Design and Evaluation of a Learning-Based Vascular Interventional Surgery Robot
Abstract
:1. Introduction
2. Design and Manufacture of the Vascular Robotic System
2.1. Overview
2.2. Master Console
2.3. Slave Manipulator
3. Control System of VISR
3.1. Dynamics Modeling
3.2. Fuzzy PID Controller of VISR
4. ANN-based Force Estimation
4.1. Experiment System Overview
4.2. Designing and Training the ANN
4.3. Force Estimation Evaluation
5. Conclusions and Future Works
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
VISR | Vascular Interventional Surgery Robot |
PID | Proportional Integral Derivative |
PCI | Percutaneous Coronary Intervention |
FBG | Fiber Bragg Grating |
ANN | Artificial Neural Network |
MLP | Multilayer Perceptron |
FFNN | Feed Forward Neural Network |
References
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global burden of cardiovascular diseases and risk factors, 1990–2019: Update from the GBD 2019 study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef] [PubMed]
- Grubb, K.J.; Nazif, T.; Williams, M.R.; George, I. Concurrent Coronary Artery and Valvular Heart Disease–Hybrid Treatment Strategies in 2013. Interv. Cardiol. Rev. 2013, 8, 127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weisz, G.; Metzger, D.C.; Caputo, R.P.; Delgado, J.A.; Marshall, J.J.; Vetrovec, G.W.; Reisman, M.; Waksman, R.; Granada, J.F.; Novack, V.; et al. Safety and feasibility of robotic percutaneous coronary intervention: PRECISE (Percutaneous Robotically-Enhanced Coronary Intervention) Study. J. Am. Coll. Cardiol. 2013, 61, 1596–1600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maor, E.; Eleid, M.F.; Gulati, R.; Lerman, A.; Sandhu, G.S. Current and future use of robotic devices to perform percutaneous coronary interventions: A review. J. Am. Heart Assoc. 2017, 6, e006239. [Google Scholar] [CrossRef] [PubMed]
- Omisore, O.M.; Han, S.P.; Ren, L.X.; Wang, G.S.; Ou, F.L.; Li, H.; Wang, L. Towards characterization and adaptive compensation of backlash in a novel robotic catheter system for cardiovascular interventions. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 824–838. [Google Scholar] [CrossRef]
- Riga, C.V.; Bicknell, C.D.; Rolls, A.; Cheshire, N.J.; Hamady, M.S. Robot-assisted fenestrated endovascular aneurysm repair (FEVAR) using the Magellan system. J. Vasc. Interv. Radiol. 2013, 24, 191–196. [Google Scholar] [CrossRef]
- OMISORE, O.M.; ShiPeng, H.; LingXue, R.; Lei, W. A teleoperated robotic catheter system with motion and force feedback for vascular surgery. In Proceedings of the 2018 18th International Conference on Control, Automation and Systems (ICCAS), PyeongChang, Republic of Korea, 17–20 October 2018; pp. 172–177. [Google Scholar]
- Guo, J.; Guo, S.; Yu, Y. Design and characteristics evaluation of a novel teleoperated robotic catheterization system with force feedback for vascular interventional surgery. Biomed. Microdevices 2016, 18, 1–16. [Google Scholar] [CrossRef]
- Payne, C.J.; Rafii-Tari, H.; Yang, G.Z. A force feedback system for endovascular catheterisation. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, 7–12 October 2012; pp. 1298–1304. [Google Scholar]
- Pacchierotti, C.; Tirmizi, A.; Prattichizzo, D. Improving transparency in teleoperation by means of cutaneous tactile force feedback. ACM Trans. Appl. Percept. (TAP) 2014, 11, 1–16. [Google Scholar] [CrossRef]
- Cao, C.G.; Zhou, M.; Jones, D.B.; Schwaitzberg, S.D. Can surgeons think and operate with haptics at the same time? J. Gastrointest. Surg. 2007, 11, 1564–1569. [Google Scholar] [CrossRef]
- Guo, S.; Song, Y.; Yin, X.; Zhang, L.; Tamiya, T.; Hirata, H.; Ishihara, H. A novel robot-assisted endovascular catheterization system with haptic force feedback. IEEE Trans. Robot. 2019, 35, 685–696. [Google Scholar] [CrossRef]
- Yin, X.; Guo, S.; Xiao, N.; Tamiya, T.; Hirata, H.; Ishihara, H. Safety operation consciousness realization of a MR fluids-based novel haptic interface for teleoperated catheter minimally invasive neurosurgery. IEEE/ASME Trans. Mechatron. 2015, 21, 1043–1054. [Google Scholar] [CrossRef]
