Performance of Steel Bar Lap Splices at the Base of Seismic Resistant Reinforced Concrete Columns Retrofitted with FRPs—3D Finite Element Analysis
Abstract
:1. Introduction
2. Experimental Database
3. 3D Finite Elements Modelling
3.1. Materials
3.1.1. Concrete
3.1.2. Longitudinal and Transverse Steel Bars
3.1.3. Fiber Reinforced Polymer Jacket
3.2. Geometry
3.3. Connections
3.4. Mesh
3.5. Boundary Conditions and Loading
4. Numerical Results and Discussion
4.1. Lateral Force-to-Drift (%) Curves
4.2. Analytical Response of the Longitudinal Bars
4.2.1. Axial Force of Longitudinal Bars at the Base of Column
4.2.2. Stress along the Lap Splice Length
4.2.3. Proposed Modifications
4.2.4. Comparison of Analytical and Experimental Values
5. Conclusions
- In most cases, the developed stress at the base of the column is not fully transferred to the end of the lap splice, as the tensile strain of the bars may be lower far from the bottom section (because of lower moment values). Both bars (starter and main) seem to develop the same stress at about two thirds of the lap splice length away from the bottom section (even in cases of inadequate lap length).
- In cases where the lap splice length is adequately long (45 dbL), the total bearing tensile stress by both bars at any section is lower at the end of the lap in accordance with the developed moments, similar to the column without laps. For higher column drift, the same pattern is valid, as the bars achieve the hardening behavior of increased bearing stress. Further, if we consider the sum of the developed stress for the lapped bars at any point, the plastic hinge length is extended from 300 mm for R-0L0 without lap, to 400 mm for R-0L4, and to more than double (620 mm) for FRP jacketing at the lap region in R-P2L4.
- In cases the lap splice is 30 dbL the bars develop their yielding, but clearly a slip occurs at ultimate drift. When a column is confined with two layers of FRP, it initially suffers a temporary controlled slip of the bars, starting before the displacement at yielding of the columns R-0L0 or R-P2L0. After delayed bar yielding, the detrimental slip occurs at a far higher ultimate drift. The plastic hinge length is lower than in R-0L4 but higher than in R-0L0 (325 mm). Again, the plastic hinge length extends to around 450 mm or 540 mm for two or five layers of FRP jacketing, based on which is higher for higher lap length or FRP jacketing.
- In cases where the lap splice length is inadequate (lap length of 15 dbL), the total tensile stress of both bars at any section remains rather constant all along the lap-splice and lower than the yield stress of the bars. This pattern is not affected by external FRP confinement. The total stress of the main bar one may be higher than the starter’s for different horizontal drifts of the column. No plastic hinge length may be defined in these cases, as no bar yielding occurs (despite pseudo-yielding).
- Increased tensile bar stresses occur at the steel stirrups levels for different columns, as they tend to resist the opening of the potential crack along the spliced bars that leads to their relative slip. The CFRP retrofit seems to improve the axial force transfer mechanism and to result in a better bar stress distribution. The sum of the tensile stress received by both lapped bars increases for more layers of FRP.
- The height of the provided FRP confinement seems to affect the transfer mechanism of stress along the lap splice. If the FRP does not cover all lap splice regions, then a sudden bar stress decrease at the end of the FRP jacketing occurs.
- For the first time, cases of smooth bar slip together with delayed bar yielding or without bar yielding are identified that may be recorded through a “ductile” P-d seismic response. Such pseudo-ductile response cases are revisited through suitably revised redesign criteria for adequate FRP jacketing that identify if the lapped bar will yield.
- The authors propose that composite jacketing that leads to pseudo-ductile P-d behavior while the lapped bar does not yield due to slip (temporary or not) should be considered as inadequate in redesign, and additional FRP layers should be provided as per the framework presented in Section 4.2.2.
