Study on Local Residual Stress in a Nanocrystalline Cr2O3 Coating by Micro-Raman Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cr2O3 Coating Material
2.2. Experimental Test
3. Results and Discussions
3.1. Raman Peaks of the Cr2O3 Coating
3.2. Thickness of Coatings in the Depositional Edge Zone and Penetration Depth of the Raman Spectrum
3.3. Residual Stress Analysis in the Local Micro-Area
- The size of the Cr2O3 crystalline grains should be smaller than that of the laser spot. In our experiment, the size of the Cr2O3 crystalline grains (34.6–38.4 nm) was much smaller than that of the laser spot (2 μm).
- The crystalline grains should be arbitrarily oriented. In our experiment, the Cr2O3 crystalline grains were randomly arranged in the measurement plane.
- There should be no stress gradient in the thickness of the Cr2O3 coating penetrated by the laser. Huntz et al. [8] demonstrated that the stress gradient in the Cr2O3 coating is negligible. In addition, if there was a noticeable stress gradient in the Cr2O3 coating, a corresponding noticeable broadening of the peaks in Raman spectra was to be expected. In all our experiments, the A1g peaks used were narrow, and there was no noticeable broadening compared with the peaks of powder samples (see inserts in Figure 2), which suggested that the stress gradient was weak.
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pang, X.; Gao, K.; Luo, F.; Yang, H.; Qiao, L.; Wang, Y.; Volinsky, A.A. Annealing effects on microstructure and mechanical properties of chromium oxide coatings. Thin Solid Film. 2008, 516, 4685–4689. [Google Scholar] [CrossRef]
- Mohammadtaheri, M.; Yang, Q.; Li, Y.; Corona-Gomez, J. The effect of deposition parameters on the structure and mechanical properties of chromium oxide coatings deposited by reactive magnetron sputtering. Coatings 2018, 8, 111. [Google Scholar] [CrossRef]
- Huang, K.; Li, L.; Wang, L.; Li, G.; Xu, Y. Effect of DC bias and RF self-bias on the structure and properties of chromium oxide coatings prepared by vacuum cathodic arc deposition. Vacuum 2019, 164, 325–331. [Google Scholar] [CrossRef]
- Lodesani, A.; Picone, A.; Brambilla, A.; Giannotti, D.; Jagadeesh, M.S.; Calloni, A.; Bussetti, G.; Berti, G.; Zani, M.; Finazzi, M.; et al. Graphene as an Ideal Buffer Layer for the Growth of High-Quality Ultrathin Cr2O3 Layers on Ni (111). ACS Nano 2019, 13, 4361–4367. [Google Scholar] [CrossRef] [PubMed]
- Hou, P.Y.; Ager, J.; Mougin, J.; Galerie, A. Limitations and advantages of Raman spectroscopy for the determination of oxidation stresses. Oxid. Met. 2011, 75, 229–245. [Google Scholar] [CrossRef]
- Sebastiani, M.; Bemporad, E.; Carassiti, F. On the influence of residual stress on nano-mechanical characterization of thin coatings. J. Nanosci. Nanotechnol. 2011, 11, 8864–8872. [Google Scholar] [CrossRef] [PubMed]
- Withers, P.J.; Bhadeshia, H.K.D.H. Residual stress. Part 2–Nature and origins. Mater. Sci. Technol. 2001, 17, 366–375. [Google Scholar] [CrossRef]
- Huntz, A.M.; Piant, A.; Lebrun, J.L.; Daghigh, S. Evidence of stress relaxation in thermally grown oxide layers-experiments and modelling. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 1998, 248, 44–55. [Google Scholar] [CrossRef]
- Goedjen, J.G.; Stout, J.H.; Guob, Q.; Shores, D.A. Evaluation of stresses in Ni-NiO and Cr-Cr2O3 during high temperature oxidation by in situ X-ray diffraction. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 1994, 177, 115–124. [Google Scholar] [CrossRef]
- Tanaka, M.; Kitazawa, R.; Tomimatsu, T.; Liu, Y.F.; Kagawa, Y. Residual stress measurement of an EB-PVD Y2O3-ZrO2 thermal barrier coating by micro-Raman spectroscopy. Surf. Coat. Technol. 2009, 204, 657–660. [Google Scholar] [CrossRef]