- Guo, S.; Wang, Y.; Xiao, N.; Li, Y.; Jiang, Y. Study on real-time force feedback for a master–slave interventional surgical robotic system. Biomed. Microdevices 2018, 20, 1–10. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, S.; Yu, H.; Song, Y. Performance evaluation of a strain-gauge force sensor for a haptic robot-assisted catheter operating system. Microsyst. Technol. 2017, 23, 5041–5050. [Google Scholar] [CrossRef]
- Bandari, N.M.; Hooshair, A.; Packirisamy, M.; Dargahi, J. Optical fiber array sensor for lateral and circumferential force measurement suitable for minimally invasive surgery: Design, modeling and analysis. In Specialty Optical Fibers; Optical Society of America: Washington, DC, USA, 2016; p. JTu4A-44. [Google Scholar]
- Sayadi, A.; Hooshiar, A.; Dargahi, J. Impedance matching approach for robust force feedback rendering with application in robot-assisted interventions. In Proceedings of the 2020 8th International Conference on Control, Mechatronics and Automation (ICCMA), Moscow, Russia, 6–8 November 2020; pp. 18–22. [Google Scholar]
- Hooshiar, A.; Payami, A.; Dargahi, J.; Najarian, S. Magnetostriction-based force feedback for robot-assisted cardiovascular surgery using smart magnetorheological elastomers. Mech. Syst. Signal Process. 2021, 161, 107918. [Google Scholar] [CrossRef]
- Yaftian, P.; Bandari, N.; Hooshiar, A.; Dargahi, J. Image-based contact detection and static force estimation on steerable rfa catheters. In Proceedings of the 2020 International Conference on Biomedical Innovations and Applications (BIA), Varna, Bulgaria, 24–27 September 2020; pp. 57–60. [Google Scholar]
- Zhao, B.; Nelson, C.A. A sensorless force-feedback system for robot-assisted laparoscopic surgery. Comput. Assist. Surg. 2019, 24, 36–43. [Google Scholar] [CrossRef]
- Hooshiar, A.; Sayadi, A.; Jolaei, M.; Dargahi, J. Accurate estimation of tip force on tendon-driven catheters using inverse cosserat rod model. In Proceedings of the 2020 International Conference on Biomedical Innovations and Applications (BIA), Varna, Bulgaria, 24–27 September 2020; pp. 37–40. [Google Scholar]
- Jolaei, M.; Hooshiar, A.; Dargahi, J.; Packirisamy, M. Toward task autonomy in robotic cardiac ablation: Learning-based kinematic control of soft tendon-driven catheters. Soft Robot. 2021, 8, 340–351. [Google Scholar] [CrossRef]
- Chatzipirpiridis, G.; Gervasoni, S.; Berlinger, F.; Ergeneman, O.; Pané, S.; Nelson, B. Miniaturized magnetic force sensor on a catheter tip. In Proceedings of the 2015 Transducers-2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Anchorage, AK, USA, 21–25 June 2015; pp. 1727–1730. [Google Scholar]
- Gan, L.; Duan, W.; Akinyemi, T.O.; Du, W.; Omisore, O.M.; Wang, L. Development of a Fiber Bragg Grating-based Force Sensor for Minimally Invasive Surgery—Case Study of Ex-vivo Tissue Palpation. IEEE Trans. Instrum. Meas. 2021. [Google Scholar] [CrossRef]
- Akinyemi, T.O.; Omisore, O.M.; Lu, G.; Wang, L. Toward a Fiber Bragg Grating-Based Two-Dimensional Force Sensor for Robot-Assisted Cardiac Interventions. IEEE Sensors Lett. 2021, 6, 1–4. [Google Scholar] [CrossRef]
- Li, Y.; Wang, W.; Duan, W.; Mumini, O.O.; Akinyemi, T.; Du, W.; Zheng, Y. Design of Vascular Interventional Surgical Robot with Network Time Delay Analysis for Master-slave Teleoperation. In Proceedings of the 2021 4th International Conference on Intelligent Autonomous Systems (ICoIAS), Wuhan, China, 14–16 May 2021; pp. 406–412. [Google Scholar]
- Yu, H.; Wang, H.; Chang, J.; Niu, J.; Wang, F.; Yan, Y.; Tian, H.; Fang, J.; Lu, H. A novel vascular intervention surgical robot based on force feedback and flexible clamping. Appl. Sci. 2021, 11, 611. [Google Scholar] [CrossRef]
- Akinyemi, T.O.; Omisore, O.M.; Chen, X.; Duan, W.; Du, W.; Yi, G.; Wang, L. Adapting Neural-Based Models for Position Error Compensation in Robotic Catheter Systems. Appl. Sci. 2022, 12, 10936. [Google Scholar] [CrossRef]
- Yang, C.; Guo, S.; Bao, X.; Xiao, N.; Shi, L.; Li, Y.; Jiang, Y. A vascular interventional surgical robot based on surgeon’s operating skills. Med Biol. Eng. Comput. 2019, 57, 1999–2010. [Google Scholar] [CrossRef]