- The high potential of advanced dynamic 3D FEA should be further utilized to extend investigations in several challenging real cases of deficient existing columns with different cross-section geometry, multiple side steel bars inside the lap region, and different detailing of existing steel stirrups or of composite jacketing to assist successful redesign.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rousakis, T.; Ilki, A.; Kwiecien, A.; Viskovic, A.; Gams, M.; Triller, P.; Ghiassi, B.; Benedetti, A.; Rakicevic, Z.; Colla, C.; et al. Deformable Polyurethane Joints and Fibre Grids for Resilient Seismic Performance of Reinforced Concrete Frames with Orthoblock Brick Infills. Polymers 2020, 12, 2869. [Google Scholar] [CrossRef] [PubMed]
- Rousakis, T.C.; Panagiotakis, G.D.; Archontaki, E.E.; Kostopoulos, A.K. Prismatic RC columns externally confined with FRP sheets and pre-tensioned basalt fiber ropes under cyclic axial load. Compos. Part B Eng. 2019, 163, 96–106. [Google Scholar] [CrossRef]
- Pohoryles, D.A.; Bournas, D.A. Seismic retrofit of infilled RC frames with textile reinforced mortars: State-of-the-art review and analytical modelling. Compos. Part B Eng. 2020, 183, 107702. [Google Scholar] [CrossRef]
- Zeng, J.J.; Ye, Y.Y.; Guo, Y.C.; Lv, J.F.; Ouyang, Y.; Jiang, C. PET FRP-concrete-high strength steel hybrid solid columns with strain-hardening and ductile performance: Cyclic axial compressive behavior. Compos. Part B Eng. 2020, 190, 107903. [Google Scholar] [CrossRef]
- Park, S.H.; Dinh, N.H.; Um, J.W.; Choi, K.K. Experimental study on the seismic performance of RC columns retrofitted by lap-spliced textile-reinforced mortar jackets after high-temperature exposure. Compos. Struct. 2021, 256, 113108. [Google Scholar] [CrossRef]
- Sakthimurugan, K.; Baskar, K. Experimental investigation on rcc external beam-column joints retrofitted with basalt textile fabric under static loading. Compos. Struct. 2021, 268, 114001. [Google Scholar] [CrossRef]
- Karayannis, C.G.; Golias, E. Full scale tests of RC joints with minor to moderate seismic damage repaired using C-FRP sheets. Earthq. Struct. 2018, 15, 617–627. [Google Scholar]
- Parvin, A.; Jamwal, A.S. Performance of externally FRP reinforced columns for changes in angle and thickness of the wrap and concrete strength. Compos. Struct. 2006, 73, 451–457. [Google Scholar] [CrossRef]
- Rousakis, T.C.; Karabinis, A.I. Adequately FRP confined reinforced concrete columns under axial compressive monotonic or cyclic loading. Mater. Struct. 2012, 45, 957–975. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, D.; Smith, S.T.; Lu, D. CFRP-confined square RC columns. I: Experimental investigation. J. Compos. Constr. 2012, 16, 150. [Google Scholar] [CrossRef]
- Rousakis, T.C. Hybrid confinement of concrete by fiber-reinforced polymer sheets and fiber ropes under cyclic axial compressive loading. J. Compos. Constr. 2013, 17, 732–743. [Google Scholar] [CrossRef]
- Triantafyllou, G.G.; Rousakis, T.C.; Karabinis, A.I. Axially loaded reinforced concrete columns with a square section partially confined by light GFRP straps. J. Compos. Constr. 2015, 19, 04014035. [Google Scholar] [CrossRef]
- Rousakis, T.C. Reusable and recyclable nonbonded composite tapes and ropes for concrete columns confinement. Compos. Part B Eng. 2016, 100, 15–22. [Google Scholar] [CrossRef]
- Fanaradelli, T.; Rousakis, T.; Karabinis, A. Reinforced concrete columns of square and rectangular section, confined with FRP–Prediction of stress and strain at failure. Compos. Part B Eng. 2019, 174, 107046. [Google Scholar] [CrossRef]
- Ombres, L.; Mazzuca, P.; Verre, S. Effects of Thermal Conditioning at High Temperatures on the Response of Concrete Elements Confined with a PBO-FRCM Composite System. J. Mater. Civil Eng. 2022, 34, 04021413. [Google Scholar] [CrossRef]
- Ma, R.; Xiao, Y.; Li, K. Full-scale testing of a parking structure column retrofitted with carbon fiber reinforced composites. Constr. Build. Mater. 2000, 14, 63–71. [Google Scholar] [CrossRef]
- Bousias, S.N.; Spathis, A.L.; Fardis, M.N. Concrete or FRP jacketing of columns with lap splices for seismic rehabilitation. J. Adv. Concr. Technol. 2006, 4, 431–444. [Google Scholar] [CrossRef] [Green Version]
- Bournas, D.; Lontou, P.; Papanicolaou, C.; Triantafillou, T. Textile-reinforced mortar vs fiber-reinforced polymer confinement in reinforced concrete columns. ACI Struct. J. 2007, 104, 740–748. [Google Scholar]
