Statistical Modeling of Compressive Strength of Hybrid Fiber-Reinforced Concrete—HFRC
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Compressive Strength of Hybrid Fiber Mixtures
3.2. Statistical Modeling of Compressive Strengths of Hybrid Fiber Mixtures
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nataraja, M.C.; Sanjay, M.C. Modified Bolomey equation for the design of concrete. J. Civ. Eng. IEB 2013, 41, 59–69. [Google Scholar]
- Mehta, P.K.; Monteriro, P.J. Concreto: Microestrutura, Propriedades e Materiais, 2nd ed.; IBRACON: São Paulo, Brasil, 2014. [Google Scholar]
- Lee, J.H.; Cho, B.; Choi, E. Flexural capacity of fiber reinforced concrete with a consideration of concrete strength and fiber content. Constr. Build. Mater. 2017, 138, 222–231. [Google Scholar] [CrossRef]
- Quinino, U.C.M. Investigação Experimental das Propriedades Mecânicas de Compósitos de Concreto com Adições Híbridas de Fibras. Doctoral Thesis, Universidade Federal do Rio Grande do Sul—UFRGS, Rio Grande, Brasil, 2015. [Google Scholar]
- Lerch, J.O.; Bester, H.L.; van Rooyen, A.S.; Combrinck, R.; de Villiers, W.I.; Boshoff, W.P. The effect of mixing on the performance of macro synthetic fibre reinforced concrete. Cem. Concr. Res. 2018, 103, 130–139. [Google Scholar] [CrossRef]
- Da Silva, G.C.S.; Christ, R.; Pacheco, F.; de Souza, C.F.N.; Gil, A.M.; Tutikian, B.F. Evaluating steel fiber-reinforced self-consolidating concrete performance. Struct. Concr. 2019, 21, 448–457. [Google Scholar] [CrossRef]
- Guler, S.; Yavuz, D.; Korkut, F.; Ashour, A. Strength prediction models for steel, synthetic, and hybrid fiber reinforced concretes. Struct. Concr. 2019, 20, 428–445. [Google Scholar] [CrossRef] [Green Version]
- Johnston, C.D. Fiber Reinforced Cements and Concretes; Taylor & Francis: Otawwa, ON, Canada, 2010; Volume 2010. [Google Scholar]
- Pacheco, F.; Christ, R.; Quinino, U.; Tutikian, B.F. Effects of fiber hybridization in advanced cementitious composites durability in humid and aggressive environments. Rev. Mater. 2018, 23, 3. [Google Scholar] [CrossRef]
- Zollo, R.F. Fiber-reinforced concrete: An overview after 30 years of development. Cem. Concr. Compos. 1997, 19, 107–122. [Google Scholar] [CrossRef]
- Chasioti, S.G.; Vecchio, F.J. Shear behavior and crack control characteristics of hybrid steel fiber-reinforced concrete panels. ACI Struct. J. 2017, 114, 209–220. [Google Scholar] [CrossRef] [Green Version]
- Caggiano, A.; Gambarelli, S.; Martinelli, E.; Nisticò, N.; Pepe, M. Experimental characterization of the post-cracking response in Hybrid Steel/Polypropylene Fiber-Reinforced Concrete. Constr. Build. Mater. 2016, 125, 1035–1043. [Google Scholar] [CrossRef]
- Shi, X.; Park, P.; Rew, Y.; Huang, K.; Sim, C. Constitutive behaviors of steel fiber reinforced concrete under uniaxial compression and tension. Constr. Build. Mater. 2020, 233, 117316. [Google Scholar] [CrossRef]
- Dawood, E.T.; Ramli, M. Contribution of hybrid fibers on the hybrid fibers on the properties of high strength concrete having high workability. Procedia Eng. 2011, 14, 814–820. [Google Scholar] [CrossRef] [Green Version]
- Lawler, J.S.; Wilhelm, T.; Zampini, D.; Shah, S.P. Fracture processes of hybrid fiber-reinforced mortar. Mater. Struct. Constr. 2003, 36, 197–208. [Google Scholar] [CrossRef]
- Yoo, D.Y.; Banthia, N.; Yoon, Y.S. Predicting the flexural behavior of ultra-high-performance fiber-reinforced concrete. Cem. Concr. Compos. 2016, 74, 71–87. [Google Scholar] [CrossRef]
- Gil, A.; Pacheco, F.; Christ, R.; Bolina, F.; Khayat, K.H.; Tutikian, B. Comparative study of concrete panels’ fire resistance. ACI Mater. J. 2017, 114, 5. [Google Scholar] [CrossRef]
- Klippel, S.; Prager, L.G.; Silva, P.E.M.; Bolina, F.L.; Tutikian, B.F. Comparative study of fire resistance and acoustic performance of ceramic brick walls in concern to NBR 15575 in residential buildings in Brazil. Dyna 2018, 85, 53–58. [Google Scholar] [CrossRef]
- Bolina, F.; Christ, R.; Metzler, A.; Quinino, U.; Tutikian, B. Comparison of the fire resistance of two structural wall systems in light steel framing. Dyna 2017, 84, 201. [Google Scholar] [CrossRef]
