Effect of Different Types of Pores on Thermal Conductivity of YSZ Thermal Barrier Coatings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Preparation
2.2. Specimens Characterization
2.3. Porosity Statistics
2.4. Multiple Linear Regression
3. Results and Discussion
3.1. Phase Content
3.2. Panoramic Statistics
3.2.1. Overall Porosity and Thermal Conductivity
3.2.2. Porosity Classification
3.3. Multiple Linear Regression Analysis
3.4. The Effect of Different Types of Pores
3.4.1. Small-vertical Pores
3.4.2. Horizontal Pores
3.4.3. Excluded Variables
4. Conclusions
- Different pores play different roles in decreasing thermal conductivity: for samples with an overall porosity of 6%–9%, the thermal conductivity varies greatly.
- According to the multiple linear regression equation, the small-vertical pores have the biggest effect on the decrease in the thermal conductivity.
- The horizontal pores, irrespective of their size, play a significant role in decreasing the thermal conductivity of coatings.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Beele, W.; Marijnissen, G.; van Lieshout, A. The evolution of thermal barrier coatings-status and upcoming solutions for today’s key issues. Surf. Coat. Technol. 1999, 120, 61–67. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Wu, W.; Hua, J.J.; Zeng, Y.; Zheng, X.B.; Zhou, Y.; Wang, H. Microstructure characterization and thermal conductivity analysis of plasma sprayed ZrO2 coatings. J. Inorg. Mater. 2012, 27, 550–554. [Google Scholar] [CrossRef]
- Guo, S.; Kagawa, Y. Isothermal and cycle properties of EB-PVD yttria-partially-stabilized zirconia thermal barrier coatings at 1150 and 1300 °C. Ceram. Int. 2007, 33, 373–378. [Google Scholar] [CrossRef]
- Rajendran, R. Gas turbine coatings—An overview. Eng. Fail. Anal. 2012, 26, 355–369. [Google Scholar] [CrossRef]
- Wright, P.K.; Evans, A.G. Mechanisms governing the performance of thermal barrier coatings. Curr. Opin. Solid State Mater. Sci. 1999, 4, 255–265. [Google Scholar] [CrossRef]
- Wang, Z.; Kulkarni, A.; Deshpande, S.; Nakamura, T.; Herman, H. Effects of pores and interfaces on effective properties of plasma sprayed zirconia coatings. Acta Mater. 2003, 51, 5319–5334. [Google Scholar] [CrossRef]
- Padture, N.P.; Gell, M.; Jordan, E.H. Materials science—Thermal barrier coatings for gas-turbine engine applications. Science 2002, 296, 280–284. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Song, X.; Liu, Z.; Lin, C.; Zeng, Y.; Huang, L.; Zheng, X. Quantitative analysis of the relationship between microstructures and thermal conductivity for YSZ coatings. J. Therm. Spray Technol. 2017, 26, 745–754. [Google Scholar] [CrossRef]
- Chi, W.; Sampath, S.; Wang, H. Microstructure-thermal conductivity relationships for plasma-sprayed yttria-stabilized zirconia coatings. J. Am. Ceram. Soc. 2008, 91, 2636–2645. [Google Scholar] [CrossRef]
- Cernuschi, F.; Golosnoy, I.O.; Bison, P.; Moscatelli, A.; Vassen, R.; Bossmann, H.P.; Capelli, S. Microstructural characterization of porous thermal barrier coatings by IR gas porosimetry and sintering forecasts. Acta Mater. 2013, 61, 248–262. [Google Scholar] [CrossRef]