- Bournas, D.A.; Triantafillou, T.C. Bond strength of lap-spliced bars in concrete confined with composite jackets. J. Comput. Constr. 2011, 15, 157–167. [Google Scholar] [CrossRef]
- Bournas, D.A.; Triantafillou, T.C.; Zygouris, K.; Stavropoulos, F. Textile-reinforced mortar versus FRP jacketing in seismic retrofitting of RC columns with continuous or lap-spliced deformed bars. J. Compos. Constr. 2009, 13, 360–371. [Google Scholar] [CrossRef]
- Yalcin, C.; Kaya, O.; Sinangil, M. Seismic retrofitting of R/C columns having plain rebars using CFRP sheets for improved strength and ductility. Constr. Build. Mater. 2008, 22, 295–307. [Google Scholar] [CrossRef]
- Realfonzo, R.; Napoli, A. Cyclic behavior of RC columns strengthened by FRP and steel devices. J. Struct. Eng. 2009, 135, 1164–1176. [Google Scholar] [CrossRef]
- Realfonzo, R.; Napoli, A. Results from cyclic tests on high aspect ratio RC columns strengthened with FRP systems. Constr. Build. Mater. 2012, 37, 606–620. [Google Scholar] [CrossRef]
- El Gawady, M.; Endeshaw, M.; McLean, D.; Sack, R. Retrofitting of rectangular columns with deficient lap splices. ASCE. J. Compos. Constr. 2010, 14, 22–35. [Google Scholar] [CrossRef]
- Harajli, M.; Rteil, A. Effect of confinement using fiber-reinforced polymer or fiber reinforced concrete on seismic performance of gravity load-designed columns. ACI Struct. J. 2004, 101, 47–56. [Google Scholar]
- Harajli, M.H. Bond strengthening of lap spliced reinforcement using external FRP jackets: An effective technique for seismic retrofit of rectangular or circular RC columns. Constr. Build. Mater. 2009, 23, 1265–1278. [Google Scholar] [CrossRef]
- Harajli, M. Seismic behavior of RC columns with bond-critical regions: Criteria for bond strengthening using external FRP jackets. ASCE J. Compos. Constr. 2008, 12, 69–79. [Google Scholar] [CrossRef]
- Harajli, M.H.; Dagher, F. Seismic strengthening of bond-critical regions in rectangular reinforced concrete columns using fiber-reinforced polymer wraps. ACI Struct. J. 2008, 105, 68. [Google Scholar]
- Harajli, M.H.; Dagher, F.K.; ElSouri, A.M. Cyclic response of rectangular RC columns with bond-damaged zones repaired using steel or CFRP confinement. Spec. Publ. 2010, 272, 225–250. [Google Scholar]
- Haroun, M.A.; Mossalam, A.S.; Feng, Q.; Elsanadedy, H.M. Experimental investigation of seismic repair and retrofit of bridge columns by composite jackets. FRP Compos. Civ. Eng. 2001, I, 1243–1268. [Google Scholar] [CrossRef]
- Haroun, M.A.; Elsanadedy, H.M. Behavior of cyclically loaded squat reinforced concrete bridge columns upgraded with advanced composite-material jackets. J. Bridge Eng. 2005, 10, 741–748. [Google Scholar] [CrossRef]
- Haroun, M.A.; Elsanadedy, H.M. Fiber-reinforced plastic jackets for ductility enhancement of reinforced concrete bridge columns with poor lap-splice detailing. J. Bridge Eng. 2005, 10, 749–757. [Google Scholar] [CrossRef]
- Chang, K.; Liu, K.; Chang, S. Seismic retrofit study of RC rectangular bridge columns lap-spliced at the plastic hinge zone. FRP Compos. Civ. Eng. 2001, I, 869–875. [Google Scholar]
- Eshghi, S.; Zanjanizadeh, V. Retrofit of slender square reinforced concrete columns with glass fiber-reinforced polymer for seismic resistance. Iran J. Sci. Technol. Trans. B Eng. 2008, 32, 437–450. [Google Scholar]
- Ghosh, K.K.; Sheikh, S.A. Seismic upgrade with carbon fiber reinforced polymer of columns containing lap-spliced reinforcing bars. ACI Struct. J. 2007, 104, 227–236. [Google Scholar]
- Sheikh, S.A.; Li, Y. Design of FRP confinement for square concrete columns. Eng. Struct. 2007, 29, 1074–1083. [Google Scholar] [CrossRef]
- Saadatmanesh, H.; Ehsani, M.R.; Jin, L. Repair of earthquake-damaged RC columns with FRP wraps. ACI Struct. J. 1997, 94, 206–214. [Google Scholar]
- Saadatmanesh, H.; Ehsani, M.R.; Jin, L. Seismic retrofitting of rectangular bridge columns with composite straps. Earthq. Spectra 1997, 13, 281–304. [Google Scholar] [CrossRef]
- Kalogeropoulos, G.; Tsonos, A.D. Cyclic Performance of RC Columns with Inadequate Lap Splices Strengthened with CFRP Jackets. Fibers 2020, 8, 39. [Google Scholar] [CrossRef]
- N 1998-1:2004; Eurocode 8: Design of Structures for Earthquake Resistance—Part 3: Assessment and Retrofitting of Buildings. European Committee for Standardization: Brussels, Belgium, 2005.
- Greek Retrofit Code (KANEPE), 2nd ed.; 2017. Available online: https://oasp.gr/node/92 (accessed on 25 May 2021).