- Xu, K.W.; He, J.W. Microstrain-induced additional peak shift and method for determining macrostress in plasma-assisted CVD coatings. Surf. Coat. Technol. 1994, 70, 115–120. [Google Scholar] [CrossRef]
- Jäger, N.; Klima, S.; Hruby, H.; Julin, J.; Burghammer, M.; Keckes, J.F.; Mitterer, C.; Daniel, R. Evolution of structure and residual stress of a fcc/hex-AlCrN multi-layered system upon thermal loading revealed by cross-sectional X-ray nano-diffraction. Acta Mater. 2019, 162, 55–66. [Google Scholar] [CrossRef]
- Gilardi, E.; Fluri, A.; Lippert, T.; Pergolesi, D. Real-time monitoring of stress evolution during thin film growth by in situ substrate curvature measurement. J. Appl. Phys. 2019, 125, 082513. [Google Scholar] [CrossRef]
- Fluri, A.; Pergolesi, D.; Roddatis, V.; Wokaun, A.; Lippert, T. In situ stress observation in oxide films and how tensile stress influences oxygen ion conduction. Nat. Commun. 2016, 7, 10692. [Google Scholar] [CrossRef] [Green Version]
- Fluri, A.; Pergolesi, D.; Wokaun, A.; Lippert, T. Stress generation and evolution in oxide heteroepitaxy. Phys. Rev. B 2018, 97, 125412. [Google Scholar] [CrossRef] [Green Version]
- Stoney, G.G. The tension of metallic films deposited by electrolysis. Proc. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character 1909, 82, 172–175. [Google Scholar] [CrossRef] [Green Version]
- Schöngrundner, R.; Treml, R.; Antretter, T.; Kozic, D.; Ecker, W.; Kiener, D.; Brunner, R. Critical assessment of the determination of residual stress profiles in thin films by means of the ion beam layer removal method. Thin Solid Film. 2014, 564, 321–330. [Google Scholar] [CrossRef] [Green Version]
- Bolelli, G.; Righi, M.G.; Mughal, M.Z.; Moscatelli, R.; Ligabue, O.; Antolotti, N.; Sebastiani, M.; Lusvarghi, L.; Bemporad, E. Damage progression in thermal barrier coating systems during thermal cycling: A nano-mechanical assessment. Mater. Des. 2019, 166, 107615. [Google Scholar] [CrossRef]
- Tao, S.; Liang, B.; Ding, C.; Liao, H.; Coddet, C. Wear characteristics of plasma-sprayed nanostructured yttria partially stabilized zirconia coatings. J. Therm. Spray Technol. 2005, 14, 518–523. [Google Scholar] [CrossRef]
- Salvati, E.; Romano-Brandt, L.; Mughal, M.Z.; Sebastiani, M.; Korsunsky, A.M. Generalised residual stress depth profiling at the nanoscale using focused ion beam milling. J. Mech. Phys. Solids 2019, 125, 488–501. [Google Scholar] [CrossRef]
- Qiu, W.; Kang, Y.L. Mechanical behavior study of microdevice and nanomaterials by Raman spectroscopy: A review. Chin. Sci. Bull. 2014, 59, 2811–2824. [Google Scholar] [CrossRef]
- Kang, Y.; Qiu, Y.; Lei, Z.; Hu, M. An application of Raman spectroscopy on the measurement of residual stress in porous silicon. Opt. Lasers Eng. 2005, 43, 847–855. [Google Scholar] [CrossRef]
- Qiu, W.; Cheng, C.L.; Liang, R.R.; Zhao, C.W.; Lei, Z.K.; Zhao, Y.C.; Ma, L.L.; Xu, J.; Fang, H.J.; Kang, Y.L. Measurement of residual stress in a multi-layer semiconductor heterostructure by micro-Raman spectroscopy. Acta Mech. Sin. 2016, 32, 805–812. [Google Scholar] [CrossRef]
- Kemdehoundja, M.; Grosseau-Poussard, J.L.; Dinhut, J.F. Raman microprobe spectroscopy measurements of residual stress distribution along blisters in Cr2O3 thin films. Appl. Surf. Sci. 2010, 256, 2719–2725. [Google Scholar] [CrossRef]
- Wang, T.G.; Jeong, D.; Kim, S.H.; Wang, Q.; Shin, D.W.; Melin, S.; Iyengar, S.; Kim, K.H. Study on nanocrystalline Cr2O3 films deposited by arc ion plating: I. composition, morphology, and microstructure analysis. Surf. Coat. Technol. 2012, 206, 2629–2637. [Google Scholar] [CrossRef]
