The Exothermic Effects of Textile Fibers during Changes in Environmental Humidity: A Comparison between ISO:16533 and Dynamic Hot Plate Test Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
Test Materials and Physical Properties
2.2. Methods
2.2.1. Dynamic Regain Test
2.2.2. Oven Dry Method
2.2.3. Two-Phase Humidity Change
2.2.4. ISO 16533 Set Up
2.2.5. Dynamic Hot Plate Test
3. Test Results and Analysis
3.1. Oven Dry Method
3.2. Two-Phase Humidity Change
3.3. ISO 16533 Test
3.4. Dynamic Hot Plate Test
3.5. Comparison of ISO 16533 Test, Dynamic Hot Plate Test, and Relationship with Moisture Regain Rate Test
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Das, A.; Alagirusamy, R. Science in Clothing Comfort; Woodhead Publishing Limited: Oxford, UK, 2010. [Google Scholar]
- Haghi, A.K. Heat & Mass Transfer in Textiles, 2nd ed.; WSEAS Press: Athens, Greece, 2011. [Google Scholar]
- Cui, Y.; Gao, S.; Zhang, R.; Cheng, L.; Yu, J. Study on the Moisture Absorption and Thermal Properties of Hygroscopic Exothermic Fibers and Related Interactions with Water Molecules. Polymers 2020, 12, 98. [Google Scholar] [CrossRef]
- Hai-bo, H.U.; Lu, Q.I. The Development and Application of Hygroscopic and Exothermic Fiber. Synth. Fiber China 2010, 3, 13–16. [Google Scholar]
- Gao, S.; Cui, Y.; Yao, W.; Jing, M.; Liu, L.; Zhang, R. Analysis of thermal and wet comfort properties of hygroscopic and exothermic knitted fabrics. Text. Res. J. 2022, 92, 2327–2339. [Google Scholar] [CrossRef]
- Hearle, J.W.; Morton, W.E. Physical Properties of Textile Fibres, 4th ed.; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Wiegerink, J.G. Effects of Drying Conditions on Properties of Textile Yarns. Text. Res. 1940, 10, 493–509. [Google Scholar]
- Darling, R.C.; Belding, H.S. Moisture Adsorption of Textile Yarns at Low Temperatures. Ind. Eng. Chem. 1946, 38, 524–529. [Google Scholar] [CrossRef]
- King, G. Permeability of keratin membranes to water vapour. Trans. Faraday Soc. 1945, 41, 479–487. [Google Scholar] [CrossRef]
- Li, Y.; Luo, Z.X. Physical Mechanisms of Moisture Diffusion into Hygroscopic Fabrics during Humidity Transients. J. Text. Inst. 2000, 91, 302–316. [Google Scholar] [CrossRef]
- Mackay, B.H.; Downes, J.G. 27—The kinetics of water-vapour sorption in wool: Part II: Results obtained with an improved sorption vibroscope. J. Text. Inst. 1969, 60, 378–394. [Google Scholar] [CrossRef]
- Berglund, L.G.; Gonzalez, R.R. Evaporation of sweat from sedentary man in humid environments. J. Appl. Physiol. 1977, 42, 767–772. [Google Scholar]
- Davis, J.-K.; Bishop, P.A. Impact of Clothing on Exercise in the Heat. Sports Med. 2013, 43, 695–706. [Google Scholar] [CrossRef]
- Pascoe, D.D.; Bellingar, T.A.; McCluskey, B.S. Clothing and exercise. II. Influence of clothing during exercise/work in environmental extremes. Sport. Med. 1994, 18, 94–108. [Google Scholar] [CrossRef] [PubMed]
- Barker, R. Evaluating the heat stress and comfort of firefighter and emergency responder protective clothing. In Improving Comfort in Clothing; Elsevier: Sawston, UK, 2011; pp. 305–319. [Google Scholar]
- Barker, R.L. From fabric hand to thermal comfort: The evolving role of objective measurements in explaining human comfort response to textiles. Int. J. Cloth. Sci. Technol. 2002, 14, 181–200. [Google Scholar] [CrossRef]
- Huang, J. Sweating guarded hot plate test method. Polym. Test. 2006, 25, 709–716. [Google Scholar] [CrossRef]
- Huang, J. Review of heat and water vapor transfer through multilayer fabrics. Text. Res. J. 2016, 86, 325–336. [Google Scholar] [CrossRef]
- Kaplan, S.; Okur, A. A new dynamic sweating hotplate system for steady-state and dynamic thermal comfort measurements. Meas. Sci. Technol. 2010, 21, 085701. [Google Scholar] [CrossRef]
- Kim, E.A.; Yoo, S.; Kim, J. Development of a Human-Clothing-Environment simulator for dynamic heat and moisture transfer properties of fabrics. Fibers Polym. 2003, 4, 215–221. [Google Scholar] [CrossRef]
- Naylor, G.R. Measurement of the dynamic moisture buffering potential of fabrics. Text. Res. J. 2019, 89, 739–747. [Google Scholar] [CrossRef]
- ISO 16533:2014; Textiles–Measurement of Exothermic and Endothermic Properties of Textiles under Humidity Change. ISO: London, UK, 2014.
