Next Issue
Volume 1, December
Previous Issue
Volume 1, June
 
 

Fibers, Volume 1, Issue 2 (September 2013) – 2 articles , Pages 11-35

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
477 KiB  
Review
Application of Electro-Technologies in Processing of Flax Fiber
by Gopu R. Nair, Denis Rho and G. S. Vijaya Raghavan
Fibers 2013, 1(2), 21-35; https://doi.org/10.3390/fib1020021 - 30 Aug 2013
Cited by 14 | Viewed by 9362
Abstract
Flax fibers used for various applications are obtained from flax stems. Retting followed by drying and mechanical separation leads to the production of fibers. This review article discusses the application of electro-technologies in the production of bast fibers from the flax stem. In [...] Read more.
Flax fibers used for various applications are obtained from flax stems. Retting followed by drying and mechanical separation leads to the production of fibers. This review article discusses the application of electro-technologies in the production of bast fibers from the flax stem. In these technologies, flax stems harvested from the field are subjected to microwave assisted retting, followed by electro–osmotic dewatering which reduces the water content of the stems. Dewatered stems are transferred to a microwave chamber for further drying, thus retted stems are obtained for further processing. Full article
Show Figures

Figure 1

697 KiB  
Article
Er3+/Ho3+-Codoped Fluorotellurite Glasses for 2.7 µm Fiber Laser Materials
by Yaoyao Ma, Feifei Huang, Lili Hu and Junjie Zhang
Fibers 2013, 1(2), 11-20; https://doi.org/10.3390/fib1020011 - 16 Aug 2013
Cited by 18 | Viewed by 8185
Abstract
This work reports the enhanced emission at 2.7 µm in Er3+/Ho3+-codoped fluorotellurite glass upon a conventional 980 nm laser diode. The significantly reduced green upconversion and 1.5 µm emission intensity in Er3+/Ho3+-codoped samples are observed. [...] Read more.
This work reports the enhanced emission at 2.7 µm in Er3+/Ho3+-codoped fluorotellurite glass upon a conventional 980 nm laser diode. The significantly reduced green upconversion and 1.5 µm emission intensity in Er3+/Ho3+-codoped samples are observed. The results suggest that the Er3+: 4I13/2 state can be efficiently depopulated via energy transfer from Er3+ to Ho3+ and the detailed energy transfer mechanisms are discussed qualitatively. The energy transfer efficiency from Er3+: 4I13/2 to Ho3+: 5I7 is calculated to be as high as 67.33%. The calculated emission cross-section in Er3+/Ho3+-codoped fluorotellurite glass is 1.82 × 1020 cm2. This suggests that Er3+/Ho3+-codoped fluorotellurite glass is a potential material for 2.7 µm fiber laser. Full article
(This article belongs to the Special Issue Advances on Optical Fibers)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop