouting. Constr. Build. Mater. 1998, 12, 385–392. [Google Scholar] [CrossRef]
- Sagaidak, A.; Bardakov, V.; Elizarov, S.; Terentyev, D. The use of acoustic emission method in the modern construction. In Proceedings of the 31st Conference of the European Working Group on Acoustic Emission, Dresden, Germany, 31 September 2014. [Google Scholar]
- Bonaccorsi, L.; Calabrese, L.; Campanella, G.; Proverbio, E. Artificial neural network analyses of AE data during long-term corrosion monitoring of a post-tensioned concrete beam. J. Acoust. Emiss. 2012, 30, 40–53. [Google Scholar]
- Rosner, S. Acoustic emission related to drought stress response of four deciduous broad-leaved woody species. J. Acoust. Emiss. 2012, 30, 11–20. [Google Scholar]
- Holford, K.M. Acoustic emission–basic principles and future directions. Strain 2008, 36, 51–54. [Google Scholar] [CrossRef]
- Guo, Y.B.; Ammula, S.C. Real-time acoustic emission monitoring for surface damage in hard machining. Int. J. Mach. Tools Manuf. 2005, 45, 1622–1627. [Google Scholar] [CrossRef]
- Julia-Schmutz, C.; Hintermann, H.E. Microscratch testing to characterize the adhesion of thin layers. Surf. Coat. Technol. 1991, 48, 1–6. [Google Scholar] [CrossRef]
- Choudhary, R.K.; Mishra, P. Use of acoustic emission during scratch testing for understanding adhesion behavior of aluminum nitride coatings. J. Mater. Eng. Perform. 2016, 25, 2454–2461. [Google Scholar] [CrossRef]
- Proctor, T.M. An improved piezoelectric acoustic emission transducer. J. Acoust. Soc. Am. 1982, 71, 1163–1168. [Google Scholar] [CrossRef]
- Turner, R.C.; Fuierer, P.A.; Newnham, R.E.; Shrout, T.R. Materials for high temperature acoustic and vibration sensors: A review. Appl. Acoust. 1994, 41, 299–324. [Google Scholar] [CrossRef]
- Von Stebut, J.; Lapostolle, F.; Bucsa, M.; Vallen, H. Acoustic emission monitoring of single cracking events and associated damage mechanism analysis in indentation and scratch testing. Surf. Coat. Technol. 1999, 116–119, 160–171. [Google Scholar] [CrossRef]
- Hiroyuki, K.; Akio, M.; Ken, Y.; Shigeru, N.; Yasushi, F. Analysis of AE signals during scratch test on the coated paperboard. J. Acoust. Emiss. 2012, 30, 1–11. [Google Scholar]
- Gallego, A.; Gil, J.F.; Vico, J.M.; Ruzzante, J.E.; Piotrkowski, R. Coating adherence in galvanized steel assessed by acoustic emission wavelet analysis. Scr. Mater. 2005, 52, 1069–1074. [Google Scholar] [CrossRef]
- Gallego, A.; Gil, J.F.; Castro, E.; Piotrkowski, R. Identification of coating damage processes in corroded galvanized steel by acoustic emission wavelet analysis. Surf. Coat. Technol. 2007, 201, 4743–4756. [Google Scholar] [CrossRef]
- Kataruka, A.; Mendu, K.; Okeoghene, O.; Puthuvelil, J.; Akono, A.-T. Microscopic assessment of bone toughness using scratch tests. Bone Rep. 2017, 6, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, H.; Ohnaka, T.; Hirohashi, M. Evaluation of acoustic emission generated in scratch testing of ceramic coatings. J. Surf. Finish. Soc. Jpn. 1994, 45, 296–300. [Google Scholar] [CrossRef]
- Bhansali, K.J.; Kattamis, T.Z. Quality evaluation of coatings by automatic scratch testing. Wear 1990, 141, 59–71. [Google Scholar] [CrossRef]
- Sekler, J.; Steinmann, P.A.; Hintermann, H.E. The scratch test: Different critical load determination techniques. Surf. Coat. Technol. 1988, 36, 519–529. [Google Scholar] [CrossRef]
- Piotrkowski, R.; Castro, E.; Gallego, A. Wavelet power, entropy and bispectrum applied to AE signals for damage identification and evaluation of corroded galvanized steel. Mech. Syst. Signal Process. 2009, 23, 432–445. [Google Scholar] [CrossRef]
- Piotrkowski, R.; Gallego, A.; Castro, E.; García-Hernandez, M.T.; Ruzzante, J.E. Ti and Cr nitride coating/steel adherence assessed by acoustic emission wavelet analysis. NDT E Int. 2005, 38, 260–267. [Google Scholar] [CrossRef]
- Griffin, J.M.; Torres, F. Dynamic precision control in single-grit scratch tests using acoustic emission signals. Int. J. Adv. Manuf. Technol. 2015, 81, 935–953. [Google Scholar] [CrossRef]
- Griffin, J. Traceability of acoustic emission measurements for a proposed calibration method—Classification of characteristics and identification using signal analysis. Mech. Syst. Signal Process. 2015, 50–51, 757–783. [Google Scholar] [CrossRef]
- Griffin, J.; Chen, X. Classification of the acoustic emission signals of rubbing, ploughing and cutting during single grit scratch tests. Int. J. Nanomanuf. 2006, 1, 189–209. [Google Scholar] [CrossRef]
