Thermoelectric Properties of Zinc-Doped Indium Tin Oxide Thin Films Prepared Using the Magnetron Co-Sputtering Method
Abstract
:1. Introduction
2. Experimental Detail
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gayner, C.; Kar, K.K. Recent advances in thermoelectric materials. Prog. Mater. Sci. 2016, 83, 330–382. [Google Scholar] [CrossRef]
- Ismail, B.; Ahmed, W. Thermoelectric Power Generation Using Waste-Heat Energy as an Alternative Green Technology. Recent Pat. Electr. Eng. 2009, 2, 27–39. [Google Scholar] [CrossRef]
- Bell, L.E. Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems. Science 2008, 321, 1457–1461. [Google Scholar] [CrossRef]
- Jeffrey, G.J.; Toberer, E.S. Complex thermoelectric materials. In Materials for Sustainable Energy; Nature Publishing Group: London, UK, 2010; pp. 105–114. [Google Scholar]
- Liu, W.; Yan, X.; Chen, G.; Ren, Z. Recent advances in thermoelectric nanocomposites. Nano Energy 2012, 1, 42–56. [Google Scholar] [CrossRef]
- Tritt, T.M.; Subramanian, M.A. Thermoelectric Materials, Phenomena, and Applications: A Bird’s Eye View. MRS Bull. 2006, 31, 188–198. [Google Scholar] [CrossRef]
- Gross, A.J.; Hwang, G.S.; Huang, B.; Yang, H.; Ghafouri, N.; Kim, H.; Peterson, R.L.; Uher, C.; Kaviany, M.; Najafi, K. Multistage planar thermoelectric microcoolers. J. Microelectromechan. Syst. 2011, 20, 1201–1210. [Google Scholar] [CrossRef]
- Snyder, G.J.; Soto, M.; Alley, R.; Koester, D.; Conner, B. Hot Spot Cooling using Embedded Thermoelectric Coolers. In Proceedings of the 22nd Annual IEEE Semiconductor Thermal Measurement and Management Symposium, Dallas, TX, USA, 14–16 March 2006; pp. 135–143. [Google Scholar]
- Nam, W.H.; Lim, Y.S.; Choi, S.-M.; Seo, W.-S.; Lee, J.Y. High-temperature charge transport and thermoelectric properties of a degenerately Al-doped ZnO nanocomposite. J. Mater. Chem. 2012, 22, 14633–14638. [Google Scholar] [CrossRef]
- Jeong, M.-W.; Na, S.; Shin, H.; Park, H.-B.; Lee, H.-J.; Joo, Y.-C. Thermomechanical in situ monitoring of Bi2Te3 thin film and its relationship with microstructure and thermoelectric performances. Electron. Mater. Lett. 2018, 14, 426–431. [Google Scholar] [CrossRef]
- Hong, J.E.; Lee, S.K.; Yoon, S.G. Enhanced thermoelectric properties of thermal treated Sb2Te3 thin films. J. Alloys Compd. 2014, 583, 111–115. [Google Scholar] [CrossRef]
- Goncalves, L.M.; Couto, C.; Alpuim, P.; Rolo, A.G.; Völklein, F.; Correia, J.H. Optimization of thermoelectric properties on Bi2Te3 thin films deposited by thermal co-evaporation. Thin Solid Films 2010, 518, 2816–2821. [Google Scholar] [CrossRef]
- Loureiro, J.; Neves, N.; Barros, R.; Mateus, T.; Santos, R.; Filonovich, S.; Reparaz, S.; Sotomayor-Torres, C.M.; Wyczisk, F.; Divay, L.; et al. Transparent aluminium zinc oxide thin films with enhanced thermoelectric properties. J. Mater. Chem. A 2014, 2, 6649–6655. [Google Scholar] [CrossRef]
- Korotcenkov, G.; Brinzari, V.; Cho, B.K. In2O3-based multicomponent metal oxide films and their prospects for thermoelectric applications. Solid State Sci. 2016, 52, 141–148. [Google Scholar] [CrossRef]
- Tuna, O.; Selamet, Y.; Aygun, G.; Ozyuzer, L. High quality ITO thin films grown by DC and RF sputtering without oxygen. J. Phys. D Appl. Phys. 2010, 43, 055402. [Google Scholar] [CrossRef]
