Catalytic Performance of Ag2O and Ag Doped CeO2 Prepared by Atomic Layer Deposition for Diesel Soot Oxidation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Catalyst Preparation
2.2. Soot Deposition System
2.3. Catalyst Characterization
2.4. Catalytic Activity
3. Results and Discussion
3.1. Ag2O and Ag-Doped CeO2 ALD Film Deposition
3.1.1. Ag2O
3.1.2. Ag Doped CeO2
3.2. Catalyst Characterization
Ag2O and Ag-Doped CeO2
3.3. Catalytic Activity of Ag2O, CeO2, and Ag-doped CeO2 catalysts
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Neeft, J.P.A.; Makkee, M.; Moulijn, J.A. Diesel particulate emission control. Fuel Process. Technol. 1996, 47, 1–69. [Google Scholar] [CrossRef]
- Nielsen, T.; Jørgensena, H.E.; Larsen, J.C.; Poulsen, M. City air pollution of polycyclic aromatic hydrocarbons and other mutagens: Occurrence, sources and health effects. Sci. Total Environ. 1996, 189–190, 41–49. [Google Scholar] [CrossRef]
- Anda, A.; Illes, B. Impact of simulated airborne soot on maize growth and development. J. Environ. Prot. 2012, 3, 773–781. [Google Scholar] [CrossRef]
- Stratakis, G.A.; Stamatelos, A.M. Thermogravimetric analysis of soot emitted by a modern diesel engine run on catalyst-doped fuel. Combust. Flame 2003, 132, 157–169. [Google Scholar] [CrossRef]
- Jequirim, M.; Tshamber, V.; Brilac, J.F.; Ehrburger, P. Oxidation mechanism of carbon black by NO2: Effect of water vapour. Fuel 2005, 84, 1949–1956. [Google Scholar] [CrossRef]
- Pisarello, M.L.; Milt, V.; Peralta, M.A.; Querini, C.A.; Miró, E.E. Simultaneous removal of soot and nitrogen oxides from diesel engine exhausts. Catal. Today 2002, 75, 465–470. [Google Scholar] [CrossRef]
- Prasad, R.; Bella, V.R. A review on diesel soot emission, its effect and control. Bull. Chem. React. Eng. Catal. 2010, 5, 69–86. [Google Scholar] [CrossRef]
- Trovarelli, A.; de Lietenburg, C.; Boaro, M.; Dolcetti, G. The utilization of ceria in industrial catalysis. Catal. Today 1999, 50, 353–367. [Google Scholar] [CrossRef]
- Machida, M.; Murata, Y.; Kishikawa, K.; Zhang, D.; Ikeue, K. On the reasons for high activity of CeO2 catalyst for soot oxidation. Chem. Mater. 2008, 20, 4489–4494. [Google Scholar] [CrossRef]
- Oliveira, C.F.; Garcia, F.A.C.; Araujo, D.R.; Macedo, J.L.; Dias, S.C.L.; Dias, J.A. Effects of preparation and structure if cerium-zirconium mixed oxides on diesel soot catalytic combustion. Appl. Catal. A Gen. 2012, 413–141, 292–300. [Google Scholar] [CrossRef]
- Krishna, K.; Bueno-Lopez, A.; Makkee, M.; Moulijin, J.A. Potential rare earth modified CeO2 catalysts for soot oxidation: I. Characterisation and catalytic activity with O2. Appl. Catal. B Environ. 2007, 75, 189–200. [Google Scholar] [CrossRef]
- Vinodkumar, T.; Rao, B.G.; Reddy, B.M. Influence of isovalent and aliovalent dopants on the reactivity of cerium oxide for catalytic applications. Catal. Today 2015, 253, 57–64. [Google Scholar] [CrossRef]
- Durgasri, D.N.; Vinodkumar, T.; Lin, F.; Alxneit, I.; Reddy, B.M. Gandolinium doped cerium oxide for soot oxidation: Influence of interfacial metal-support interactions. Appl. Surf. Sci. 2014, 314, 592–598. [Google Scholar] [CrossRef]