- Kemdehoundja, M.; Dinhut, J.F.; Grosseau-Poussard, J.L.; Jeannin, M. High temperature oxidation of Ni70Cr30 alloy: Determination of oxidation kinetics and stress evolution in chromia layers by Raman spectroscopy. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2006, 435, 666–671. [Google Scholar] [CrossRef]
- Birnie, J.; Craggs, C.; Gardiner, D.J.; Graves, P.R. Ex situ and in situ determination of stress distributions in chromium oxide films by Raman microscopy. Corros. Sci. 1992, 33, 1–12. [Google Scholar] [CrossRef]
- Mougin, J.; Le Bihan, T.; Lucazeau, G. High-pressure study of Cr2O3 obtained by high-temperature oxidation by X-ray diffraction and Raman spectroscopy. J. Phys. Chem. Solids 2001, 62, 553–563. [Google Scholar] [CrossRef]
- Calvarin, G.; Huntz, A.M.; Le Goff, A.H.; Joiret, S.; Bernard, M.C. Oxide scale stress determination by Raman spectroscopy application to the NiCr/Cr2O3 system and influence of yttrium. Scr. Mater. 1998, 38, 1649–1658. [Google Scholar] [CrossRef]
- Sahoo, S.; Sharma, G.L.; Katiyar, R.S. Raman spectroscopy to probe residual stress in ZnO nanowire. J. Raman Spectrosc. 2012, 43, 72–75. [Google Scholar] [CrossRef]
- Weast, R.C.; Astle, M.J.; Beyer, W.H. CRC Handbook of Chemistry and Physics, 69th ed.; CRC press: Boca Raton, FL, USA, 1988. [Google Scholar]
- Wang, Y.Y.; Ni, Z.H.; Shen, Z.X.; Wang, H.M.; Wu, Y.H. Interference enhancement of Raman signal of graphene. Appl. Phys. Lett. 2008, 92, 043121. [Google Scholar] [CrossRef]
- Camerlingo, C.; Lisitskiy, M.P.; De Stefano, L.; Rea, I.; Delfino, I.; Lepore, M. Evaluation of thin metal film thickness from light attenuation and multi-reflection effects on micro-Raman response. Thin Solid Film. 2013, 536, 142–146. [Google Scholar] [CrossRef]
- Mougin, J. Tenue mécanique de couches d’oxyde thermiques générées sur le chrome et sur quelques aciers inoxydables ferritiques: Étude des contraintes et de d’adhérence. Ph.D. Thesis, INP, Grenoble, France, 3 July 2001. [Google Scholar]
- Tolpygo, V.K.; Clarke, D.R. Spalling failure of α-alumina films grown by oxidation: I. Dependence on cooling rate and metal thickness. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2000, 278, 142–150. [Google Scholar] [CrossRef]
- Sarrazin, P.; Galerie, A.; Fouletier, J. Les Mécanismes de la Corrosion Sèche: Une Approche Cinétique; EDP Sciences: Paris, France, 2000. [Google Scholar]
- Kudielka, H. Die thermische Ausdehnung der isotypen Mischreihen-Endglieder Cr2O3 und α-Al3O2, ermittelt mit einer neuen, lichtstarken Seemann–Bohlin-Kammer. Mon. für Chem. Chem. Mon. 1972, 103, 72–80. [Google Scholar] [CrossRef]
- Becker, P.; Seyfried, P.; Siegert, H. The lattice parameter of highly pure silicon single crystals. Z. für Phys. B Condens. Matter 1982, 48, 17–21. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Gou, Y.; Wang, T.-G.; Gu, T.; Yu, Q.; Wang, L. Study on Local Residual Stress in a Nanocrystalline Cr2O3 Coating by Micro-Raman Spectroscopy. Coatings 2019, 9, 500. https://doi.org/10.3390/coatings9080500
Li Q, Gou Y, Wang T-G, Gu T, Yu Q, Wang L. Study on Local Residual Stress in a Nanocrystalline Cr2O3 Coating by Micro-Raman Spectroscopy. Coatings. 2019; 9(8):500. https://doi.org/10.3390/coatings9080500
Chicago/Turabian StyleLi, Qiu, Yanrong Gou, Tie-Gang Wang, Tingyi Gu, Qiang Yu, and Lijie Wang. 2019. "Study on Local Residual Stress in a Nanocrystalline Cr2O3 Coating by Micro-Raman Spectroscopy" Coatings 9, no. 8: 500. https://doi.org/10.3390/coatings9080500
APA StyleLi, Q., Gou, Y., Wang, T. -G., Gu, T., Yu, Q., & Wang, L. (2019). Study on Local Residual Stress in a Nanocrystalline Cr2O3 Coating by Micro-Raman Spectroscopy. Coatings, 9(8), 500. https://doi.org/10.3390/coatings9080500