- Zhang, K.; Zhu, F.; Huan, C.H.A.; Wee, A.T.S. Indium tin oxide films prepared by radio frequency magnetron sputtering method at a low processing temperature. Thin Solid Films 2000, 376, 255–263. [Google Scholar] [CrossRef]
- Kim, S.; Yoon, J.-H.; Bang, J.; Song, P. Effect of hydrogen on mechanical stability of amorphous In–Sn–O thin films for flexible electronics. Thin Solid Films 2019, 669, 275–280. [Google Scholar] [CrossRef]
- Santos, R.; Loureiro, J.; Nogueira, A.; Elangovan, E.; Pinto, J.V.; Veiga, J.P.; Busani, T.; Fortunato, E.; Martins, R.; Ferreira, I. Thermoeletcric properties of V2O5 thin films deposited by thermal evaporation. Appl. Surf. Sci. 2013, 282, 590–594. [Google Scholar] [CrossRef]
- Li, L.; Fang, L.; Chen, X.M.; Liu, J.; Yang, F.F.; Li, Q.J.; Liu, G.B.; Feng, S.J. Influence of oxygen argon ratio on the structural, electrical, optical and thermoelectrical properties of Al-doped ZnO thin films. Physica E 2008, 41, 169–174. [Google Scholar] [CrossRef]
- Saini, S.; Mele, P.; Honda, H.; Suzuki, T.; Matsumoto, K.; Miyazaki, K.; Ichinose, A.; Molina-Luna, L.; Carlini, R.; Tiwari, A. Effect of self-grown seed layer on thermoelectric properties of ZnO thin films. Thin Solid Films 2016, 605, 289–294. [Google Scholar] [CrossRef]
- Saini, S.; Mele, P.; Honda, H.; Henry, D.J.; Hopkins, P.E.; Molina-Luna, L.; Matsumoto, K.; Miyazaki, K.; Ichinose, A. Enhanced thermoelectric performance of Al-doped ZnO thin films on amorphous substrate. Jpn. J. Appl. Phys. 2014, 53, 1–4. [Google Scholar] [CrossRef]
- Saini, S.; Mele, P.; Honda, H.; Matsumoto, K.; Miyazaki, K.; Luna, L.M.; Hopkins, P.E. Influence of Postdeposition Cooling Atmosphere on Thermoelectric Properties of 2% Al-Doped ZnO Thin Films Grown by Pulsed Laser Deposition. J. Electron. Mater. 2015, 44, 1547–1553. [Google Scholar] [CrossRef]
- Brinks, P.; Heijmerikx, H.; Hendriks, T.A.; Rijnders, G.; Huijben, M. Achieving chemical stability in thermoelectric NaxCoO2 thin films. R. Soc. Chem. 2012, 2, 6023–6027. [Google Scholar] [CrossRef]
- Byeon, J.; Kim, S.; Lim, J.H.; Song, J.Y.; Park, S.H.; Song, P. Thermoelectric and electrical properties of micro-quantity Sn-doped amorphous indium-zinc oxide thin films. Jpn. J. Appl. Phys. 2017, 56, 1–3. [Google Scholar] [CrossRef]
- Jha, P.; Sands, T.D.; Jackson, P.; Bomberger, C.; Favaloro, T.; Hodson, S.; Zide, J.; Xu, X.; Shakouri, A. Cross-plane thermoelectric transport in p-type La0.67Sr0.33MnO3/LaMnO3 oxide metal/semiconductor superlattices. J. Appl. Phys. 2013, 53, 1–8. [Google Scholar] [CrossRef]
- Robert, R.; Aguirre, M.H.; Bocher, L.; Trottmann, M.; Heiroth, S.; Lippert, T.; Do, M.; Weidenkaff, A. Thermoelectric properties of LaCo1−xNixO3 polycrystalline samples and epitaxial thin films. Solid State Sci. 2008, 10, 502–507. [Google Scholar] [CrossRef]
- Nguyen, N.H.T.; Nguyen, T.H.; Liu, Y.-R.; Aminzare, M.; Pham, A.T.T.; Cho, S.; Wong, D.P.; Chen, K.-H.; Seetawan, T.; Pham, N.K.; et al. Thermoelectric properties of indium and gallium dually doped ZnO thin films. ACS Appl. Mater. Interfaces 2016, 8, 33916–33923. [Google Scholar] [CrossRef]
- Kim, S.; Kim, D.; Byeon, J.; Lim, J.; Song, J.; Park, S.; Park, C.; Song, P. Transparent amorphous oxide semiconductor as excellent thermoelectric materials. Coatings 2018, 8, 462. [Google Scholar] [CrossRef]
- Vogel-Schäuble, N.; Romanyuk, Y.E.; Yoon, S.; Saji, K.J.; Populoh, S.; Pokrant, S.; Aguirre, M.H.; Weidenkaff, A. Thermoelectric properties of nanostructured Al-substituted ZnO thin films. Thin Solid Films 2012, 520, 6869–6875. [Google Scholar] [CrossRef]
