Improving Thickness Uniformity of Mo/Si Multilayers on Curved Spherical Substrates by a Masking Technique
Abstract
:1. Introduction
2. Experiments
2.1. Multilayer Design
2.2. Direct Current (DC) Magnetron Sputtering System
2.3. Mirror Substitute for Thickness Measurements
2.4. Shadow Mask Design
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ackermann, W.; Asova, G.; Ayvazyan, V.; Azima, A.; Baboi, N.; Bähr, J.; Balandin, V.; Beutner, B.; Brandt, A.; Bolzmann, A.; et al. Operation of a free-electron laser from the extreme ultraviolet to the water window. Nat. Photonics 2007, 1, 336–342. [Google Scholar] [CrossRef]
- Allaria, E.; Appio, R.; Badano, L.; Barletta, W.A.; Bassanese, S.S.; Biedron, G.; Borga, A.; Busetto, E.; Castronovo, D.; Cinquegrana, P.; et al. Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet. Nat. Photonics 2012, 6, 699–704. [Google Scholar] [CrossRef]
- Chen, M.C.; Arpin, P.; Popmintchev, T.; Gerrity, M.; Zhang, B.; Seaberg, M.; Murnane, M.M.; Kapteyn, H.C. Bright, coherent, ultrafast soft X-ray harmonics spanning the water window from a tabletop light source. Phys. Rev. Lett. 2010, 105, 173901. [Google Scholar] [CrossRef] [PubMed]
- Bridges, J.M.; Cromer, C.L.; McIlrath, T.J. Investigation of a laser-produced plasma VUV light source. Appl. Opt. 1986, 25, 2208–2214. [Google Scholar]
- Barkusky, F.; Peth, C.; Mann, K.; Feigl, T.; Kaiser, N. Formation and direct writing of color centers in LiF using a laser-induced extreme ultraviolet plasma in combination with a Schwarzschild objective. Rev. Sci. Instrum. 2005, 76, 105102. [Google Scholar] [CrossRef] [Green Version]
- Ythier, R.M.; Bozec, X.; Geyl, R.; Rinchet, A.; Hecquet, C.; Ravet-Krill, M.F.; Delmotte, F.; Sassolas, B.; Flaminio, R.; Mackowski, J.M. EUV near normal incidence collector development at SAGEM. Proc. SPIE 2008, 6921, 692135. [Google Scholar]
- Mann, H.-J.; Ulrich, W. Reflective high-NA projection lenses. Proc. SPIE 2005, 5962, 596214. [Google Scholar]
- Zhang, Z.; Li, W.B.; Huang, Q.S.; Zhang, Z.; Yi, S.Z.; Pan, L.Y.; Xie, C.; Wachulak, P.; Fiedorowicz, H.; Wang, Z.S. A table-top EUV focusing optical system with high energy density using a modified Schwarzschild objective and a laser-plasma light source. Rev. Sci. Instrum. 2018, 89, 103109. [Google Scholar] [CrossRef]
- Perrin, A.; Gailliard, J.P. Planetary system for high uniformity deposited layers on large substrates. Proc. SPIE 1992, 1782, 238–244. [Google Scholar]
- Soufli, R.; Hudyma, R.M.; Spiller, E.; Gullikson, E.M.; Gullikson, M.A.; Robinson, J.C.; Baker, S.L.; Walton, C.C.; Taylor, J.S. Sub-diffraction-limited multilayer coatings for the 0.3 numerical aperture micro-exposure tool for extreme ultraviolet lithography. Appl. Opt. 2006, 46, 3736–3746. [Google Scholar] [CrossRef]
- Glatzel, H.; Ashworth, D.; Bajuk, D.; Bjork, M.; Bremer, M.; Cordier, M.; Cummings, K.; Girard, L.; Goldstein, M.; Gullikson, E.; et al. Projection optics for EUVL micro-field exposure tools with 0.5 NA. Proc. SPIE 2014, 9048, 90481K. [Google Scholar]
- Yu, B.; Jin, C.; Yao, S.; Li, C.; Wang, H.; Zhou, F.; Guo, B.; Xie, Y.; Liu, Y.; Wang, L. Control of lateral thickness gradients of Mo–Si multilayer on curved substrates using genetic algorithm. Opt. Lett. 2015, 40, 3958–3961. [Google Scholar] [CrossRef] [PubMed]
- Bauer, H.H.; Heller, M.; Kaiser, N. Optical coatings for UV photolithography systems. Proc. SPIE 1996, 2776, 353–365. [Google Scholar]
- Oliver, J.B. Impact of a counter-rotating planetary rotation system on thin-film thickness and uniformity. Appl. Opt. 2017, 56, 5121–5124. [Google Scholar] [CrossRef]
- Gross, M.; Dligatch, S.; Chtanov, A. Optimization of coating uniformity in an ion beam sputtering system using a modified planetary rotation method. Appl. Opt. 2011, 50, C316–C320. [Google Scholar] [CrossRef]