- Golosnoy, I.O.; Tsipas, S.A.; Clyne, T.W. An analytical model for simulation of heat flow in plasma-sprayed thermal barrier coatings. J. Therm. Spray Technol. 2005, 14, 205–214. [Google Scholar] [CrossRef]
- Tan, Y.; Lengtin, J.P.; Sampath, S. Modelling thermal conductivity of thermal spray coatings: Comparing predictions to experiments. J. Therm. Spray Technol. 2006, 15, 545–552. [Google Scholar] [CrossRef]
- Dutton, R.; Wheeler, R.; Ravichandran, K.S.; An, K. Effect of heat treatment on the thermal conductivity of plasma-sprayed thermal barrier coatings. J. Therm. Spray Technol. 2000, 9, 204–209. [Google Scholar] [CrossRef]
- Cernuschi, F.; Ahmaniemi, S.; Vuoristo, P.; Mäntylä, T. Modelling of thermal conductivity of porous materials: application to thick thermal barrier coatings. J. Eur. Ceram. Soc. 2004, 24, 2657–2667. [Google Scholar] [CrossRef]
- Kulkarni, A.; Wang, Z.; Nakamura, T.; Sampath, S.; Goland, A.; Herman, H.; Allen, J.; Ilavsky, J.; Long, G.; Frahm, J.; et al. Comprehensive microstructural characterization and predictive property modeling of plasma-sprayed zirconia coatings. Acta Mater. 2003, 51, 2457–2475. [Google Scholar] [CrossRef]
- Ma, K.; Zhu, J.; Xie, H.; Wang, H. Effect of porous microstructure on the elastic modulus of plasma-sprayed thermal barrier coatings: Experiment and numerical analysis. Surf. Coat. Technol. 2013, 235, 589–595. [Google Scholar] [CrossRef]
- Antou, G.; Montavon, G.; Hlawka, F.; Cornet, A.; Coddet, C. Characterizations of the pore-crack network architecture of thermal-sprayed coatings. Mater. Charact. 2004, 53, 361–372. [Google Scholar] [CrossRef]
- Sobhanverdi, R.; Akbari, A. Porosity and microstructural features of plasma sprayed yttria stabilized Zirconia thermal barrier coatings. Ceram. Int. 2015, 41, 14517–14528. [Google Scholar] [CrossRef]
- Wang, Y.; Gauvin, R.; Kong, M.; Lin, C.; Liu, Z.; Zeng, Y. Panoramic statistics on porosity and microstructural features of plasma sprayed Y2O3-ZrO2 thermal barrier coatings. Surf. Coat. Technol. 2017, 316, 239–245. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, W.; Zheng, X.; Zeng, Y.; Ding, M.; Zhang, C. Relationship between the microstructure and thermal conductivity of plasma-sprayed ZrO2 coatings. J. Therm. Spray Technol. 2011, 20, 1177–1182. [Google Scholar] [CrossRef]
- Wu, Y.K.; Lin, K.L.; Salam, B. Specific heat capacities of Sn-Zn-based solders and Sn-Ag-Cu solders measured using differential scanning calorimetry. J. Electron. Mater. 2009, 38, 227–230. [Google Scholar] [CrossRef]
- ISO/TC 206. Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics)—Determination of Density and Apparent Porosity; International Organization for Standardization: Geneva, Switzerland, 2013. [Google Scholar]
- Leigh, S.H.; Berndt, C.C. Quantitative evaluation of void distributions within a plasma-sprayed ceramic. J. Am. Ceram. Soc. 1999, 82, 17–21. [Google Scholar] [CrossRef]