- Anagnostou, E.; Rousakis, T.C.; Karabinis, A.I. Seismic retrofitting of damaged RC columns with lap-spliced bars using FRP sheets. Compos. Part B Eng. 2019, 166, 598–612. [Google Scholar] [CrossRef]
- Anagnostou, E.; Rousakis, T. Seismic retrofitting of damaged RC columns with composites and other techniques. In Proceedings of the 25th Annual International Conference on Composites or Nano Engineering (ICCE-25), Rome, Italy, 16–22 July 2017. [Google Scholar]
- Seyhan, E.C.; Goksu, C.; Uzunhasanoglu, A.; Ilki, A. Seismic behavior of substandard RC columns retrofitted with embedded aramid fiber reinforced polymer (AFRP) reinforcement. Polymers 2015, 7, 2535–2557. [Google Scholar] [CrossRef] [Green Version]
- Farrokh Ghatte, H.; Comert, M.; Demir, C.; Akbaba, M.; Ilki, A. Seismic retrofit of full-scale substandard extended rectangular RC columns through CFRP jacketing: Test results and design recommendations. J. Compos. Constr. 2019, 23, 04018071. [Google Scholar] [CrossRef]
- Dai, J.G.; Lam, L.; Ueda, T. Seismic retrofit of square RC columns with polyethylene terephthalate (PET) fibre reinforced polymer composites. Constr. Build. Mater. 2012, 27, 206–217. [Google Scholar] [CrossRef]
- Biskinis, D.; Fardis, M.N. Flexure-controlled ultimate deformations of members with continuous or lap-spliced bars. Struct. Concr. 2010, 11, 93–108. [Google Scholar] [CrossRef]
- Grammatikou, S.; Biskinis, D.; Fardis, M.N. Effect of load cycling, FRP jackets, and lap-splicing of longitudinal bars on the effective stiffness and ultimate deformation of flexure-controlled RC members. J. Struct. Eng. 2018, 144, 04018056. [Google Scholar] [CrossRef]
- Jiang, C.; Wu, Y.F.; Wu, G. Plastic hinge length of FRP-confined square RC columns. J. Compos. Constr. 2014, 18, 04014003. [Google Scholar] [CrossRef]
- Yuan, F.; Wu, Y.F. Effect of load cycling on plastic hinge length in RC columns. Eng. Struct. 2017, 147, 90–102. [Google Scholar] [CrossRef]
- Yuan, F.; Wu, Y.F.; Li, C.Q. Modelling plastic hinge of FRP-confined RC columns. Eng. Struct. 2017, 131, 651–668. [Google Scholar] [CrossRef]
- Triantafyllou, G.G.; Rousakis, T.C.; Karabinis, A.I. Corroded RC beams patch repaired and strengthened in flexure with fiber-reinforced polymer laminates. Compos. Part B Eng. 2017, 112, 125–136. [Google Scholar] [CrossRef]
- Rousakis, T.C.; Manolitsi, G.; Karabinis, A.I. FRP strengthening of RC columns: Parametric finite element analyses of bar quality effect. In Proceedings of the 1st Asia-Pacific Conference on FRP in Structures (APFIS 2007), Hong Kong, China, 12–14 December 2007. [Google Scholar]
- Karabinis, A.I.; Rousakis, T.C.; Manolitsi, G.E. 3D finite-element analysis of substandard RC columns strengthened by fiber-reinforced polymer sheets. J. Compos. Constr. 2008, 12, 531–540. [Google Scholar] [CrossRef]
- Rousakis, T.C.; Karabinis, A.I.; Kiousis, P.D.; Tepfers, R. Analytical modelling of plastic behaviour of uniformly FRP confined concrete members. Compos. Part B Eng. 2008, 39, 1104–1113. [Google Scholar] [CrossRef]
- Charalambidi, B.; Rousakis, T.; Karabinis, A. Finite Element Modeling of Reinforced Concrete Columns Seismically Strengthened through Partial FRP Jacketing. In Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal, 24–28 September 2012. [Google Scholar]
- Chalioris, C.E.; Kytinou, V.K.; Voutetaki, M.E.; Karayannis, C.G. Flexural damage diagnosis in reinforced concrete beams using a wireless admittance monitoring system—Tests and finite element analysis. Sensors 2021, 21, 679. [Google Scholar] [CrossRef] [PubMed]
- Yuan, F.; Pan, J.; Wu, Y. Numerical study on flexural behaviors of steel reinforced engineered cementitious composite (ECC) and ECC/concrete composite beams. Sci. China Technol. Sci. 2014, 57, 637–645. [Google Scholar] [CrossRef]
- Nisticò, N.; Ožbolt, J.; Polimanti, G. Modeling of reinforced concrete beams strengthened in shear with CFRP: Microplane-based approach. Compos. Part B Eng. 2016, 90, 351–364. [Google Scholar] [CrossRef]