- Sagasta, F.; Zitto, M.E.; Piotrkowski, R.; Benavent-Climent, A.; Suarez, E.; Gallego, A. Acoustic emission energy b-value for local damage evaluation in reinforced concrete structures subjected to seismic loadings. Mech. Syst. Signal Process. 2018, 102, 262–277. [Google Scholar] [CrossRef]
- Zitto, M.; Scaramal, M.; Sagasta, F.; Piotrkowski, R.; Gallego, A.; Castro, E. AE signal processing in dynamical tests of reinforced concrete structures. In Proceedings of the 30th European Conference on Acoustic Emission Testing & 7th International Conference on Acoustic Emission, Granada, Spain, 12–15 September 2012. [Google Scholar]
- Zhou, W.; He, Y.; Lu, X. Acoustic emission in scratch processes of metals. Insight Non-Destr. Test. Cond. Monit. 2015, 57, 635–642. [Google Scholar] [CrossRef]
- Shiwa, M.; Weppelmann, E.R.; Bendeli, A.; Swain, M.V.; Munz, D.; Kishi, T. Acoustic emission and precision force-displacement observations of spherical indentations into TiN films on silicon. Surf. Coat. Technol. 1994, 68–69, 598–602. [Google Scholar] [CrossRef]
- Badzian, A.; Badzian, T.; Drawl, W.D.; Roy, R. Silicon carbonitride: A rival to cubic boron nitride. Diam. Relat. Mater. 1998, 7, 1519–1525. [Google Scholar] [CrossRef]
- An, L.; Riedel, R.; Konetschny, C.; Kleebe, H.J.; Raf, R. Newtonian viscosity of amorphous silicon carbonitride at high temperature. J. Am. Ceram. Soc. 1998, 81, 1349–1352. [Google Scholar] [CrossRef]
- Riedel, R.; Kleebe, H.J.; Schonfelder, H.; Aldinger, F. A covalent micro nanocomposite resistant to high-temperature oxidation. Nature 1995, 374, 526–528. [Google Scholar] [CrossRef]
- Lebedev, A.A.; Ivanov, A.M.; Strokan, N.B. Radiation resistance of SiC and nuclear-radiation detectors based on SiC films. Semiconductors 2004, 38, 125–147. [Google Scholar] [CrossRef]
- Kulikovsky, V.; Vorlíček, V.; Boháč, P.; Stranyánek, M.; Čtvrtlík, R.; Kurdyumov, A. Mechanical properties of amorphous and microcrystalline silicon films. Thin Solid Films 2008, 516, 5368–5375. [Google Scholar] [CrossRef]
- Kulikovsky, V.; Vorlíček, V.; Boháč, P.; Stranyánek, M.; Čtvrtlík, R.; Kurdyumov, A.; Jastrabik, L. Hardness and elastic modulus of amorphous and nanocrystalline SiC and Si films. Surf. Coat. Technol. 2008, 202, 1738–1745. [Google Scholar] [CrossRef]
- Yang, J. A harsh environment wireless pressure sensing solution utilizing high temperature electronics. Sensors 2013, 13, 2719–2734. [Google Scholar] [CrossRef] [PubMed]
- Riedel, R.; Kienzle, A.; Dressler, W.; Ruwisch, L.; Bill, J.; Aldinger, F. A silicoboron carbonitride ceramic stable to 2000 °C. Nature 1996, 382, 796–798. [Google Scholar] [CrossRef]
- Raj, R.; An, L.; Shah, S.; Riedel, R.; Fasel, C.; Kleebe, H.-J. Oxidation kinetics of an amorphous silicon carbonitride ceramic. J. Am. Ceram. Soc. 2001, 84, 1803–1810. [Google Scholar] [CrossRef]
- Ctvrtlik, R.; Al-Haik, M.; Kulikovsky, V. Mechanical properties of amorphous silicon carbonitride thin films at elevated temperatures. J. Mater. Sci. 2015, 50, 1553–1564. [Google Scholar] [CrossRef]
- Ctvrtlik, R.; Kulikovsky, V.; Vorlicek, V.; Tomastik, J.; Drahokoupil, J.; Jastrabik, L. Mechanical properties and microstructural characterization of amorphous SiCxNy thin films after annealing beyond 1100 °C. J. Am. Ceram. Soc. 2016, 99, 996–1005. [Google Scholar] [CrossRef]
- Goldstein, J.; Newbury, D.E.; Joy, D.C.; Lyman, C.E.; Echlin, P.; Lifshin, E.; Sawyer, L.; Michael, J.R. Scanning Electron Microscopy and X-ray Microanalysis, 3rd ed.; Springer Science + Business Media: New York, NY, USA, 2003; p. 689. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomastik, J.; Ctvrtlik, R.; Drab, M.; Manak, J. On the Importance of Combined Scratch/Acoustic Emission Test Evaluation: SiC and SiCN Thin Films Case Study. Coatings 2018, 8, 196. https://doi.org/10.3390/coatings8050196
Tomastik J, Ctvrtlik R, Drab M, Manak J. On the Importance of Combined Scratch/Acoustic Emission Test Evaluation: SiC and SiCN Thin Films Case Study. Coatings. 2018; 8(5):196. https://doi.org/10.3390/coatings8050196
Chicago/Turabian StyleTomastik, Jan, Radim Ctvrtlik, Martin Drab, and Jan Manak. 2018. "On the Importance of Combined Scratch/Acoustic Emission Test Evaluation: SiC and SiCN Thin Films Case Study" Coatings 8, no. 5: 196. https://doi.org/10.3390/coatings8050196
APA StyleTomastik, J., Ctvrtlik, R., Drab, M., & Manak, J. (2018). On the Importance of Combined Scratch/Acoustic Emission Test Evaluation: SiC and SiCN Thin Films Case Study. Coatings, 8(5), 196. https://doi.org/10.3390/coatings8050196