Effect of Asymmetric Epoxy Coating/Metal Electrodes on the Electrochemical Noise Measurements Under Marine Alternating Hydrostatic Pressure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Electrochemical Measurements
2.3. Experimental Setup
2.4. Theoretical Calculation Based on Equivalent Circuit Model
3. Results
3.1. EN Time Records in The Initial Failure Process of Coating
3.2. EN Time Records after Remarkable Corrosion of Metal Substrate
4. Discussion
5. Conclusions
- The asymmetry of epoxy coating/metal electrodes (WE1 and WE2), including electrode area, coating thickness and coating impedance, significantly influences the electrochemical noise results in the initial. Coating impedance is the most important factor, and the coating with higher impedance contributes more to current noise than that with smaller impedance in a pair of electrodes.
- The asymmetric coating impedance influences EN measurements mainly by the variation of average charge of current sources but not the current source frequency before serious corrosion of metal substrate, since the same water diffusion mechanism can be confirmed during this period.
- When the obvious corrosion of metal substrate happens, the corresponding EN proportion relationship between coating/metal WEs may be invalid due to the different failure rate of the coatings. The coated metal with more serious corrosion cannot have enough information from EN results. Therefore, the utilization of EN results on the coatings with different failure states should be careful.
Author Contributions
Funding
Conflicts of Interest
References
- Dexter, S.C. Effect of variations in sea water upon the corrosion of aluminum. Corrosion 1980, 36, 423–432. [Google Scholar] [CrossRef]
- Beccaria, A.M.; Poggi, G.; Castello, G. Influence of passive film composition and sea water pressure on resistance to localised corrosion of some stainless steels in sea water. Br. Corros. J. 1995, 30, 283–287. [Google Scholar] [CrossRef]
- Tian, H.Y.; Xin, J.C.; Li, Y.; Wang, X.; Cui, Z. Combined effect of cathodic potential and sulfur species on calcareous deposition, hydrogen permeation, and hydrogen embrittlement of a low carbon bainite steel in artificial seawater. Corros. Sci. 2019, 158, 108089. [Google Scholar] [CrossRef]
- Bertocci, U.; Huet, F. Noise-analysis applied to electrochemical systems. Corrosion 1995, 51, 131–144. [Google Scholar] [CrossRef]
- Mansfeld, F. The electrochemical noise technique—Applications in corrosion research. In Noise and Fluctuations; Gonzalez, T., Mateos, J., Pardo, D., Eds.; Amer Inst Physics: Melville, NY, USA, 2005; Volume 780, pp. 625–630. [Google Scholar]
- Deya, M.C.; del Amo, B.; Spinelli, E.; Romagnoli, R. The assessment of a smart anticorrosive coating by the electrochemical noise technique. Prog. Org. Coat. 2013, 76, 525–532. [Google Scholar] [CrossRef]
- Hasanzadeh, M.; Shahidi, M.; Kazemipour, M. Application of EIS and en techniques to investigate the self-healing ability of coatings based on microcapsules filled with linseed oil and CeO2 nanoparticles. Prog. Org. Coat. 2015, 80, 106–119. [Google Scholar] [CrossRef]
- Ma, C.; Wang, Z.Q.; Behnamian, Y.; Gao, Z.M.; Wu, Z.; Qin, Z.B.; Xia, D.H. Measuring atmospheric corrosion with electrochemical noise: A review of contemporary methods. Measurement 2019, 138, 54–79. [Google Scholar] [CrossRef]