- Dligatch, S.; Gross, M.; Chtanov, A. Ultra-low-reflectance, high-uniformity, multilayer-antireflection coatings on large substrates deposited using an ion-beam sputtering system with a customized planetary rotation stage. Proc. SPIE 2011, 8168, 816803. [Google Scholar]
- Oliver, J.B. Analysis of a planetary-rotation system for evaporated optical coatings. Appl. Opt. 2006, 55, 8550–8555. [Google Scholar] [CrossRef]
- Liu, C.; Kong, M.; Guo, C.; Gao, W.; Li, B. Theoretical design of shadowing masks for uniform coatings on spherical substrates in planetary rotation systems. Opt. Express 2012, 20, 23790–23797. [Google Scholar] [CrossRef]
- Guo, C.; Kong, M.; Liu, C.; Li, B. Optimization of thickness uniformity of optical coatings on a conical substrate in a planetary rotation system. Appl. Opt. 2013, 52, B26–B32. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, W.; Yi, K.; Shao, J. Optimization of thickness uniformity of coatings on spherical substrates using shadow masks in a planetary rotation system. Chin. Opt. Lett. 2014, 12, 053101. [Google Scholar]
- Oliver, J.B.; Talbot, D. Optimization of deposition uniformity for large-aperture National Ignition Facility substrates in a planetary rotation system. Appl. Opt. 2006, 45, 3097–3105. [Google Scholar] [CrossRef] [PubMed]
- Kortright, J.B.; Gullikson, E.M.; Denham, P.E. Masked deposition techniques for achieving multilayer period variations required for short-wavelength (68-Å) soft-x-ray imaging optics. Appl. Opt. 1993, 32, 6961–6968. [Google Scholar] [CrossRef] [PubMed]
- Villa, F.; Martínez, A.; Regalado, L.E. Correction masks for thickness uniformity in large-area thin films. Appl. Opt. 2000, 39, 1602–1610. [Google Scholar] [CrossRef] [PubMed]
- Arkwright, J.W. Fabrication of optical elements with better than λ/1000 thickness uniformity by thin-film deposition through a multi-aperture mask. Thin Solid Film. 2006, 515, 854–858. [Google Scholar] [CrossRef]
- Arkwright, J.; Underhill, I.; Pereira, N.; Gross, M. Deterministic control of thin film thickness in physical vapor deposition systems using a multiaperture mask. Opt. Express 2005, 13, 2731–2741. [Google Scholar] [CrossRef]
- Sassolas, B.; Flaminio, R.; Franc, J.; Michel, C.; Montorio, J.-L.; Morgado, N.; Pinard, L. Masking technique for coating thickness control on large and strongly curved aspherical optics. Appl. Opt. 2009, 48, 3760–3765. [Google Scholar] [CrossRef] [Green Version]
- Jaing, C.C. Designs of masks in thickness uniformity. Proc. SPIE 2010, 7655, 76551Q. [Google Scholar]
- Morawe, C.H.; Peffen, J.-Ch. Thickness control of large area x-ray multilayers. Proc. SPIE 2009, 7448, 74480H. [Google Scholar]
- Liu, C.; Conley, R.; Assoufid, L.; Macrander, A.T.; Ice, G.E.; Tischler, J.Z.; Zhang, K. Profile coatings and their applications. J. Vac. Sci. Technol. A 2003, 21, 1579–1584. [Google Scholar] [CrossRef]
- Broadway, D.M.; Kriese, M.D.; Platonov, Y.Ya. Controlling thin film thickness distributions in two dimensions. Proc. SPIE 2001, 4145, 80–87. [Google Scholar]
- Broadway, D.M.; Platonov, Y.Y.; Gomez, L.A. Achieving desired thickness gradients on flat and curved substrates. Proc. SPIE 1999, 3766, 262–274. [Google Scholar]
- Wang, Z.; Wang, X.; Mu, B.Z.; Bai, Y.H. Nanoscale patterns made by using a 13.5-nm Schwarzschild objective and a laser produced plasma source. Proc. SPIE 2012, 8430, 843012. [Google Scholar]
- Wang, X.; Mu, B.Z.; Jiang, L.; Zhu, J.T.; Yi, S.Z.; Wang, Z.S.; He, P.F. Fabrication of nanoscale patterns in lithium fluoride crystal using a 13.5 nm Schwarzschild objective and a laser produced plasma source. Rev. Sci. Instrum. 2011, 82, 123702. [Google Scholar] [CrossRef] [PubMed]
- MATLAB–MathWorks–MATLAB&Simulink. Available online: https://www.mathworks.com/products/matlab.html (accessed on 10 December 2019).
