Atomic Layer Deposition

A special issue of Coatings (ISSN 2079-6412).

Deadline for manuscript submissions: closed (31 October 2018) | Viewed by 50650

Printed Edition Available!
A printed edition of this Special Issue is available here.

Special Issue Editor


E-Mail Website
Guest Editor
Department of Physical Electronics, Masaryk University, Brno, Czech Republic
Interests: thin film technology; atomic layer deposition; plasma CVD; magnetron sputtering; sol-gel deposition

Special Issue Information

Dear Colleagues,

Atomic Layer Deposition (ALD) has developed from its early beginnings in the Soviet Union and Finland into a process that is critical for microlectronics manufacturing and also extends into many other areas, for example, flexible electronics, displays, anti-corrosion layers, catalysis and pharmaceuticals. This Special Issue of Coatings on “Atomic Layer Deposition” is intended to cover original research and critical review articles on recent advances in all aspects of ALD.

In particular, the topics of interest include, but are not limited to:

  • ALD processes for materials and devices;
  • Characterization of ALD coatings;
  • ALD nucleation, growth phenomena and process modelling;
  • Applications of ALD;
  • Spatial and roll-to-roll ALD processes.

Prof. Dr. David Cameron
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Coatings is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

14 pages, 5734 KiB  
Article
Influence of the Geometric Parameters on the Deposition Mode in Spatial Atomic Layer Deposition: A Novel Approach to Area-Selective Deposition
by César Masse de la Huerta, Viet Huong Nguyen, Jean-Marc Dedulle, Daniel Bellet, Carmen Jiménez and David Muñoz-Rojas
Coatings 2019, 9(1), 5; https://doi.org/10.3390/coatings9010005 - 22 Dec 2018
Cited by 26 | Viewed by 5356
Abstract
Within the materials deposition techniques, Spatial Atomic Layer Deposition (SALD) is gaining momentum since it is a high throughput and low-cost alternative to conventional atomic layer deposition (ALD). SALD relies on a physical separation (rather than temporal separation, as is the case in [...] Read more.
Within the materials deposition techniques, Spatial Atomic Layer Deposition (SALD) is gaining momentum since it is a high throughput and low-cost alternative to conventional atomic layer deposition (ALD). SALD relies on a physical separation (rather than temporal separation, as is the case in conventional ALD) of gas-diluted reactants over the surface of the substrate by a region containing an inert gas. Thus, fluid dynamics play a role in SALD since precursor intermixing must be avoided in order to have surface-limited reactions leading to ALD growth, as opposed to chemical vapor deposition growth (CVD). Fluid dynamics in SALD mainly depends on the geometry of the reactor and its components. To quantify and understand the parameters that may influence the deposition of films in SALD, the present contribution describes a Computational Fluid Dynamics simulation that was coupled, using Comsol Multiphysics®, with concentration diffusion and temperature-based surface chemical reactions to evaluate how different parameters influence precursor spatial separation. In particular, we have used the simulation of a close-proximity SALD reactor based on an injector manifold head. We show the effect of certain parameters in our system on the efficiency of the gas separation. Our results show that the injector head-substrate distance (also called deposition gap) needs to be carefully adjusted to prevent precursor intermixing and thus CVD growth. We also demonstrate that hindered flow due to a non-efficient evacuation of the flows through the head leads to precursor intermixing. Finally, we show that precursor intermixing can be used to perform area-selective deposition. Full article
(This article belongs to the Special Issue Atomic Layer Deposition)
Show Figures

Figure 1

11 pages, 2546 KiB  
Article
Growth without Postannealing of Monoclinic VO2 Thin Film by Atomic Layer Deposition Using VCl4 as Precursor
by Wen-Jen Lee and Yong-Han Chang
Coatings 2018, 8(12), 431; https://doi.org/10.3390/coatings8120431 - 27 Nov 2018
Cited by 52 | Viewed by 6749
Abstract
Vanadium dioxide (VO2) is a multifunctional material with semiconductor-to-metal transition (SMT) property. Organic vanadium compounds are usually employed as ALD precursors to grow VO2 films. However, the as-deposited films are reported to have amorphous structure with no significant SMT property, [...] Read more.
Vanadium dioxide (VO2) is a multifunctional material with semiconductor-to-metal transition (SMT) property. Organic vanadium compounds are usually employed as ALD precursors to grow VO2 films. However, the as-deposited films are reported to have amorphous structure with no significant SMT property, therefore a postannealing process is necessary for converting the amorphous VO2 to crystalline VO2. In this study, an inorganic vanadium tetrachloride (VCl4) is used as an ALD precursor for the first time to grow VO2 films. The VO2 film is directly crystallized and grown on the substrate without any postannealing process. The VO2 film displays significant SMT behavior, which is verified by temperature-dependent Raman spectrometer and four-point-probing system. The results demonstrate that the VCl4 is suitably employed as a new ALD precursor to grow crystallized VO2 films. It can be reasonably imagined that the VCl4 can also be used to grow various directly crystallized vanadium oxides by controlling the ALD-process parameters. Full article
(This article belongs to the Special Issue Atomic Layer Deposition)
Show Figures