- Hany, N.F.; Hantouche, E.G.; Harajli, M.H. Finite element modeling of FRP-confined concrete using modified concrete damaged plasticity. Eng. Struct. 2016, 125, 1–14. [Google Scholar] [CrossRef]
- Ozbakkaloglu, T.; Gholampour, A.; Lim, J.C. Damage-plasticity model for FRP-confined normal-strength and high-strength concrete. J. Compos. Constr. 2016, 20, 04016053. [Google Scholar] [CrossRef]
- Yu, T.T.; Teng, J.G.; Wong, Y.L.; Dong, S.L. Finite element modeling of confined concrete-I: Drucker–Prager type plasticity model. Eng. Struct. 2010, 32, 665–679. [Google Scholar] [CrossRef]
- Yu, T.; Teng, J.G.; Wong, Y.L.; Dong, S.L. Finite element modeling of confined concrete-II: Plastic-damage model. Eng. Struct. 2010, 32, 680–691. [Google Scholar] [CrossRef]
- Rousakis, T.; Anagnostou, E.; Fanaradelli, T. Advanced Composite Retrofit of RC Columns and Frames with Prior Damages-Pseudodynamic Finite Element Analyses and Design Approaches. Fibers 2021, 9, 56. [Google Scholar] [CrossRef]
- Rousakis, T.; Anagnostou, E.; Fanaradelli, T. Pseudo-dynamic analyses of infilled reinforced concrete framed structures with prior damages after advanced retrofit. In Proceedings of the 8th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering (COMPDYN 2021), Athens, Greece, 27–30 June 2021. [Google Scholar]
- Rousakis, T.; Vanian, V.; Fanaradelli, T.; Anagnostou, E. 3D FEA of infilled RC framed structures protected by seismic joints and FRP jackets. Appl. Sci. 2021, 11, 6403. [Google Scholar] [CrossRef]
- Anagnostou, E.; Rousakis, T.; Georgiadis, N. Finite element analysis of deficient RC columns with square and rectangular section under pseudoseismic load and comparison with retrofit code predictions. In Proceedings of the ICCE-26 Conference, Paris, France, 15–21 July 2018. [Google Scholar]
- Rousakis, T.C.; Saridaki, M.E.; Mavrothalassitou, S.A.; Hui, D. Utilization of hybrid approach towards advanced database of concrete beams strengthened in shear with FRPs. Compos. Part B Eng. 2016, 85, 315–335. [Google Scholar] [CrossRef]
- Fanaradelli, T.D.; Rousakis, T.C. 3D Finite Element Pseudodynamic Analysis of Deficient RC Rectangular Columns Confined with Fiber Reinforced Polymers under Axial Compression. Polymers 2020, 12, 2546. [Google Scholar] [CrossRef] [PubMed]
- Biskinis, D.; Fardis, M.N. Models for FRP-wrapped rectangular RC columns with continuous or lap-spliced bars under cyclic lateral loading. Eng. Struct. 2013, 57, 199–212. [Google Scholar] [CrossRef]
- Bousias, S.N.; Triantafillou, T.C.; Fardis, M.N.; Spathis, L.; O’Regan, B.A. Fiber-reinforced polymer retrofitting of rectangular reinforced concrete columns with or without corrosion. Struct. J. 2004, 101, 512–520. [Google Scholar]
- Eshghi, S.; Zanjanizadeh, V. Repair of earthquake-damaged square R/C columns with glass fiber-reinforced polymer. Int. J. Civ. Eng. 2007, 5, 210–223. [Google Scholar]
- Vrettos, I.; Kefala, E.; Triantafillou, T. Innovative flexural strengthening of reinforced concrete columns using carbon-fiber anchors. ACI Struct. J. 2013, 110, 63–70. [Google Scholar]
- Ghobarah, A.; Galal, K. Seismic rehabilitation of short rectangular rc columns. J. Earthq. Eng. 2004, 8, 45–68. [Google Scholar] [CrossRef]
- Colomb, F.; Tobbi, H.; Ferrier, E.; Hamelin, P. Seismic retrofit of reinforced concrete short columns by CFRP materials. Compos. Struct. 2008, 82, 475–487. [Google Scholar] [CrossRef]
- Ye, L.P.; Zhang, K.; Zhao, S.H.; Feng, P. Experimental study on seismic strengthening of RC columns with wrapped CFRP sheets. J. Constr. Build. Mater. 2003, 17, 499–506. [Google Scholar] [CrossRef]
- Ye, L.; Yue, O.; Zhao, S.; Li, Q. Shear strength of reinforced concrete columns strengthened with carbon-fiber-reinforced plastic sheet. ASCE J. Comp. Constr. 2002, 128, 1527–1534. [Google Scholar] [CrossRef]
- Kim, J.; Kwon, M.; Jung, W.; Limkatanyu, S. Seismic performance evaluation of RC columns reinforced by GFRP composite sheets with clip connectors. Constr. Build. Mater. 2013, 43, 563–574. [Google Scholar] [CrossRef]