- Bueno-Lopez, A.; Krishna, K.; Makkee, M.; Mouljin, J.A. Enhanced soot oxidation by lattice oxygen via La3+-doped CeO2. J. Catal. 2005, 230, 237–248. [Google Scholar] [CrossRef]
- Atribak, I.; Bueno-Lopez, A.; Garcia-Garcia, A. Combined removal of diesel soot particulates and NOx over CeO2-ZrO2 mixed oxides. J. Catal. 2008, 259, 123–132. [Google Scholar] [CrossRef]
- Scire, S.; Riccobene, S.P.M.; Crisafulli, C. Ceria supported group IB metal catalysts for the combustion of volatile organic compounds and the preferential oxidation of CO. Appl. Catal. B Environ. 2010, 101, 109–117. [Google Scholar] [CrossRef]
- Tarasov, A.L.; Przhevalskaya, L.K.; Shvets, V.A.; Kazanskii, V.B. Influence of the metal-oxide electronic interaction on the reactivity of adsorbed oxygen radicals. Applied catalysts containing cerium oxide and Cu, Ag, and Au. Kinet. Katal. 1988, 29, 1181–1188. [Google Scholar]
- Soria, J.; Martinez-Arias, A.; Conesa, J.C. Effect of oxidized rhodium on oxygen adsorption on cerium oxide. Vacuum 1992, 43, 437–440. [Google Scholar] [CrossRef]
- Rangaswamy, A.; Sudarsanam, P.; Reddy, B.M. Rare earth metal doped CeO2-based catalytic materials for diesel soot oxidation at lower temperatures. J. Rare Earths 2015, 33, 1162–1169. [Google Scholar] [CrossRef]
- Aneggi, E.; Llorca, J.; de Leitenburg, C.; Dolcetti, G.; Trovarelli, A. Soot combustion over silver-supported catalysts. Appl. Catal. Environ. 2009, 91, 489–498. [Google Scholar] [CrossRef]
- Hanedaa, M.; Towata, A. Catalytic performance of supported Ag nano-particles prepared by liquid phase chemical reduction for soot oxidation. Catal. Today 2015, 242, 351–356. [Google Scholar] [CrossRef]
- Kuwahara, Y.; Fujibayashi, A.; Uehara, H.; Mori, K.; Yamashita, H. Catalytic combustion of diesel soot over Fe and Ag-doped manganese oxides: Role of heteroatoms in the catalytic performances. Catal. Sci. Technol. 2018, 8, 1905–1914. [Google Scholar] [CrossRef]
- Shimizu, K.; Kawachi, H.; Satsuma, A. Study of active sites and mechanism for soot oxidation by silver-loaded ceria catalyst. Appl. Catal. B Environ. 2010, 96, 169–175. [Google Scholar] [CrossRef]
- Preda, G.; Pacchioni, G. Formation of oxygen active species in Ag-modified CeO2 catalyst for soot oxidation: A DFT study. Catal. Today 2011, 177, 31–38. [Google Scholar] [CrossRef]
- Yamazaki, K.; Kayama, T.; Dong, F.; Shinjoh, H. A mechanistic study on soot oxidation over CeO2-Ag catalyst with ‘rice-ball’ morphology. J. Catal. 2011, 282, 289–298. [Google Scholar] [CrossRef]
- Castoldi, L.; Aneggi, E.; Matarrese, R.; Bonzi, R.; Llorca, J.; Trovarelli, A.; Lietti, L. Silver-based catalytic materials for the simultaneous removal of soot and NOx. Catal. Today 2015, 258, 405–415. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, B.J.; Jackson, D.H.K.; Lee, J.; Canlas, C.; Stair, P.C.; Marshall, C.L.; Elam, J.W.; Kuech, T.F.; Dumesic, J.A.; Huber, G.W. Catalyst design with atomic layer deposition. ACS Catal. 2015, 5, 1804–1825. [Google Scholar] [CrossRef]
- Ivanova, T.V.; Toivonen, J.; Homola, T.; Maydannik, P.S.; Kääriäinen, T.; Sillanpää, M.; Cameron, D.C. Atomic layer deposition of cerium oxide for potential use in diesel soot combustion. J. Vac. Sci. Technol. A 2016, 34, 031506. [Google Scholar] [CrossRef]