Figure 1

13 pages, 4307 KiB  
Article
Growth of Atomic Layer Deposited Ruthenium and Its Optical Properties at Short Wavelengths Using Ru(EtCp)2 and Oxygen
by Robert Müller, Lilit Ghazaryan, Paul Schenk, Sabrina Wolleb, Vivek Beladiya, Felix Otto, Norbert Kaiser, Andreas Tünnermann, Torsten Fritz and Adriana Szeghalmi
Coatings 2018, 8(11), 413; https://doi.org/10.3390/coatings8110413 - 20 Nov 2018
Cited by 13 | Viewed by 7284
Abstract
High-density ruthenium (Ru) thin films were deposited using Ru(EtCp)2 (bis(ethylcyclopentadienyl)ruthenium) and oxygen by thermal atomic layer deposition (ALD) and compared to magnetron sputtered (MS) Ru coatings. The ALD Ru film growth and surface roughness show a significant temperature dependence. At temperatures below [...] Read more.
High-density ruthenium (Ru) thin films were deposited using Ru(EtCp)2 (bis(ethylcyclopentadienyl)ruthenium) and oxygen by thermal atomic layer deposition (ALD) and compared to magnetron sputtered (MS) Ru coatings. The ALD Ru film growth and surface roughness show a significant temperature dependence. At temperatures below 200 °C, no deposition was observed on silicon and fused silica substrates. With increasing deposition temperature, the nucleation of Ru starts and leads eventually to fully closed, polycrystalline coatings. The formation of blisters starts at temperatures above 275 °C because of poor adhesion properties, which results in a high surface roughness. The optimum deposition temperature is 250 °C in our tool and leads to rather smooth film surfaces, with roughness values of approximately 3 nm. The ALD Ru thin films have similar morphology compared with MS coatings, e.g., hexagonal polycrystalline structure and high density. Discrepancies of the optical properties can be explained by the higher roughness of ALD films compared to MS coatings. To use ALD Ru for optical applications at short wavelengths (λ = 2–50 nm), further improvement of their film quality is required. Full article
(This article belongs to the Special Issue Atomic Layer Deposition)
Show Figures

Figure 1

18 pages, 3448 KiB  
Article
Electrostatic Supercapacitors by Atomic Layer Deposition on Nanoporous Anodic Alumina Templates for Environmentally Sustainable Energy Storage
by Luis Javier Fernández-Menéndez, Ana Silvia González, Víctor Vega and Víctor Manuel De la Prida
Coatings 2018, 8(11), 403; https://doi.org/10.3390/coatings8110403 - 14 Nov 2018
Cited by 9 | Viewed by 4511
Abstract
In this work, the entire manufacturing process of electrostatic supercapacitors using the atomic layer deposition (ALD) technique combined with the employment of nanoporous anodic alumina templates as starting substrates is reported. The structure of a usual electrostatic capacitor, which comprises a top conductor [...] Read more.
In this work, the entire manufacturing process of electrostatic supercapacitors using the atomic layer deposition (ALD) technique combined with the employment of nanoporous anodic alumina templates as starting substrates is reported. The structure of a usual electrostatic capacitor, which comprises a top conductor electrode/the insulating dielectric layer/and bottom conductor electrode (C/D/C), has been reduced to nanoscale size by depositing layer by layer the required materials over patterned nanoporous anodic alumina membranes (NAAMs) by employing the ALD technique. A thin layer of aluminum-doped zinc oxide, with 3 nm in thickness, is used as both the top and bottom electrodes’ material. Two dielectric materials were tested; on the one hand, a triple-layer made by a successive combination of 3 nm each layers of silicon dioxide/titanium dioxide/silicon dioxide and on the other hand, a simple layer of alumina, both with 9 nm in total thickness. The electrical properties of these capacitors are studied, such as the impedance and capacitance dependences on the AC frequency regime (up to 10 MHz) or capacitance (180 nF/cm2) on the DC regime. High breakdown voltage values of 60 V along with low leakage currents (0.4 μA/cm2) are also measured from DC charge/discharge RC circuits to determine the main features of the capacitors behavior integrated in a real circuit. Full article
(This article belongs to the Special Issue Atomic Layer Deposition)
Show Figures