- Lee, Y.T.; Kim, S.H.; Hwang, H.S.; Lee, L.H. Evaluation on the shear strengthening effect of RC columns with carbon fiber sheets. In Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, BC, Canada, 1–6 August 2004. [Google Scholar]
- Sadone, R.; Quiertant, M.; Mercier, J.; Ferrier, E. Experimental study on RC columns retrofitted by FRP and subjected to seismic loading. In Proceedings of the 6th International Conference on FRP Composites in Civil Engineering, Rome, Italy, 13–15 June 2012. [Google Scholar]
- Promis, G.; Ferrier, E. Performance indices to assess the efficiency of external FRP retrofitting of reinforced concrete short columns for seismic strengthening. Constr. Build. Mater. 2012, 26, 32–40. [Google Scholar] [CrossRef]
- Sause, R.; Harries, K.A.; Waikup, S.L.; Pessiki, S.; Ricles, J.M. Flexural behavior of concrete columns retrofitted with carbon fiber-reinforced polymer jackets. ACI Struct. J. 2004, 101, 708–716. [Google Scholar]
- Yoshimura, K.; Kikuchi, K.; Kuroki, M.; Wang, J.; Ichinose, K. Seismic strengthening of rectangular R/C columns confined by circular steel- and CF-jackets. In Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, BC, Canada, 1–6 August 2004. [Google Scholar]
- Thermou, G.E.; Pantazopoulou, S.J. Fiber-reinforced polymer retrofitting of predamaged substandard RC prismatic members. J. Compos. Constr. 2009, 13, 535–546. [Google Scholar] [CrossRef]
- Kwon, M.; Seo, H.; Kim, J. Seismic performance of RC-column wrapped with velcro. Struct. Eng. Mech. 2016, 58, 379–395. [Google Scholar] [CrossRef]
- Anggawidjaja, D.; Ueda, T.; Dai, J.; Nakai, H. Deformation capacity of RC piers wrapped by new fiber-reinforced polymer with large fracture strain. Cement. Concr. Compos. 2006, 28, 914–927. [Google Scholar] [CrossRef]
- Juntanalikit, P.; Jirawattanasomkul, T.; Pimanmas, A. Experimental and numerical study of strengthening non-ductile RC columns with and without lap splice by CFRP jacketing. Eng. Struct. 2016, 125, 400–418. [Google Scholar] [CrossRef]
- Fahmy, M.; Wu, Z. Exploratory study of seismic response of deficient lap-splice columns retrofitted with near surface–mounted basalt FRP bars. J. Struct. Eng 2016, 142, 04016020. [Google Scholar] [CrossRef]
- Oscan, O.; Binici, B.; Canbay, E.; Ozcebe, G. Repair and strengthening of reinforced concrete columns with CFRPs. J. Reinf. Plast. Compos. 2015, 29, 3411–3424. [Google Scholar] [CrossRef]
- Ozcan, O.; Binici, B.; Ozcebe, G. Improving seismic performance of deficient reinforced concrete columns using carbon fiber-reinforced polymers. Eng. Struct. 2008, 30, 1632–1646. [Google Scholar] [CrossRef]
- Ozcan, O.; Binici, B.; Ozcebe, G. Seismic strengthening of rectangular concrete columns using fiber reinforced polymers. Eng. Struct. 2010, 32, 964–973. [Google Scholar] [CrossRef]
- Abdel-Mooty, M.; Issa, M.; Farag, H.; Bitar, M. Seismic upgrading of square and rectangular RC columns using FRP wrapping. High. Perform. Struct. Mater. III 2006, 85, 419–428. [Google Scholar]
- He, R.; Sneed, L.; Belarbi, A. Rapid repair of severely damaged RC columns with different damage conditions. An Experimental Study. Intern. J. Conc. Struct. Mater. 2013, 7, 35–50. [Google Scholar] [CrossRef] [Green Version]
- ElSouri, A.; Harajli, M. Seismic repair and strengthening of lap splices in RC columns: Carbon fiber–reinforced polymer versus steel confinement. ASCE. J. Compos. Constr. 2011, 15, 721–731. [Google Scholar] [CrossRef]
- Goksu, C.; Ilki, A. Seismic Behavior of Reinforced Concrete Columns with Corroded Deformed Reinforcing Bars. ACI Struct. J. 2016, 113, 1053–1064. [Google Scholar] [CrossRef]
- Guo, A.; Li, H.; Ba, X.; Guan, X.; Li, H. Experimental investigation on the cyclic performance of reinforced concrete piers with chloride-induced corrosion in marine environment. Eng. Struct. 2015, 105, 1–11. [Google Scholar] [CrossRef]
- Yang, S.Y.; Song, X.B.; Jia, H.X.; Chen, X.; Liu, X.L. Experimental research on hysteretic behaviors of corroded reinforced concrete columns with different maximum amounts of corrosion of rebar. Constr. Build. Mater. 2016, 121, 319–327. [Google Scholar] [CrossRef]