- Thompson, J.A.; Clyne, T.W. The effect of heat treatment on the stiffness of zirconia top coats in plasma-sprayed TBCs. Acta Mater. 2001, 49, 1565–1575. [Google Scholar] [CrossRef]
Spray Parameters. | M1 | M2 | M3 | M4 | M5 |
---|---|---|---|---|---|
Current (A) | 550 | 550 | 600 | 600 | 650 |
Ar (L/min) | 35 | 40 | 35 | 36 | 40 |
H2 (L/min) | 7 | 10 | 7 | 12 | 10 |
Phase Content | M1 | M2 | M3 | M4 | M5 |
---|---|---|---|---|---|
Tetragonal phase (%) | 80.79 | 79.2 | 81.93 | 82.21 | 81.43 |
Monoclinic phase (%) | 5.04 | 5.55 | 5.49 | 5.55 | 5.71 |
Cubic phase (%) | 14.17 | 15.24 | 12.58 | 12.24 | 12.86 |
Porosity Statistical Data | M1 | M2 | M3 | M4 | M5 |
---|---|---|---|---|---|
Pore area (μm2) | 122,946 | 140,277 | 137,543 | 138,109 | 191,543 |
Scanning area (μm2) | 2,000,000 | 2,000,000 | 2,000,000 | 2,000,000 | 2,000,000 |
Pore number | 2,5036 | 32,192 | 23,765 | 28,092 | 32,806 |
Overall porosity (%) | 6.15 | 7.01 | 6.88 | 6.91 | 9.58 |
Porosity Classification | Aspect Ratio (a) | Orientation (β/°) | Area (s/μm2) |
---|---|---|---|
big-horizontal pores | a ≥ 3 | 0 ≤ β ≤ 45° | s ≥ 2 |
small-horizontal pores | a ≥ 3 | 0 ≤ β ≤ 45° | s < 2 |
big-vertical pores | a ≥ 3 | 45° < β <90° | s ≥ 2 |
small-vertical pores | a ≥ 3 | 45° < β <90° | s < 2 |
big-globular pores | a < 3 | – | s ≥ 2 |
small-globular pores | a < 3 | – | s < 2 |
Sample Number | Big-Horizontal Pores (%) | Small-Horizontal Pores (%) | Big-Vertical Pores (%) | Small-Vertical Pores (%) | Big-Globular Pores (%) | Small-Globular Pores (%) |
---|---|---|---|---|---|---|
M1 | 0.41 | 0.11 | 0.18 | 0.13 | 4.1 | 1.2 |
M2 | 0.39 | 0.14 | 0.28 | 0.19 | 5.2 | 0.83 |
M3 | 0.40 | 0.09 | 0.29 | 0.14 | 5.4 | 0.54 |
M4 | 0.41 | 0.12 | 0.20 | 0.11 | 5.3 | 0.73 |
M5 | 0.66 | 0.13 | 0.31 | 0.11 | 7.5 | 0.81 |
Independent Variables | Pj | |
---|---|---|
Temperature (°C) | X0 | 0.457 |
small-horizontal pores (%) | X1 | 0.142 |
big-horizontal pores (%) | X2 | 0.406 |
small-vertical pores (%) | X3 | 0.489 |
big-globular pores (%) | X4 | 0.444 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Hu, N.; Zeng, Y.; Song, X.; Lin, C.; Liu, Z.; Zhang, J. Effect of Different Types of Pores on Thermal Conductivity of YSZ Thermal Barrier Coatings. Coatings 2019, 9, 138. https://doi.org/10.3390/coatings9020138
Huang Y, Hu N, Zeng Y, Song X, Lin C, Liu Z, Zhang J. Effect of Different Types of Pores on Thermal Conductivity of YSZ Thermal Barrier Coatings. Coatings. 2019; 9(2):138. https://doi.org/10.3390/coatings9020138
Chicago/Turabian StyleHuang, Yiling, Ningning Hu, Yi Zeng, Xuemei Song, Chucheng Lin, Ziwei Liu, and Jimei Zhang. 2019. "Effect of Different Types of Pores on Thermal Conductivity of YSZ Thermal Barrier Coatings" Coatings 9, no. 2: 138. https://doi.org/10.3390/coatings9020138
APA StyleHuang, Y., Hu, N., Zeng, Y., Song, X., Lin, C., Liu, Z., & Zhang, J. (2019). Effect of Different Types of Pores on Thermal Conductivity of YSZ Thermal Barrier Coatings. Coatings, 9(2), 138. https://doi.org/10.3390/coatings9020138