Graphical abstract

16 pages, 4315 KiB  
Article
Structural and Optical Properties of Luminescent Copper(I) Chloride Thin Films Deposited by Sequentially Pulsed Chemical Vapour Deposition
by Richard Krumpolec, Tomáš Homola, David C. Cameron, Josef Humlíček, Ondřej Caha, Karla Kuldová, Raul Zazpe, Jan Přikryl and Jan M. Macak
Coatings 2018, 8(10), 369; https://doi.org/10.3390/coatings8100369 - 18 Oct 2018
Cited by 11 | Viewed by 5074
Abstract
Sequentially pulsed chemical vapour deposition was used to successfully deposit thin nanocrystalline films of copper(I) chloride using an atomic layer deposition system in order to investigate their application to UV optoelectronics. The films were deposited at 125 °C using [Bis(trimethylsilyl)acetylene](hexafluoroacetylacetonato)copper(I) as a Cu [...] Read more.
Sequentially pulsed chemical vapour deposition was used to successfully deposit thin nanocrystalline films of copper(I) chloride using an atomic layer deposition system in order to investigate their application to UV optoelectronics. The films were deposited at 125 °C using [Bis(trimethylsilyl)acetylene](hexafluoroacetylacetonato)copper(I) as a Cu precursor and pyridine hydrochloride as a new Cl precursor. The films were analysed by XRD, X-ray photoelectron spectroscopy (XPS), SEM, photoluminescence, and spectroscopic reflectance. Capping layers of aluminium oxide were deposited in situ by ALD (atomic layer deposition) to avoid environmental degradation. The film adopted a polycrystalline zinc blende-structure. The main contaminants were found to be organic materials from the precursor. Photoluminescence showed the characteristic free and bound exciton emissions from CuCl and the characteristic exciton absorption peaks could also be detected by reflectance measurements. Full article
(This article belongs to the Special Issue Atomic Layer Deposition)
Show Figures

Figure 1

16 pages, 7182 KiB  
Article
Catalytic Performance of Ag2O and Ag Doped CeO2 Prepared by Atomic Layer Deposition for Diesel Soot Oxidation
by Tatiana V. Ivanova, Tomáš Homola, Anton Bryukvin and David C. Cameron
Coatings 2018, 8(7), 237; https://doi.org/10.3390/coatings8070237 - 4 Jul 2018
Cited by 20 | Viewed by 7213
Abstract
The catalytic behaviour of Ag2O and Ag doped CeO2 thin films, deposited by atomic layer deposition (ALD), was investigated for diesel soot oxidation. The silver oxide was deposited from pulses of the organometallic precursor (hfac)Ag(PMe3) and ozone at [...] Read more.
The catalytic behaviour of Ag2O and Ag doped CeO2 thin films, deposited by atomic layer deposition (ALD), was investigated for diesel soot oxidation. The silver oxide was deposited from pulses of the organometallic precursor (hfac)Ag(PMe3) and ozone at 200 °C with growth rate of 0.28 Å/cycle. Thickness, crystallinity, elemental composition, and morphology of the Ag2O and Ag doped CeO2 films deposited on Si (100) were characterized by ellipsometry, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and field emission scanning electron microscopy (FESEM), respectively. The catalytic effect on diesel soot combustion of pure Ag2O, CeO2, and Ag doped CeO2 films grown on stainless steel foil supports was measured with oxidation tests. Nominally CeO2:Ag 10:1 doped CeO2 films were most effective and oxidized 100% of soot at 390 °C, while the Ag2O films were 100% effective at 410 °C. The doped films also showed much higher stability; their performance remained stable after five tests with only a 10% initial reduction in efficiency whereas the performance of the Ag2O films reduced by 50% after the first test. It was concluded that the presence of Ag+ sites on the catalyst is responsible for the high soot oxidation activity. Full article
(This article belongs to the Special Issue Atomic Layer Deposition)
Show Figures

Figure 1

Review

Jump to: Research

40 pages, 7690 KiB  
Review
Metal Fluorides as Lithium-Ion Battery Materials: An Atomic Layer Deposition Perspective
by Miia Mäntymäki, Mikko Ritala and Markku Leskelä
Coatings 2018, 8(8), 277; https://doi.org/10.3390/coatings8080277 - 8 Aug 2018
Cited by 39 | Viewed by 12754
Abstract
Lithium-ion batteries are the enabling technology for a variety of modern day devices, including cell phones, laptops and electric vehicles. To answer the energy and voltage demands of future applications, further materials engineering of the battery components is necessary. To that end, metal [...] Read more.
Lithium-ion batteries are the enabling technology for a variety of modern day devices, including cell phones, laptops and electric vehicles. To answer the energy and voltage demands of future applications, further materials engineering of the battery components is necessary. To that end, metal fluorides could provide interesting new conversion cathode and solid electrolyte materials for future batteries. To be applicable in thin film batteries, metal fluorides should be deposited with a method providing a high level of control over uniformity and conformality on various substrate materials and geometries. Atomic layer deposition (ALD), a method widely used in microelectronics, offers unrivalled film uniformity and conformality, in conjunction with strict control of film composition. In this review, the basics of lithium-ion batteries are shortly introduced, followed by a discussion of metal fluorides as potential lithium-ion battery materials. The basics of ALD are then covered, followed by a review of some conventional lithium-ion battery materials that have been deposited by ALD. Finally, metal fluoride ALD processes reported in the literature are comprehensively reviewed. It is clear that more research on the ALD of fluorides is needed, especially transition metal fluorides, to expand the number of potential battery materials available. Full article
(This article belongs to the Special Issue Atomic Layer Deposition)
Show Figures

Graphical abstract

Back to TopTop