- Kang, J.G.; Hong, K.S.; Yang, H.S. Investigation of film-thickness dependent thermal conductivity of Gd2Zr2O7 thin films. Curr. Appl. Phys. 2013, 13, 1967–1970. [Google Scholar] [CrossRef]
- Cahill, D.G.; Ford, W.K.; Goodson, K.E.; Mahan, G.D.; Majumdar, A.; Maris, H.J.; Merlin, R.; Phillpot, S.R. Nanoscale thermal transport. Appl. Phys. Rev. 2003, 93, 793–818. [Google Scholar] [CrossRef]
- Kim, D.-H.; Lee, G.-W.; Kim, Y.-C. Interaction of zinc interstitial with oxygen vacancy in zinc oxide: An origin of n-type doping. Solid State Commun. 2012, 1711–1714. [Google Scholar] [CrossRef]
- Telephone, B.; Thomas, D.G. Interstitial zinc in zinc oxide. J. Phys. Chem. Solids 1957, 3, 229–237. [Google Scholar]
- Carreras, P.; Antony, A.; Roldán, R.; Nos, O.; Frigeri, P.A.; Asensi, J.M.; Bertomeu, J. Transparent conducting thin films by co-sputtering of ZnO-ITO targets. Phys. Status Solidi 2010, 7, 953–956. [Google Scholar] [CrossRef] [Green Version]
- Film, C.; Liu, D.; Wu, C.; Lee, T. Electrical, optical and material properties of ZnO-doped indium–tin oxide films prepared using radio frequency magnetron cosputtering system at room temperature. Jpn. J. Appl. Phys. 2006, 45, 3526–3530. [Google Scholar]
- Kwon, S.H.; Jung, J.H.; Cheong, W.S.; Lee, G.H.; Song, P.K. Dependence of electrical and mechanical durability on Zn content and heat treatment for co-sputtered ITZO films. Curr. Appl. Phys. 2012, 12, S59–S63. [Google Scholar] [CrossRef]
- Putri, M.; Kim, K.H.; Koo, C.Y.; Lee, J.; Kim, J.; Baikie, I.D.; Grain, A.C.; Lee, H.Y. Effect of annealing treatment on the properties of stoichiometric indium zinc tin oxide (IZTO) thin films. J. Nanoelectron. Optoelectron. 2017, 12, 611–616. [Google Scholar] [CrossRef]
- Minami, T.; Yamamoto, T.; Toda, Y.; Miyata, T. Transparent conducting zinc-co-doped ITO films prepared by magnetron sputtering. Thin Solid Films 2000, 373, 189–194. [Google Scholar] [CrossRef] [Green Version]
- Hwang, M.-S.; Jeong, H.S.; Kim, W.M.; Seo, Y.W. Properties of Co-deposited indium tin oxide and zinc oxide films using a bipolar pulse power supply and a dual magnetron sputter source. Am. Vac. Soc. 2003, 21, 1399–1403. [Google Scholar] [CrossRef]
- Nickel, N.H.; Fleischer, K. Hydrogen local vibrational modes in zinc oxide. Am. Phys. Sonciety 2003, 90, 1–4. [Google Scholar] [CrossRef]
- Wöhlecke, M.; Kovács, L. OH− ions in Oxide Crystals. Crit. Rev. Solid State Mater. Sci. 2001, 25, 1–86. [Google Scholar] [CrossRef]
- Heo, G.-S.; Matsumoto, Y.; Gim, I.-G.; Park, J.-W.; Kim, K.-Y.; Kim, T.-W. Fabrication of cosputtered Zn–In–Sn–O films and their applications to organic light-emitting diodes. Solid State Commun. 2009, 149, 1731–1734. [Google Scholar] [CrossRef]
- Zhong, W.; Li, G.; Lan, L.; Li, B.; Chen, R. Effects of annealing temperature on properties of InSnZnO thin film transistors prepared by Co-sputtering. RSC Adv. 2018, 8, 34817–34822. [Google Scholar] [CrossRef] [Green Version]
- Carreras, P.; Gutmann, S.; Antony, A.; Bertomeu, J.; Schlaf, R.; Carreras, P.; Gutmann, S.; Antony, A.; Bertomeu, J.; Schlaf, R. The electronic structure of co-sputtered zinc indium tin oxide thin films. J. Appl. Phys. 2011, 110, 073711. [Google Scholar] [CrossRef] [Green Version]