- Masango, S.S.; Peng, L.; Marks, L.D.; Van Duyne, R.P.; Stair, P.C. Nucleation and growth of silver nanoparticles by AB and ABC-type atomic layer deposition. J. Phys. Chem. C 2014, 118, 17655–17661. [Google Scholar] [CrossRef]
- Puurunen, R.; Vandervorst, W. Island growth as a growth mode in atomic layer deposition: A phenomenological model. J. Appl. Phys. 2004, 96, 7686. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 1976, 32, 751–767. [Google Scholar] [CrossRef] [Green Version]
- Cui, X.S. The Basic Theory of Solid Chemistry; Beijing Institute of Technology Printing: Beijing, China, 1991. (In Chinese) [Google Scholar]
- Murray, B.J.; Li, Q.; Newberg, J.T.; Menke, E.J.; Hemminger, J.C.; Penner, R.M. Shape- and size-selective electrochemical synthesis of dispersed silver(I) oxide colloids. Nano Lett. 2005, 5, 2319–2324. [Google Scholar] [CrossRef] [PubMed]
- Tjeng, L.H.; Meinders, M.B.J.; van Elp, J.; Ghijsen, J.; Sawatzky, G.A.; Johnson, R.L. Electronic structure of Ag2O. Phys. Rev. B 1990, 41, 3190–3194. [Google Scholar] [CrossRef]
- Abe, Y.; Hasegawa, T.; Kawamura, M.; Sasaki, K. Characterization of Ag oxide thin films prepared by reactive RF sputtering. Vacuum 2004, 76, 1–6. [Google Scholar] [CrossRef]
- Kaspar, T.C.; Droubay, T.; Chembers, S.A.; Bagus, P.S. Spectroscopic evidence for Ag(III) in highly oxidized silver films by X-ray photoelectron spectroscopy. J. Phys. Chem. C 2010, 114, 21562–21571. [Google Scholar] [CrossRef]
- Ferraria, A.M.; Carapeto, A.P.; do Rego, A.M.B. X-ray photoelectron spectroscopy: Silver salts revisited. Vacuum 2012, 86, 1988–1991. [Google Scholar] [CrossRef]
- Sadanandam, G.; Kumari, V.D.; Scurrell, M.S. Highly stabilized Ag2O-loaded nano TiO2 for hydrogen production from glycerol: Water mixtures under solar light irradiation. Int. J. Hydrogen Energy 2017, 42, 807–820. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, G.; Chen, D.; Lv, X.; Li, J. Tuning photoelectrochemical performances of Ag-TiO2 nanocomposites via reduction/oxidation of Ag. Chem. Mater. 2008, 20, 6543–6549. [Google Scholar] [CrossRef]
- Xin, B.; Jing, L.; Ren, Z.; Wang, B.; Fu, H. Effects of simultaneously doped and deposited Ag on the photocatalytic activity and surface states of TiO2. J. Phys. Chem. 2005, 109, 2805–2809. [Google Scholar] [CrossRef] [PubMed]
- Priya, K.V.B.R.; Shukla, S.; Biju, S.; Reddy, M.L.P.; Patil, K.; Warrier, K.G.K. Comparing ultraviolet and chemical reduction techniques for enhancing photocatalytic activity of silver oxide/silver deposited nanocrystalline anatase titania. J. Phys. Chem. C 2009, 113, 6243–6255. [Google Scholar] [CrossRef]
- Li, J.; Xu, J.; Dai, W.-L.; Fan, K. Dependence of Ag deposition methods on the photocatalytic activity and surface state of TiO2 with twistlike helix structure. J. Phys. Chem. C 2009, 113, 8343–8349. [Google Scholar] [CrossRef]
- Ansari, A.A.; Labis, J.P.; Alam, M.; Ramay, S.M.; Ahmed, N.; Mahmood, A. Preparation and spectroscopic, microscopic, thermogravimetric, and electrochemical characterization of silver-doped cerium(IV) oxide nanoparticles. Anal. Lett. 2017, 50, 1360–1371. [Google Scholar] [CrossRef]
- Deshpande, S.S.; Patil, S.V.N.; Kuchibhatla, T.; Seal, S. Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Appl. Phys. Lett. 2005, 87, 133113. [Google Scholar] [CrossRef]