- Xia, D.H.; Song, Y.; Song, S.Z.; Behnamian, Y.; Xu, L.K.; Wu, Z.; Qin, Z.B.; Gao, Z.M.; Hu, W.B. Identifying defect levels in organic coatings with electrochemical noise (EN) measured in single cell (SC) mode. Prog. Org. Coat. 2019, 126, 53–61. [Google Scholar] [CrossRef]
- Xia, D.H.; Song, S.Z.; Behnamian, Y. Detection of corrosion degradation using electrochemical noise (EN): Review of signal processing methods for identifying corrosion forms. Corros. Eng. Sci. Technol. 2016, 51, 527–544. [Google Scholar] [CrossRef]
- Meng, F.D.; Liu, L.; Li, Y.; Wang, F.H. Studies on electrochemical noise analysis of an epoxy coating/metal system under marine alternating hydrostatic pressure by pattern recognition method. Prog. Org. Coat. 2017, 105, 81–91. [Google Scholar] [CrossRef]
- Arman, S.Y.; Ramezanzadeh, B.; Farghadani, S.; Mehdipour, M.; Rajabi, A. Application of the electrochemical noise to investigate the corrosion resistance of an epoxy zinc-rich coating loaded with lamellar aluminum and micaceous iron oxide particles. Corros. Sci. 2013, 77, 118–127. [Google Scholar] [CrossRef]
- Cottis, R.A. The significance of electrochemical noise measurements on asymmetric electrodes. Electrochim. Acta 2007, 52, 7585–7589. [Google Scholar] [CrossRef]
- Jamali, S.S.; Mills, D.J. A critical review of electrochemical noise measurement as a tool for evaluation of organic coatings. Prog. Org. Coat. 2016, 95, 26–37. [Google Scholar] [CrossRef] [Green Version]
- Pistorius, P.C. Design aspects of electrochemical noise measurements for uncoated metals: Electrode size and sampling rate. Corrosion 1997, 53, 273–283. [Google Scholar] [CrossRef]
- Curioni, M.; Cottis, R.A.; Di Natale, M.; Thompson, G.E. Corrosion of dissimilar alloys: Electrochemical noise. Electrochim. Acta 2011, 56, 6318–6329. [Google Scholar] [CrossRef]
- Shahidi, M.; Jafari, A.H.; Hosseini, S.M.A. Comparison of symmetrical and asymmetrical cells by statistical and wavelet analysis of electrochemical noise data. Corrosion 2012, 68, 1003–1014. [Google Scholar] [CrossRef]
- ISO 2808-2007 Paints and Varnishes-determination of Film Thickness; ISO: Geneva, Switzerland, 2007; p. 2007.
- Bertocci, U.; Huet, F.; Nogueira, R.P.; Rousseau, P. Drift removal procedures in the analysis of electrochemical noise. Corrosion 2002, 58, 337–347. [Google Scholar] [CrossRef]
- Tian, W.L.; Liu, L.; Meng, F.D.; Liu, Y.; Li, Y.; Wang, F.H. The failure behaviour of an epoxy glass flake coating/steel system under marine alternating hydrostatic pressure. Corros. Sci. 2014, 86, 81–92. [Google Scholar] [CrossRef]
- Hinderliter, B.R.; Croll, S.G.; Tallman, D.E.; Su, Q.; Bierwagen, G.P. Interpretation of EIS data from accelerated exposure of coated metals based on modeling of coating physical properties. Electrochim. Acta 2006, 51, 4505–4515. [Google Scholar] [CrossRef]
- Rammelt, U.; Reinhard, G. Application of electrochemical impedance spectroscopy (EIS) for characterizing the corrosion-protective performance of organic coatings on metals. Prog. Org. Coat. 1992, 21, 205–226. [Google Scholar] [CrossRef]
- Rammelt, U.; Reinhard, G. Characterization of active pigments in damage of organic coatings on steel by means of electrochemical impedance spectroscopy. Prog. Org. Coat. 1994, 24, 309–322. [Google Scholar] [CrossRef]
- Bertocci, U.; Gabrielli, C.; Huet, F.; Keddam, M. Noise resistance applied to corrosion measurements. 1. Theoretical analysis. J. Electrochem. Soc. 1997, 144, 31–37. [Google Scholar] [CrossRef]