- Gribniak, V.; Ng, P.-L.; Tamulenas, V.; Misiūnaitė, I.; Norkus, A.; Šapalas, A. Strengthening of Fibre Reinforced Concrete Elements: Synergy of the Fibres and External Sheet. Sustainability 2019, 11, 4456. [Google Scholar] [CrossRef] [Green Version]
- Deifalla, A.F.; Zapris, A.G.; Chalioris, C.E. Multivariable Regression Strength Model for Steel Fiber-Reinforced Concrete Beams under Torsion. Materials 2021, 14, 3889. [Google Scholar] [CrossRef]
- ASTM C39/C39M. Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. In Annual Book of ASTM Standards; ASTM: Philadephia, PA, USA, 2010; pp. 1–7. [Google Scholar]
- Karahan, O.; Atiş, C.D. The durability properties of polypropylene fiber reinforced fly ash concrete. Mater. Des. 2011, 32, 1044–1049. [Google Scholar] [CrossRef]
- Kakooei, S.; Akil, H.M.; Jamshidi, M.; Rouhi, J. The effects of polypropylene fibers on the properties of reinforced concrete structures. Constr. Build. Mater. 2012, 27, 73–77. [Google Scholar] [CrossRef]
- Serrano, R.; Cobo, A.; Prieto, M.I.; González, M.d.N. Analysis of fire resistance of concrete with polypropylene or steel fibers. Constr. Build. Mater. 2016, 122, 302–309. [Google Scholar] [CrossRef] [Green Version]
- Bhutta, A.; Borges, P.H.R.; Zanotti, C.; Farooq, M.; Banthia, N. Flexural behavior of geopolymer composites reinforced with steel and polypropylene macrofibers. Cem. Concr. Compos. 2017, 80, 31–40. [Google Scholar] [CrossRef]
- Christ, R. Desenvolvimento de Compósitos Cimentícios Avançados à Base de Pós-Reativos com Misturas Híbridas de Fibras e Reduzido Impacto Ambiental. Dissertação de Mestrado, UNISINOS, São Leopoldo, Brasil, 2014; p. 111. [Google Scholar]
- Dawood, E.T.; Ramli, M. Mechanical properties of high strength flowing concrete with hybrid fibers. Constr. Build. Mater. 2012, 28, 193–200. [Google Scholar] [CrossRef]
- Banthia, N.; Yan, C.; Saks, K. Impact Resistance of Fiber Reinforced Concrete at Subnormal Temperatures. Science 1998, 20, 393–404. [Google Scholar]
- Bindiganavile, V.; Banthia, N.; Aarup, B. Impact response of ultra-high-strength fiber-reinforced cement composite. ACI Mater. J. 2002, 99, 543–548. [Google Scholar]
- GangaRao, H.V.S.; Taly, N.; Vijay, P.V. Reinforced Concrete Design with FRP Composites; CRC Press: New York, NY, USA, 2007. [Google Scholar]
- Qin, Y.; Zhang, X.; Chai, J.; Xu, Z.; Li, S. Experimental study of compressive behavior of polypropylene-fiber-reinforced and polypropylene-fiber-fabric-reinforced concrete. Constr. Build. Mater. 2019, 194, 216–225. [Google Scholar] [CrossRef]
- Madhavi, T.C.; Reddy, M.; Kumar, P.; Raju, S.; Mathur, D. Behaviour of polypropylene fiber reinforced concrete. Int. J. Appl. Eng. Res. 2015, 10, 22627–22638. [Google Scholar]
- Song, P.S.; Hwang, S.; Sheu, B.C. Strength properties of nylon- and polypropylene-fiber-reinforced concretes. Cem. Concr. Res. 2005, 35, 1546–1550. [Google Scholar] [CrossRef]
- Enrenbring, H.Z. Comportamento de Concretos Reforçados com Fibras de Polipropileno (PP), Álcool Polivinílico (PVA) e Recicladas de Poliéster (POL) em Relação à Retração por Secagem Restrindiga e às Propriedades Mecânicas; Universidade do Vale do Rio dos Sinos: Sao Leopoldo, Brasil, 2017. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quinino, U.C.d.M.; Christ, R.; Tutikian, B.F.; Silva, L.C.P.d. Statistical Modeling of Compressive Strength of Hybrid Fiber-Reinforced Concrete—HFRC. Fibers 2022, 10, 64. https://doi.org/10.3390/fib10080064
Quinino UCdM, Christ R, Tutikian BF, Silva LCPd. Statistical Modeling of Compressive Strength of Hybrid Fiber-Reinforced Concrete—HFRC. Fibers. 2022; 10(8):64. https://doi.org/10.3390/fib10080064
Chicago/Turabian StyleQuinino, Uziel Cavalcanti de Medeiros, Roberto Christ, Bernardo Fonseca Tutikian, and Luis Carlos Pinto da Silva. 2022. "Statistical Modeling of Compressive Strength of Hybrid Fiber-Reinforced Concrete—HFRC" Fibers 10, no. 8: 64. https://doi.org/10.3390/fib10080064
APA StyleQuinino, U. C. d. M., Christ, R., Tutikian, B. F., & Silva, L. C. P. d. (2022). Statistical Modeling of Compressive Strength of Hybrid Fiber-Reinforced Concrete—HFRC. Fibers, 10(8), 64. https://doi.org/10.3390/fib10080064