- Yao, S.K. Theoretical model of thin-film deposition profile with shadow effect. J. Appl. Phys. 1979, 50, 3390–3395. [Google Scholar] [CrossRef]
- Li, H.; Zhu, J.; Zhou, S.; Wang, Z.; Chen, H.; Jonnard, P.; Guen, K.L.; André, J. Zr/Mg multilayer mirror for extreme ultraviolet application and its thermal stability. Appl. Phys. Lett. 2013, 102, 111103. [Google Scholar] [CrossRef]
- Modi, M.H.; Lodha, G.S.; Nayak, M.; Sinha, A.K.; Nandedkar, R.V. Determination of layer structure in Mo/Si multilayers using soft X-ray reflectivity. Physical B 2003, 325, 272–280. [Google Scholar] [CrossRef] [Green Version]
- Yulin, S.; Feigl, T.; Kuhlmann, T.; Kaiser, N.; Fedorenko, A.I.; Kondratenko, V.V.; Poltseva, O.V.; Sevryukova, V.A.; Zolotaryov, A.Y.; Zubarev, E.N. Interlayer transition zones in Mo/Si superlattices. J. Appl. Phys. 2002, 92, 1216–1220. [Google Scholar] [CrossRef]
- Barranco, A.; Borras, A.; Gonzalez-Elipe, A.R.; Palmero, A. Perspectives on oblique angle deposition of thin films: From fundamentals to devices. Prog. Mater. Sci. 2016, 76, 59–153. [Google Scholar] [CrossRef] [Green Version]
- Voronov, D.L.; Gawlitza, P.; Braun, S.; Padmore, H.A. Spontaneous formation of highly periodic nano-ripples in inclined deposition of Mo/Si multilayers. J. Appl. Phys. 2017, 122, 115303. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Qi, R.; Yao, Y.; Shi, Y.; Li, W.; Huang, Q.; Yi, S.; Zhang, Z.; Wang, Z.; Xie, C. Improving Thickness Uniformity of Mo/Si Multilayers on Curved Spherical Substrates by a Masking Technique. Coatings 2019, 9, 851. https://doi.org/10.3390/coatings9120851
Zhang Z, Qi R, Yao Y, Shi Y, Li W, Huang Q, Yi S, Zhang Z, Wang Z, Xie C. Improving Thickness Uniformity of Mo/Si Multilayers on Curved Spherical Substrates by a Masking Technique. Coatings. 2019; 9(12):851. https://doi.org/10.3390/coatings9120851
Chicago/Turabian StyleZhang, Zhe, Runze Qi, Yiyun Yao, Yingna Shi, Wenbin Li, Qiushi Huang, Shengzhen Yi, Zhong Zhang, Zhanshan Wang, and Chun Xie. 2019. "Improving Thickness Uniformity of Mo/Si Multilayers on Curved Spherical Substrates by a Masking Technique" Coatings 9, no. 12: 851. https://doi.org/10.3390/coatings9120851
APA StyleZhang, Z., Qi, R., Yao, Y., Shi, Y., Li, W., Huang, Q., Yi, S., Zhang, Z., Wang, Z., & Xie, C. (2019). Improving Thickness Uniformity of Mo/Si Multilayers on Curved Spherical Substrates by a Masking Technique. Coatings, 9(12), 851. https://doi.org/10.3390/coatings9120851