- Stoev, M.; Toušková, J.; Tousek, J. X-ray photoelectron spectroscopy, scanning electron microscopy and optical transmittance studies of indium tin oxide and cadmium sulphide thin films for solar cells. Thin Solid Films 1997, 299, 67–71. [Google Scholar] [CrossRef]
- Donley, C.; Dunphy, D.; Paine, D.; Carter, C.; Nebesny, K.; Lee, P.; Alloway, D.; Armstrong, N.R. Characterization of indium-tin oxide interfaces using X-ray photoelectron spectroscopy and redox processes of a chemisorbed probe molecule: Effect of surface pretreatment conditions. Langmuir 2002, 18, 450–457. [Google Scholar] [CrossRef]
- Zhu, G.; Guo, L.; Shen, X.; Ji, Z.; Chen, K.; Zhou, H. Monodispersed In2O3 mesoporous nanospheres: One-step facile synthesis and the improved gas-sensing performance. Sens. Actuators B Chem. 2015, 220, 977–985. [Google Scholar] [CrossRef]
- Abbasi, M.; Rozati, S.M. Deposition of nanostructured indium oxide thin films for ethanol sensing applications. J. Electron. Mater. Mater. 2016, 45, 2855–2860. [Google Scholar] [CrossRef]
- Thirumoorthi, M.; Thomas Joseph Prakash, J. Structure, optical and electrical properties of indium tin oxide ultrathin films prepared by jet nebulizer spray pyrolysis technique. J. Asian Ceram. Soc. 2016, 4, 124–132. [Google Scholar] [CrossRef] [Green Version]
- Chandradass, J.; Bae, D.S.; Kim, K.H. A simple method to prepare indium oxide nanoparticles: Structural, microstructural and magnetic properties. Adv. Powder Technol. 2011, 22, 370–374. [Google Scholar] [CrossRef]
- Kőrösi, L.; Papp, S.; Dékány, I. Preparation of transparent conductive indium tin oxide thin films from nanocrystalline indium tin hydroxide by dip-coating method. Thin Solid Films 2011, 519, 3113–3118. [Google Scholar] [CrossRef]
- Song, P.; Han, D.; Zhang, H.; Li, J.; Yang, Z.; Wang, Q. Hydrothermal synthesis of porous In2O3 nanospheres with superior ethanol sensing properties. Sens. Actuators B Chem. 2014, 196, 434–439. [Google Scholar] [CrossRef]
RF ZnO Power (W) | 0 | 10 | 20 | 30 | 40 | 80 | 120 | 160 |
---|---|---|---|---|---|---|---|---|
In/(Zn+Sn+In+O) (at.%) | 45.81 | 45.48 | 44.17 | 43.85 | 42.98 | 36.97 | 33.51 | 30.45 |
Sn/(Zn+Sn+In+O) (at.%) | 3.91 | 3.89 | 3.88 | 3.8 | 3.75 | 3.42 | 3.08 | 2.75 |
Zn/(Zn+Sn+In+O) (at.%) | 0 | 0.44 | 1.56 | 2.8 | 4.31 | 11.09 | 15.33 | 18.26 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.Y.; Yang, I.J.; Yoon, J.-H.; Jin, S.-H.; Kim, S.; Song, P.K. Thermoelectric Properties of Zinc-Doped Indium Tin Oxide Thin Films Prepared Using the Magnetron Co-Sputtering Method. Coatings 2019, 9, 788. https://doi.org/10.3390/coatings9120788
Lee HY, Yang IJ, Yoon J-H, Jin S-H, Kim S, Song PK. Thermoelectric Properties of Zinc-Doped Indium Tin Oxide Thin Films Prepared Using the Magnetron Co-Sputtering Method. Coatings. 2019; 9(12):788. https://doi.org/10.3390/coatings9120788
Chicago/Turabian StyleLee, Ho Yun, Im Jeong Yang, Jang-Hee Yoon, Sung-Ho Jin, Seohan Kim, and Pung Keun Song. 2019. "Thermoelectric Properties of Zinc-Doped Indium Tin Oxide Thin Films Prepared Using the Magnetron Co-Sputtering Method" Coatings 9, no. 12: 788. https://doi.org/10.3390/coatings9120788
APA StyleLee, H. Y., Yang, I. J., Yoon, J. -H., Jin, S. -H., Kim, S., & Song, P. K. (2019). Thermoelectric Properties of Zinc-Doped Indium Tin Oxide Thin Films Prepared Using the Magnetron Co-Sputtering Method. Coatings, 9(12), 788. https://doi.org/10.3390/coatings9120788