- Naylor, G.R.; Wilson, C.; Laing, R.M. Thermal and water vapor transport properties of selected lofty nonwoven products. Text. Res. J. 2017, 87, 1413–1424. [Google Scholar] [CrossRef]
- Cooke, B. 2-The physical properties of weft knitted structures. In Advances in Knitting Technology; Au, K.F., Ed.; Woodhead Publishing: Sawston, UK, 2011; pp. 37–47. [Google Scholar] [CrossRef]
- Gao, H.; Deaton, A.S.; Barker, R. A new test method for evaluating the evaporative cooling efficiency of fabrics using a dynamic sweating hot plate. Meas. Sci. Technol. 2022, 33, 125601. [Google Scholar] [CrossRef]
- Das, B.; Das, A.; Kothari, V.K.; Fanguiero, R.; De Araújo, M. Effect of fibre diameter and cross-sectional shape on moisture transmission through fabrics. Fibers Polym. 2008, 9, 225–231. [Google Scholar] [CrossRef]
- Jiang, X.; Bai, Y.; Chen, X.; Liu, W. A review on raw materials, commercial production and properties of lyocell fiber. J. Bioresour. Bioprod. 2020, 5, 16–25. [Google Scholar] [CrossRef]
Sl. No. | Sample ID | Fabric Composition | Fabric Structure | Weight (g/m2) | Thickness (mm) |
---|---|---|---|---|---|
1 | Wool | 100% Merino Wool | Jersey Knit | 213 | 0.69 |
3 | Cotton | 100% Cotton | Jersey Knit | 188 | 0.65 |
4 | Polyester | 100% Polyester | Rib Knit | 199 | 0.69 |
5 | Viscose | 100% Viscose | Jersey Knit | 204 | 0.67 |
Parameter | Experiment 1 | Experiment 2 | Experiment 3 |
---|---|---|---|
Sensor Size | Large Temperature–RH sensor (Within the ISO Standard range) | Small Temperature Sensor (Within the ISO Standard range) | Small Temperature sensor (Within the ISO Standard range) |
Fold procedure | Same fold as ISO | Same fold as ISO | Both fabrics from Exp 1 and 2 are used and clipped. |
Fiber Comparison | Difference | p-Value |
---|---|---|
Viscose > Polyester | 5.9 | <0.0001 |
Wool > Polyester | 5.6 | <0.0001 |
Cotton > Polyester | 4.8 | <0.0001 |
Viscose > Cotton | 1.0 | <0.0001 |
Wool > Cotton | 0.83 | 0.0004 |
Viscose > Wool | 0.23 | 0.2705 |
Fiber Comparison | Difference | p-Value |
---|---|---|
Viscose > Polyester | 6.2 | <0.0001 |
Wool > Polyester | 5.9 | <0.0001 |
Cotton > Polyester | 5.3 | <0.0001 |
Viscose > Cotton | 0.88 | 0.0193 |
Wool > Cotton | 0.65 | 0.0797 |
Viscose > Wool | 0.23 | 0.7436 |
Fiber Comparison | Difference | p-Value |
---|---|---|
Viscose > Polyester | 6.9 | <0.0001 |
Wool > Polyester | 6.8 | <0.0001 |
Cotton > Polyester | 6.3 | <0.0001 |
Viscose > Cotton | 0.54 | <0.0001 |
Wool > Cotton | 0.48 | <0.0001 |
Viscose > Wool | 0.06 | 0.0975 |
Sample ID | Average Heat Release (J/m2) | Standard Error |
---|---|---|
Wool | 12,050 | 973 |
Cotton | 5686 | 1666 |
Viscose | 10,447 | 364 |
Polyester | 5541 | 2408 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abedin, F.; DenHartog, E. The Exothermic Effects of Textile Fibers during Changes in Environmental Humidity: A Comparison between ISO:16533 and Dynamic Hot Plate Test Method. Fibers 2023, 11, 47. https://doi.org/10.3390/fib11050047
Abedin F, DenHartog E. The Exothermic Effects of Textile Fibers during Changes in Environmental Humidity: A Comparison between ISO:16533 and Dynamic Hot Plate Test Method. Fibers. 2023; 11(5):47. https://doi.org/10.3390/fib11050047
Chicago/Turabian StyleAbedin, Faisal, and Emiel DenHartog. 2023. "The Exothermic Effects of Textile Fibers during Changes in Environmental Humidity: A Comparison between ISO:16533 and Dynamic Hot Plate Test Method" Fibers 11, no. 5: 47. https://doi.org/10.3390/fib11050047
APA StyleAbedin, F., & DenHartog, E. (2023). The Exothermic Effects of Textile Fibers during Changes in Environmental Humidity: A Comparison between ISO:16533 and Dynamic Hot Plate Test Method. Fibers, 11(5), 47. https://doi.org/10.3390/fib11050047