Experimental Investigation of the Axial Crushing Response of Flax/Glass Eco-Hybrid Self-Supporting Web Composites
Abstract
:1. Introduction
2. Materials and Method
2.1. Specimens
2.2. Experimental Test
3. Result and Discussion
3.1. Load-Displacement Curve
3.2. Failure Mechanism
3.3. Energy Absorption Behaviour
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Bisagni, C. Crashworthiness of helicopter subfloor structural components. Aircr. Eng. Aerosp. Technol. 1999, 71, 6–11. [Google Scholar] [CrossRef]
- Farokhi Nejad, A.; Alipour, R.; Shokri Rad, M.; Yazid Yahya, M.; Rahimian Koloor, S.S.; Petrů, M. Using Finite Element Approach for Crashworthiness Assessment of a Polymeric Auxetic Structure Subjected to the Axial Loading. Polymers 2020, 12, 1312. [Google Scholar] [CrossRef]
- Bisagni, C.; Di Pietro, G.; Fraschini, L.; Terletti, D. Progressive crushing of fiber-reinforced composite structural components of a Formula One racing car. Compos. Struct. 2005, 68, 491–503. [Google Scholar] [CrossRef]
- Obradovic, J.; Boria, S.; Belingardi, G. Lightweight design and crash analysis of composite frontal impact energy absorbing structures. Compos. Struct. 2012, 94, 423–430. [Google Scholar] [CrossRef]
- Costas, M.; Diaz, J.; Romera, L.; Hernandez, S.; Tielas, A. Static and dynamic axial crushing analysis of car frontal impact hybrid absorbers. Int. J. Impact Eng. 2013, 62, 166–181. [Google Scholar] [CrossRef]
- Joshani, M.; Koloor, S.; Abdullah, R. Damage Mechanics Model for Fracture Process of Steel-Concrete Composite Slabs. Appl. Mech. Mater. 2012, 165, 339–345. [Google Scholar] [CrossRef]
- Abdi, B.; Koloor, S.S.R.; Abdullah, M.R.; Amran, A.; Yahya, M.Y. Effect of Strain-Rate on Flexural Behavior of Composite Sandwich Panel. In Applied Mechanics and Materials; Trans Tech Publications Ltd.: Frienbach, Switzerland, 2012; Volume 229–231, pp. 766–770. [Google Scholar]
- Kashyzadeh, K.; Koloor, S.R.; Bidgoli, M.O.; Petrů, M.; Asfarjani, A.A. An Optimum Fatigue Design of Polymer CompositeCompressed Natural Gas Tank Using Hybrid Finite Element-Response Surface Methods. Polymers 2021, 13, 483. [Google Scholar] [CrossRef]
- Bambach, M. Axial capacity and crushing of thin-walled metal, fibre–epoxy and composite metal–fibre tubes. Thin-Walled Struct. 2010, 48, 440–452. [Google Scholar] [CrossRef]
- Wang, X.; Zheng, Z.; Yu, J. Crashworthiness design of density-graded cellular metals. Theor. Appl. Mech. Lett. 2013, 3, 031001. [Google Scholar] [CrossRef]
- Nejad, A.F.; Bin Salim, M.Y.; Koloor, S.S.R.; Petrik, S.; Yahya, M.Y.; Abu Hassan, S.; Shah, M.K.M. Hybrid and Synthetic FRP Composites under Different Strain Rates: A Review. Polymers 2021, 13, 3400. [Google Scholar] [CrossRef]
- Jackson, A.; Dutton, S.; Gunnion, A.; Kelly, D. Investigation into laminate design of open carbon–fibre/epoxy sections by quasi–static and dynamic crushing. Compos. Struct. 2011, 93, 2646–2654. [Google Scholar] [CrossRef]
- Israr, H.; Rivallant, S.; Barrau, J. Experimental investigation on mean crushing stress characterization of carbon–epoxy plies under compressive crushing mode. Compos. Struct. 2013, 96, 357–364. [Google Scholar] [CrossRef]
- Boria, S.; Scattina, A.; Belingardi, G. Axial energy absorption of CFRP truncated cones. Compos. Struct. 2015, 130, 18–28. [Google Scholar] [CrossRef]
- Saba, A.M.; Khan, A.H.; Akhtar, M.N.; Khan, N.A.; Koloor, S.S.R.; Petrů, M.; Radwan, N. Strength and flexural behavior of steel fiber and silica fume incorporated self-compacting concrete. J. Mater. Res. Technol. 2021, 12, 1380–1390. [Google Scholar] [CrossRef]
- Jusoh, M.S.M.; Santulli, C.; Yahya, M.Y.M.; Hussein, N.S.; Ahmad, H.A.I. Effect of stacking sequence on the tensile and flexural properties of glass fibre epoxy composites hybridized with basalt, flax or jute fibres. Mater. Sci. Eng. Adv. Res. 2016, 1, 19–25. [Google Scholar]