- Aballe, A.; Bethencourt, M.; Botana, F.J.; Marcos, M. Wavelet transform-based analysis for electrochemical noise. Electrochem. Commun. 1999, 1, 266–270. [Google Scholar] [CrossRef]
- Liu, L.; Li, Y.; Wang, F.H. Pitting mechanism on an austenite stainless steel nanocrystalline coating investigated by electrochemical noise and in-situ afm analysis. Electrochim. Acta 2008, 54, 768–780. [Google Scholar] [CrossRef]
- Cottis, R.A. Interpretation of electrochemical noise data. Corrosion 2001, 57, 265–285. [Google Scholar] [CrossRef]
- Sánchez-Amaya, J.; Bethencourt, M.; González-Rovira, L.; Botana, F. Noise resistance and shot noise parameters on the study of IGC of aluminium alloys with different heat treatments. Electrochim. Acta 2007, 52, 6569–6583. [Google Scholar] [CrossRef]
- Stern, M.; Geaby, A.L. Electrochemical polarization. J. Electrochem. Soc. 1957, 104, 56–63. [Google Scholar] [CrossRef]
- Meng, F.D.; Liu, L.; Cui, Y.; Zhang, T.; Li, Y.; Wang, F.H. A novel design of electrochemical noise configuration based on embedded-electrodes for in-situ evaluation of epoxy coating under marine alternating hydrostatic pressure. Prog. Org. Coat. 2019, 131, 346–356. [Google Scholar] [CrossRef]
Group | Area of WE1 (cm2) | Area of WE2 (cm2) | Thickness of WE1 (μm) | Thickness of WE2 (μm) | Area Ratio | Thickness Ratio |
---|---|---|---|---|---|---|
1 | 9 | 9 | 100 ± 10 | 100 ± 10 | 1:1 | 1:1 |
2 | 9 | 1 | 200 ± 10 | 200 ± 10 | 9:1 | 1:1 |
3 | 16 | 1 | 100 ± 10 | 100 ± 10 | 16:1 | 1:1 |
4 | 16 | 1 | 200 ± 10 | 200 ± 10 | 16:1 | 1:1 |
5 | 1 | 1 | 100 ± 10 | 200 ± 10 | 1:1 | 1:2 |
6 | 9 | 9 | 100 ± 10 | 200 ± 10 | 1:1 | 1:2 |
Group | Calculated Impedance Ratio (Z1/Z2) | Experimental Value (Z1)/GΩ | Experimental Value (Z2)/GΩ | Experimental Impedance Ratio (Z1/Z2) |
---|---|---|---|---|
1 | 1 | 42.96 | 38.63 | 1.1/1 |
2 | 2/18 | 75.89 | 534.44 | 2.0/13.8 |
3 | 0.6/9 | 21.13 | 264.43 | 0.6/6.9 |
4 | 1.1/18 | 26.00 | 378.15 | 0.7/9.8 |
5 | 9/18 | 203.10 | 415.74 | 5.3/10.8 |
6 | 1/2 | 32.95 | 55.75 | 0.9/1.4 |
Parameters | σI (nA) | Skewness |
---|---|---|
1 | 6.44 | 0.1 |
2 | 1.82 | –0.23 |
3 | 2.58 | –0.25 |
4 | 1.36 | –0.088 |
5 | 1.24 | 0.03 |
6 | 5.58 | –0.285 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, F.; Liu, Y.; Liu, L.; Cui, Y.; Wang, F. Effect of Asymmetric Epoxy Coating/Metal Electrodes on the Electrochemical Noise Measurements Under Marine Alternating Hydrostatic Pressure. Coatings 2019, 9, 852. https://doi.org/10.3390/coatings9120852
Meng F, Liu Y, Liu L, Cui Y, Wang F. Effect of Asymmetric Epoxy Coating/Metal Electrodes on the Electrochemical Noise Measurements Under Marine Alternating Hydrostatic Pressure. Coatings. 2019; 9(12):852. https://doi.org/10.3390/coatings9120852
Chicago/Turabian StyleMeng, Fandi, Yushan Liu, Li Liu, Yu Cui, and Fuhui Wang. 2019. "Effect of Asymmetric Epoxy Coating/Metal Electrodes on the Electrochemical Noise Measurements Under Marine Alternating Hydrostatic Pressure" Coatings 9, no. 12: 852. https://doi.org/10.3390/coatings9120852
APA StyleMeng, F., Liu, Y., Liu, L., Cui, Y., & Wang, F. (2019). Effect of Asymmetric Epoxy Coating/Metal Electrodes on the Electrochemical Noise Measurements Under Marine Alternating Hydrostatic Pressure. Coatings, 9(12), 852. https://doi.org/10.3390/coatings9120852