- Omisore, O.M.; Han, S.; Ren, L.; Wang, L. A fuzzy-PD model for master-slave tracking in teleoperated robotic surgery. In Proceedings of the 2016 IEEE Biomedical Circuits and Systems Conference (BioCAS), Shanghai, China, 17–19 October 2016; pp. 70–73. [Google Scholar]
- Omisore, O.M.; Akinyemi, T.; Duan, W.; Du, W.; Wang, L. A Novel Sample-efficient Deep Reinforcement Learning with Episodic Policy Transfer for PID-Based Control in Cardiac Catheterization Robots. arXiv 2021, arXiv:2110.14941. [Google Scholar]
- Bishop, C.M.; Roach, C. Fast curve fitting using neural networks. Rev. Sci. Instrum. 1992, 63, 4450–4456. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.Z.; Cambias, J.; Cleary, K.; Daimler, E.; Drake, J.; Dupont, P.E.; Hata, N.; Kazanzides, P.; Martel, S.; Patel, R.V.; et al. Medical robotics—Regulatory, ethical, and legal considerations for increasing levels of autonomy. Sci. Robot. 2017, 2, eaam8638. [Google Scholar] [CrossRef]
- Grosso, A.A.; Maida, F.D.; Tellini, R.; Mari, A.; Sforza, S.; Masieri, L.; Carini, M.; Minervini, A. Robot-assisted partial nephrectomy with 3D preoperative surgical planning: Video presentation of the florentine experience. Int. Braz. J. Urol. 2021, 47, 1272–1273. [Google Scholar] [CrossRef]
- Grosso, A.A.; Marìn, D.M.; Di Maida, F.; Gallo, M.L.; Lambertini, L.; Nardoni, S.; Mari, A.; Minervini, A. Robotic Partial Nephrectomy with En Bloc Removal of a Renal Vein Thrombus for Multiple cT3a Renal Cell Carcinoma Lesions. Eur. Urol. Open Sci. 2022, 44, 33–36. [Google Scholar] [CrossRef]
- Grosso, A.A.; Lambertini, L.; Maida, F.D.; Gallo, M.L.; Mari, A.; Minervini, A. Three-dimensional reconstruction and intraoperative ultrasonography: Crucial tools to safely approach highly complex renal masses. Int. Braz. J. Urol. 2022, 48, 996–997. [Google Scholar] [CrossRef]
ec | ||||||||
---|---|---|---|---|---|---|---|---|
NB | NM | NS | ZE | PS | PM | PB | ||
e | NB | PB | PB | PM | PM | PS | ZE | ZE |
NM | PB | PB | PM | PM | PS | ZE | NS | |
NS | PM | PM | PM | PS | ZE | NS | NS | |
ZE | PM | PM | PS | ZE | NS | NM | NM | |
PS | PS | PS | ZE | NS | NS | NM | NM | |
PM | PS | ZE | NS | NM | NM | NM | NB | |
PB | ZE | ZE | NM | NM | NM | NB | NB |
ec | ||||||||
---|---|---|---|---|---|---|---|---|
NB | NM | NS | ZE | PS | PM | PB | ||
e | NB | NB | NB | NM | NM | NS | ZE | ZE |
NM | NB | NB | NM | NS | NS | ZE | ZE | |
NS | NB | NM | NS | NS | ZE | PS | PS | |
ZE | NM | NM | NS | ZE | PS | PM | PM | |
PS | NM | NS | ZE | PS | PS | PM | PB | |
PM | ZE | ZE | PS | PS | PM | PB | PB | |
PB | ZE | ZE | PS | PM | PS | PB | PB |
ec | ||||||||
---|---|---|---|---|---|---|---|---|
NB | NM | NS | ZE | PS | PM | PB | ||
e | NB | PS | NS | NB | NB | NM | NM | PS |
NM | PS | NS | NB | NM | NS | NS | ZE | |
NS | ZE | NS | NM | NM | NS | NS | ZE | |
ZE | ZE | NS | NS | NS | NS | NS | ZE | |
PS | ZE | ZE | ZE | ZE | ZE | ZE | NS | |
PM | PB | PS | PM | PS | PS | PS | PB | |
PB | PB | PM | PM | PM | PS | PS | PB |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Chen, Y.; Duan, W.; Akinyemi, T.O.; Yi, G.; Jiang, J.; Du, W.; Omisore, O.M. Design and Evaluation of a Learning-Based Vascular Interventional Surgery Robot. Fibers 2022, 10, 106. https://doi.org/10.3390/fib10120106
Chen X, Chen Y, Duan W, Akinyemi TO, Yi G, Jiang J, Du W, Omisore OM. Design and Evaluation of a Learning-Based Vascular Interventional Surgery Robot. Fibers. 2022; 10(12):106. https://doi.org/10.3390/fib10120106
Chicago/Turabian StyleChen, Xingyu, Yinan Chen, Wenke Duan, Toluwanimi Oluwadara Akinyemi, Guanlin Yi, Jie Jiang, Wenjing Du, and Olatunji Mumini Omisore. 2022. "Design and Evaluation of a Learning-Based Vascular Interventional Surgery Robot" Fibers 10, no. 12: 106. https://doi.org/10.3390/fib10120106
APA StyleChen, X., Chen, Y., Duan, W., Akinyemi, T. O., Yi, G., Jiang, J., Du, W., & Omisore, O. M. (2022). Design and Evaluation of a Learning-Based Vascular Interventional Surgery Robot. Fibers, 10(12), 106. https://doi.org/10.3390/fib10120106