- Kim, J.-S.; Yoon, H.-J.; Shin, K.-B. A study on crushing behaviors of composite circular tubes with different reinforcing fibers. Int. J. Impact Eng. 2011, 38, 198–207. [Google Scholar] [CrossRef]
- Ochelski, S.; Gotowicki, P. Experimental assessment of energy absorption capability of carbon-epoxy and glass-epoxy composites. Compos. Struct. 2009, 87, 215–224. [Google Scholar] [CrossRef]
- Yan, L.; Wang, B.; Kasal, B. Can Plant-Based Natural Flax Replace Basalt and E-Glass for Fiber-Reinforced Polymer Tubular Energy Absorbers? A Comparative Study on Quasi-Static Axial Crushing. Front. Mater. 2017, 4, 42. [Google Scholar] [CrossRef]
- Ramakrishna, S. Microstructural design of composite materials for crashworthy structural applications. Mater. Des. 1997, 18, 167–173. [Google Scholar] [CrossRef]
- Hamada, H.; Ramakrishna, S.; Satoh, H. Crushing mechanism of carbon fibre/PEEK composite tubes. Composites 1995, 26, 749–755. [Google Scholar] [CrossRef]
- Hull, D. A unified approach to progressive crushing of fibre-reinforced composite tubes. Compos. Sci. Technol. 1991, 40, 377–421. [Google Scholar] [CrossRef]
- Ismail, A.E. Axial crushing energy absorption capability of steel/kenaf fibre hybrid cylindrical tubes. Int. J. Eng. Technol. 2015, 7, 1098–1104. [Google Scholar]
- Eshkoor, R.; Ude, A.; Oshkovr, S.; Sulong, A.; Zulkifli, R.; Ariffin, A.; Azhari, C. Failure mechanism of woven natural silk/epoxy rectangular composite tubes under axial quasi-static crushing test using trigger mechanism. Int. J. Impact Eng. 2014, 64, 53–61. [Google Scholar] [CrossRef]
- Jiménez, M.; Miravete, A.; Larrodé, E.; Revuelta, D. Effect of trigger geometry on energy absorption in composite profiles. Compos. Struct. 2000, 48, 107–111. [Google Scholar] [CrossRef]
- Feraboli, P.; Wade, B.; Deleo, F.; Rassaian, M. Crush energy absorption of composite channel section specimens. Compos. Part A Appl. Sci. Manuf. 2009, 40, 1248–1256. [Google Scholar] [CrossRef]
- Alkateb, M.; Sapuan, S.; Leman, Z.; Ishak, M.; Jawaid, M. Vertex angles effects in the energy absorption of axially crushed kenaf fibre-epoxy reinforced elliptical composite cones. Def. Technol. 2018, 14, 327–335. [Google Scholar] [CrossRef]
- Kumar, A.P.; Shunmugasundaram, M.; Sivasankar, S.; Sankar, L.P. Static axial crushing response on the energy absorption capability of hybrid Kenaf/Glass fabric cylindrical tubes. Mater. Today Proc. 2020, 27, 783–787. [Google Scholar]
- Farley, G.L. Energy-Absorption Capability of Composite Tubes and Beams; Virginia Polytechnic Institute and State University: Blacksburg, VA, USA, 1989. [Google Scholar]
- Joosten, M.; Dutton, S.; Kelly, D.; Thomson, R. Experimental and numerical investigation of the crushing response of an open section composite energy absorbing element. Compos. Struct. 2011, 93, 682–689. [Google Scholar] [CrossRef]
- Feraboli, P. Development of a Corrugated Test Specimen for Composite Materials Energy Absorption. J. Compos. Mater. 2008, 42, 229–256. [Google Scholar] [CrossRef]
- Yan, L.; Chouw, N.; Jayaraman, K. Flax fibre and its composites—A review. Compos. Part B 2014, 56, 296–317. [Google Scholar] [CrossRef]
- Meredith, J.; Ebsworth, R.; Coles, S.; Wood, B.M.; Kirwan, K. Natural fibre composite energy absorption structures. Compos. Sci. Technol. 2012, 72, 211–217. [Google Scholar] [CrossRef]
- Jusoh, M.S.M.; Israr, H.A.; Yahya, M.Y. Indentation and Low Velocity Impact Properties of Woven E-glass Hybridization with Basalt, Jute and Flax Toughened Epoxy Composites. In Proceedings of the 3rd International Conference on Power Generation systems and Renewable Energy Technologies, IEEE, Johor Bahru, Malaysia, 4–6 April 2017; pp. 164–168. [Google Scholar]
- Wong, K.; Low, K.; Israr, H. Impact resistance of short bamboo fibre reinforced polyester concretes. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2015, 231, 683–692. [Google Scholar] [CrossRef]