- Cai, S.; Zhang, D.; Zhang, L.; Huang, L.; Li, H.; Gao, R.; Shi, L.; Zhang, J. Comparative study of 3D ordered macroporous Ce0.75Zr0.2M0.05O2−δ (M = Fe, Cu, Mn, Co) for selective catalytic reduction of NO with NH3. Catal. Sci. Technol. 2014, 4, 93–101. [Google Scholar] [CrossRef]
- Zou, G.; Fan, Z.; Yao, X.; Zhang, Y.; Zhang, Z.; Chen, M.; Shangguan, W. Catalytic performance of Ag/Co-Ce composite oxides during soot combustion in O2 and NOx: Insights into the effects of silver. Chin. J. Catal. 2017, 38, 564–572. [Google Scholar] [CrossRef]
- Bukhtiyarov, V.I.; Havecker, M.; Kaichev, V.V.; Knop-Gericke, A.; Mayer, R.W.; Schlögl, R. Atomic oxygen species on silver: Photoelectron spectroscopy and X-ray absorption studies. Phys. Rev. B 2003, 67, 235422. [Google Scholar] [CrossRef]
- Aneggi, E.; de Leitenburg, C.; Llorca, J.; Trovarelli, A. Higher activity of diesel soot oxidation over polycrystalline ceria and ceria–zirconia solid solutions from more reactive surface planes. Catal. Today 2012, 197, 119–126. [Google Scholar] [CrossRef]
Catalyst | Grain Size of CeO2 (111) (nm) |
---|---|
CeO2 | 10.2 |
Ce:Ag 30:1 | 8.7 |
Ce:Ag 20:1 | 7.1 |
Ce:Ag 10:1 | 6.2 |
Catalyst | Surface Composition (at.%) | Ag/Ce (from Survey) | |||||
---|---|---|---|---|---|---|---|
Ce 3d | Ag 3d | O 1s | C 1s | F 1s | N 1s | ||
Ce:Ag 10:1 | 21.4 | 9.7 | 46.1 | 13.9 | 8.1 | 6 | 0.453 |
Ce:Ag 20:1 | 23.9 | 4.5 | 43.8 | 15.7 | 7.1 | 5 | 0.188 |
Ce:Ag 30:1 | 26.6 | 2.0 | 39.9 | 17.4 | 5.7 | 3.6 | 0.075 |
Ag2O | – | 56 | 27.3 | 14.2 | 0.5 | 3 | – |
CeO2 | 25.9 | – | 52.9 | 21.5 | – | – | – |
Catalyst | Compound (BE, eV) | Concentration of Ce4+ (at.%) (Excluding C) | Concentration of Ce3+ (at.%) (Excluding C) | Ce3+/Ce4+ (%) | ||
---|---|---|---|---|---|---|
Ag+ (368.2 ± 0.1) | Ag0 (369.2 ± 0.1) | Ag2+ (367.2) | ||||
Ag2O | 100 | – | – | – | – | – |
Ce:Ag 10:1 | 85 | 9.7 | 4.5 | 77 | 23 | 29.8 |
Ce:Ag 20:1 | 59 | 35 | 6 | 80 | 20 | 25.0 |
Ce:Ag 30:1 | 38.4 | 59 | 2.6 | 82 | 18 | 21.9 |
CeO2 | – | – | – | 83 | 17 | 20.4 |
Catalyst | Ti (°C) | Tf (°C) |
---|---|---|
None | 410 | 600 |
CeO2 | 350 | 490 |
CeO2:Ag 10:1 | 300 | 390 |
CeO2:Ag 20:1 | 300 | 490 |
CeO2:Ag 30:1 | 330 | 490 |
Ag2O | 300 | 410 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanova, T.V.; Homola, T.; Bryukvin, A.; Cameron, D.C. Catalytic Performance of Ag2O and Ag Doped CeO2 Prepared by Atomic Layer Deposition for Diesel Soot Oxidation. Coatings 2018, 8, 237. https://doi.org/10.3390/coatings8070237
Ivanova TV, Homola T, Bryukvin A, Cameron DC. Catalytic Performance of Ag2O and Ag Doped CeO2 Prepared by Atomic Layer Deposition for Diesel Soot Oxidation. Coatings. 2018; 8(7):237. https://doi.org/10.3390/coatings8070237
Chicago/Turabian StyleIvanova, Tatiana V., Tomáš Homola, Anton Bryukvin, and David C. Cameron. 2018. "Catalytic Performance of Ag2O and Ag Doped CeO2 Prepared by Atomic Layer Deposition for Diesel Soot Oxidation" Coatings 8, no. 7: 237. https://doi.org/10.3390/coatings8070237
APA StyleIvanova, T. V., Homola, T., Bryukvin, A., & Cameron, D. C. (2018). Catalytic Performance of Ag2O and Ag Doped CeO2 Prepared by Atomic Layer Deposition for Diesel Soot Oxidation. Coatings, 8(7), 237. https://doi.org/10.3390/coatings8070237