- Rajput, A.S.; Sharma, U.K. Corroded reinforced concrete columns under simulated seismic loading. Eng. Struct. 2018, 171, 453–463. [Google Scholar] [CrossRef]
- Li, J.; Gong, J.; Wang, L. Seismic behavior of corrosion-damaged reinforced concrete columns strengthened using combined carbon fiber-reinforced polymer and steel jacket. Constr. Build. Mater. 2009, 23, 2653–2663. [Google Scholar] [CrossRef]
- Li, D.; Wei, R.; Xing, F.; Sui, L.; Zhou, Y.; Wang, W. Influence of Non-uniform corrosion of steel bars on the seismic behavior of reinforced concrete columns. Constr. Build. Mater. 2018, 167, 20–32. [Google Scholar]
- Riedel, W.; Kawai, N.; Kondo, K.I. Numerical assessment for impact strength measurements in concrete materials. Intern. J. Impact. Eng. 2009, 36, 283–293. [Google Scholar] [CrossRef] [Green Version]
- Bencardino, F.; Nisticò, M.; Verre, S. Experimental investigation and numerical analysis of bond behavior in SRG-strengthened masonry prisms using UHTSS and stainless-steel fibers. Fibers 2020, 8, 8. [Google Scholar] [CrossRef] [Green Version]
- Carozzi, F.G.; Colombi, P.; Fava, G.; Poggi, C. A cohesive interface crack model for the matrix–textile debonding in FRCM composites. Compos. Struct. 2016, 143, 230–241. [Google Scholar] [CrossRef]
- Hawileh, R.A.; El-Maaddawy, T.A.; Naser, M.Z. Nonlinear finite element modeling of concrete deep beams with openings strengthened with externally-bonded composites. Mater. Design 2012, 42, 378–387. [Google Scholar] [CrossRef]
- Anıl, Ö.; Durucan, C.; Kara, M.E.; Başeğmez, Ö. Nonlinear three-dimensional FE analyses of RC beams retrofitted using externally bonded CFRP sheets with or without anchorages. J. Adhes. Sci. Technol. 2017, 31, 770–786. [Google Scholar] [CrossRef]
- Kargaran, A.; Kheyroddin, A. Experimental and numerical investigation of seismic retrofitting of RC square short columns using FRP composites. European J. Environ. Civil Eng. 2022, 26, 4619–4642. [Google Scholar] [CrossRef]
- Melek, M.; Conte, J.P.; Wallace, J.W. Experimental assessment of columns with short lap splices subjected to cyclic loads. Pacific Earthq. Eng. Res. Cent. 2003; Peer Report 2003/4. [Google Scholar]
- Chowdhury, S.R.; Orakcal, K. An analytical model for reinforced concrete columns with lap splices. Eng. Struct. 2012, 43, 180–193. [Google Scholar] [CrossRef]
Column | fc (MPa) | Geometry | FRP | Longitudinal Bars | Stirrups | v | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
bw (m) | h (m) | Ls (m) | Type of FRP | Height of FRP (mm) | tj (mm) | Ej (GPa) | εju | r (mm) | dbL (mm) | Lap-splice Length (dbL) | fyL (MPa) | fuL (MPa) | dw (mm) | fyw (MPa) | s (m) | fuw (MPa) | |||
R-0L0 | 31.0 | 0.250 | 0.500 | 1.60 | - | - | - | - | - | 18 | - | 514 | 659 | 8 | 425 | 0.2 | 596 | 0.26 | |
R-0L1 | 27.4 | 0.250 | 0.500 | 1.60 | - | - | - | - | - | 18 | 15 | 514 | 659 | 8 | 425 | 0.2 | 596 | 0.23 | |
R-0L3 | 27.4 | 0.250 | 0.500 | 1.60 | - | - | - | - | - | 18 | 30 | 514 | 659 | 8 | 425 | 0.2 | 596 | 0.28 | |
R-0L4 | 27.4 | 0.250 | 0.500 | 1.60 | - | - | - | - | - | 18 | 45 | 514 | 659 | 8 | 425 | 0.2 | 596 | 0.28 | |
R-P2L0 | 32.9 | 0.250 | 0.500 | 1.60 | CFRP | 600 | 0.26 | 230 | 0.015 | 30 | 18 | - | 514 | 659 | 8 | 425 | 0.2 | 596 | 0.23 |
R-P2L1 | 26.9 | 0.250 | 0.500 | 1.60 | CFRP | 600 | 0.26 | 230 | 0.015 | 30 | 18 | 15 | 514 | 659 | 8 | 425 | 0.2 | 596 | 0.30 |
R-P2L3 | 26.9 | 0.250 | 0.500 | 1.60 | CFRP | 600 | 0.26 | 230 | 0.015 | 30 | 18 | 30 | 514 | 659 | 8 | 425 | 0.2 | 596 | 0.28 |
R-P2L4 | 26.9 | 0.250 | 0.500 | 1.60 | CFRP | 600 | 0.26 | 230 | 0.015 | 30 | 18 | 45 | 514 | 659 | 8 | 425 | 0.2 | 596 | 0.28 |
R-P5L3 | 27.0 | 0.250 | 0.500 | 1.60 | CFRP | 600 | 0.65 | 230 | 0.015 | 30 | 18 | 30 | 514 | 659 | 8 | 425 | 0.2 | 596 | 0.29 |
Property | Value |
---|---|
Density (kg·m−3) | 2314 |
Tensile Strength ft/fc | 0.1 |
Shear Strength fs/fc | 0.18 |
Intact Failure Surface Constant A | 1.6 |