- Jusoh, M.S.M.; Yahya, M.Y.M.; Mustafa, Z.; Ahmad, H.A.I. Effect of layering pattern on mechanical and water absorption properties of glass/flax reinforced epoxy. J. Teknol. 2017, 79. [Google Scholar] [CrossRef] [Green Version]
- Muralidhar, B. Tensile and compressive properties of flax-plain weave preform reinforced epoxy composites. J. Reinf. Plast. Compos. 2013, 32, 207–213. [Google Scholar] [CrossRef]
- Palanivelu, S.; VAN Paepegem, W.; Degrieck, J.; Kakogiannis, D.; Van Ackeren, J.; Van Hemelrijck, D.; Wastiels, J.; Vantomme, J. Comparative study of the quasi-static energy absorption of small-scale composite tubes with different geometrical shapes for use in sacrificial cladding structures. Polym. Test. 2010, 29, 381–396. [Google Scholar] [CrossRef]
- Joosten, M.; Hirth, C.; Thomson, R.; Koerber, H. Effect of environmental conditions on the failure mechanisms and energy absorption of open-section crush elements under quasi-static loading. Compos. Struct. 2019, 209, 747–753. [Google Scholar] [CrossRef]
- Ren, Y.; Jiang, H.; Liu, Z. Evaluation of double- and triple-coupled triggering mechanisms to improve crashworthiness of composite tubes. Int. J. Mech. Sci. 2019, 157, 1–12. [Google Scholar] [CrossRef]
- Zhao, X.; Zhu, G.; Zhou, C.; Yu, Q. Crashworthiness analysis and design of composite tapered tubes under multiple load cases. Compos. Struct. 2019, 222, 110920. [Google Scholar] [CrossRef]
- Xiao, X.; McGregor, C.; Vaziri, R.; Poursartip, A. Progress in braided composite tube crush simulation. Int. J. Impact Eng. 2009, 36, 711–719. [Google Scholar] [CrossRef]
- Farley, G.L.; Jones, R.M. Analogy for the Effect of Material and Geometrical Variables on Energy-Absorption Capability of Composite Tubes. J. Compos. Mater. 1992, 26, 78–89. [Google Scholar] [CrossRef]
Materials | Biotex Flax 2 × 2 Twill [34] | E-Glass Plain Weave Fabrics [34] | Polyester [35] |
---|---|---|---|
Arial weight (g/m2) | 200 | 600 | - |
Density (g/cm3) | 1.5 | 2.50 | 1.2 |
Tensile modulus (GPa) | 40–60 | 58–68 | 2–4.5 |
Ultimate tensile strength, (MPa) | 370–630 | 2000–3500 | 40–90 |
Stacking Sequence | Average Thickness (mm) (c.v%) | Average Mass (g) (c.v%) | Volume Fraction Fibre, | Volume Fraction Matrix, | No. of Specimen |
---|---|---|---|---|---|
Intercalation: | |||||
IH-60 | 4.14 (0.29) | 66.32 (1.09) | 0.47 | 0.53 | 4 |
IH-90 | 4.12 (0.28) | 66.21 (1.07) | 0.47 | 0.53 | 4 |
IH-sine | 4.15 (0.3) | 62.55 (0.81) | 0.46 | 0.54 | 4 |
Sandwich-like: | |||||
SH-60-F | 4.14 (0.27) | 59.21 (1.3) | 0.46 | 0.54 | 4 |
SH-60-G | 4.13 (0.29) | 65.3 (0.86) | 0.48 | 0.52 | 4 |
Stacking Sequence | Density (g/cm3) (c.v%) | Peak Load (kN) (c.v%) | Average Crushing Load (kN) (c.v%) |
---|---|---|---|
Intercalation: | |||
IH-60 | 1.44 (1.09) | 36.32 (17.5) | 24.75 (15.5) |
IH-90 | 1.48 (1.07) | 26.93 (6.5) | 18.04 (17.4) |
IH-Sine | 1.39 (0.81) | 25.87 (10.5) | 20.84 (14.9) |
Sandwich like: | |||
SH-60-F | 1.42 (0.86) | 29.06 (8.9) | 16.94 (13.5) |
SH-60-G | 1.37 (1.3) | 29.18 (17.9) | 13.75 (10.6) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Israr, H.A.; Wong, K.J.; Koloor, S.S.R. Experimental Investigation of the Axial Crushing Response of Flax/Glass Eco-Hybrid Self-Supporting Web Composites. Fibers 2022, 10, 72. https://doi.org/10.3390/fib10090072
Israr HA, Wong KJ, Koloor SSR. Experimental Investigation of the Axial Crushing Response of Flax/Glass Eco-Hybrid Self-Supporting Web Composites. Fibers. 2022; 10(9):72. https://doi.org/10.3390/fib10090072
Chicago/Turabian StyleIsrar, Haris Ahmad, King Jye Wong, and Seyed Saeid Rahimian Koloor. 2022. "Experimental Investigation of the Axial Crushing Response of Flax/Glass Eco-Hybrid Self-Supporting Web Composites" Fibers 10, no. 9: 72. https://doi.org/10.3390/fib10090072
APA StyleIsrar, H. A., Wong, K. J., & Koloor, S. S. R. (2022). Experimental Investigation of the Axial Crushing Response of Flax/Glass Eco-Hybrid Self-Supporting Web Composites. Fibers, 10(9), 72. https://doi.org/10.3390/fib10090072