Intact Failure Surface Exponent n | 0.61 |
Tension/Compression Meridian Ratio Q2.0 | 0.6805 |
Brittle to Ductile Transition BQ | 0.0105 |
Hardening Slope | 2 |
Elastic Strength/ft | 0.7 |
Elastic Strength/fc | 0.53 |
Property | Value | |
---|---|---|
Density (kg·m−3) | 7850 | |
Isotropic elasticity | Young’s Modulus (MPa) | 2 × 105 |
Poisson’s Ratio | 0.3 | |
Bulk Modulus (Pa) | 1.6667 × 1011 | |
Shear Modulus (Pa) | 7.6923 × 1010 | |
Plastic Strain | Stress | |
Multilinear isotropic hardening (Steel stirrups) | 0 | 425 |
0.05 | 550 | |
0.1 | 580 | |
0.195 | 596 | |
Multilinear isotropic hardening (Longitudinal bars) | 0 | 514 |
0.05 | 630 | |
0.1 | 650 | |
0.17 | 659 |
Property | Value |
---|---|
Density (kg·m−3) | 1.451 × 10−9 |
Young’s Modulus X direction (MPa) | 59,160 |
Young’s Modulus Y direction (MPa) | 59,160 |
Column | Results | Pmax (kN) | AE (%) | Pu,exp (kN) | δPu (mm) | δPu AE (%) | δu,exp (mm) | Pδu (kN) | Pδu AE (%) |
---|---|---|---|---|---|---|---|---|---|
R-0L0 | Experimental | 196.50 | 0.79 | 157.20 | 40.00 | 6.93 | 40.00 | 157.20 | 2.06 |
numerical | 194.95 | 157.20 | 37.23 | 40.00 | 153.96 | ||||
R-0L1 | Experimental | 148.00 | 5.63 | 123.40 | 30.40 | 10.79 | 30.40 | 123.40 | 12.77 |
numerical | 139.67 | 123.40 | 27.12 | 30.40 | 107.64 | ||||
R-0L3 | Experimental | 173.75 | 7.67 | 139.00 | 30.40 | 1.78 | 30.40 | 139.00 | 1.64 |
numerical | 187.07 | 139.00 | 30.94 | 30.40 | 141.28 | ||||
R-0L4 | Experimental | 205.00 | 6.32 | 164.00 | 39.00 | 22.92 | 39.00 | 164.00 | 19.62 |
numerical | 192.05 | 164.00 | 30.06 | 39.00 | 131.82 | ||||
R-P2L0 | Experimental | 217.00 | 0.33 | 173.60 | 67.20 | 14.02 | 67.20 | 173.60 | 5.67 |
numerical | 217.73 | 173.60 | 76.62 | 67.20 | 183.44 | ||||
R-P2L1 | Experimental | 171.50 | 3.13 | 137.20 | 52.20 | 15.31 | 52.20 | 137.20 | 11.84 |
numerical | 176.86 | 137.20 | 60.19 | 52.20 | 153.45 | ||||
R-P2L3 | Experimental | 211.50 | 1.13 | 169.20 | 70.10 | 5.34 | 70.10 | 169.20 | 7.29 |
numerical | 209.11 | 169.20 | 66.36 | 70.10 | 156.86 | ||||
R-P2L4 | Experimental | 208.50 | 1.24 | 166.80 | 87.30 | 10.27 | 87.30 | 166.80 | 4.46 |
numerical | 211.08 | 166.80 | 96.27 | 87.30 | 174.24 | ||||
R-P5L3 | Experimental | 225.25 | 1.04 | 180.00 | 89.30 | 8.81 | 89.30 | 180.00 | 4.73 |
numerical | 222.90 | 180.00 | 97.17 | 89.30 | 188.52 |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
Column | Lap Length (dbL) | Layers CFRP | θu,exp | θu,pred (KANEPE) | AE (%) | θu,pred (EC8.3) | AE (%) | θu,prop (Proposed- Including Equation c) | AE (%) |
R-P2L0 | 0 | 2 | 0.044 | 0.0422 | 4.1 | 0.0419 | 4.9 | 0.0419 | 4.8 |
R-P2L1 | 15 | 2 | 0.034 | 0.0121 | 64.5 | 0.0167 | 50.9 | 0.0352 | 3.5 |
R-P2L3 | 30 | 2 | 0.047 | 0.0231 | 51.0 | 0.0227 | 51.7 | 0.0442 | 5.9 |
R-P2L4 | 45 | 2 | 0.056 | 0.0303 | 45.9 | 0.0298 | 46.8 | 0.0467 | 16.5 |
R-P5L3 | 30 | 5 | 0.056 | 0.0256 | 54.3 | 0.0252 | 55.0 | 0.0632 | 12.8 |
AAE(%) | 44.0 | 41.9 | 8.7 | ||||||
AR | 0.56 | 0.58 | 0.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anagnostou, E.; Rousakis, T. Performance of Steel Bar Lap Splices at the Base of Seismic Resistant Reinforced Concrete Columns Retrofitted with FRPs—3D Finite Element Analysis. Fibers 2022, 10, 107. https://doi.org/10.3390/fib10120107
Anagnostou E, Rousakis T. Performance of Steel Bar Lap Splices at the Base of Seismic Resistant Reinforced Concrete Columns Retrofitted with FRPs—3D Finite Element Analysis. Fibers. 2022; 10(12):107. https://doi.org/10.3390/fib10120107
Chicago/Turabian StyleAnagnostou, Evgenia, and Theodoros Rousakis. 2022. "Performance of Steel Bar Lap Splices at the Base of Seismic Resistant Reinforced Concrete Columns Retrofitted with FRPs—3D Finite Element Analysis" Fibers 10, no. 12: 107. https://doi.org/10.3390/fib10120107
APA StyleAnagnostou, E., & Rousakis, T. (2022). Performance of Steel Bar Lap Splices at the Base of Seismic Resistant Reinforced Concrete Columns Retrofitted with FRPs—3D Finite Element Analysis. Fibers, 10(12), 107. https://doi.org/10.3390/fib10120107