Non-Circular Cross-Section Fibres for Composite Reinforcement—A Review with a Focus on Flat Glass Fibres
Abstract
:1. Introduction
2. Early NCCS Fibre Investigations
2.1. Ribbons
2.2. NASA Funded Research
- Low bulk density, permeability, dielectric constant and matrix content;
- High stiffness- and strength-to-weight rations and high transparency;
- Anisotropic properties to meet specific design requirements.
2.3. Other Fibre Cross-Section Shapes
2.4. Modelling Multiple Cross-Section Shapes
3. Industrial Development of NCCS Glass Fibre Products
4. Performance of Composites Containing Commercial NCCS Flat Glass Fibres
5. Conclusions
6. Future Perspectives
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zu, Q.; Solvang, M.; Li, H. Commercial Glass Fibers. In Fiberglass Science and Technology Chemistry, Characterization, Processing, Modeling, Application, and Sustainability; Li, H., Ed.; Springer International Publishing: Cham, Switzerland, 2021. [Google Scholar]
- Nittobo Flat Fibers Center. Available online: https://polymer-additives.specialchem.com/centers/nittobo-flat-glass-fibers (accessed on 13 September 2024).
- Moore, S. Flat Glass Fiber Developed for Reinforcement of Thermoplastic Resins. Available online: https://www.plasticstoday.com/materials/flat-glass-fiber-developed-for-reinforcement-of-thermoplastic-resins (accessed on 13 September 2024).
- CPIC Develops Family of Unique Fiberglass Products. Available online: https://www.compositesworld.com/news/cpic-develops-family-of-unique-fiberglass-products (accessed on 13 September 2024).
- Ennis, B.L.; Perez, H.S.; Norris, R.E. Identification of the optimal carbon fiber shape for cost-specific compressive performance. Mater. Today Commun. 2022, 33, 104298. [Google Scholar] [CrossRef]
- Thomason, J.; Carruthers, J.; Kelly, J.; Johnson, G. Fibre cross-section determination and variability in sisal and flax and its effects on fibre performance characterisation. Compos. Sci. Technol. 2011, 71, 1008–1015. [Google Scholar] [CrossRef]
- Thomason, J.L.; Carruthers, J. Natural fibre cross sectional area, its variability and effects on the determination of fibre properties. J. Biobased Mater. Bioenergy 2012, 6, 424–430. [Google Scholar] [CrossRef]
- Halpin, J.C.; Thomas, R.L. Ribbon Reinforcement of Composites. J. Compos. Mater. 1968, 2, 488–497. [Google Scholar] [CrossRef]
- Lim, T.C. Simplified Transverse Young’s Modulus of Aligned Ribbon-Reinforced Composites by the Mechanics-of-Materials Approach. J. Reinf. Plast. Compos. 2003, 22, 257–269. [Google Scholar] [CrossRef]
- Brydges, W.T.; Gulati, S.T.; Baum, G. Permeability of glass ribbon-reinforced composites. J. Mater. Sci. 1975, 10, 2044–2049. [Google Scholar] [CrossRef]
- Gulati, S.T. Longitudinal and transverse strength of glass ribbon for plastic reinforcement. J. Mater. Sci. 1976, 11, 631–637. [Google Scholar] [CrossRef]
- Li, J.; Weng, G. Effective creep behavior and complex moduli of fiber- and ribbon-reinforced polymer-matrix composites. Compos. Sci. Technol. 1994, 52, 615–629. [Google Scholar] [CrossRef]
- Li, J.; Weng, G.J. Stress-strain relations of a viscoelastic composite reinforced with elliptic cylinders. J. Thermoplast. Compos. Mater. 1997, 10, 19–30. [Google Scholar] [CrossRef]
- Rexer, J.; Anderson, E. Composites with planar reinforcements (flakes, ribbons)—A review. Polym. Eng. Sci. 1979, 19, 1–11. [Google Scholar] [CrossRef]
- Rosen, B.W.; Dow, N.F.; Hashin, Z. Mechanical Properties of Composites. NASA CR-31. April 1964. Available online: https://apps.dtic.mil/sti/tr/pdf/ADA308219.pdf (accessed on 16 August 2024).
- Eakins, W.J.; Humphrey, R.A. Studies of Hollow Multipartioned Ceramic Structures. NASA CR-142. December 1964. Available online: https://ntrs.nasa.gov/citations/19650003209 (accessed on 18 August 2024).
- Humphrey, R.A. Feasibility Study on Hexagonal Glass Filaments. Final Report Office of Naval Research Contract Nonr-3885(00)(X) June 1963. Available online: https://apps.dtic.mil/sti/citations/AD0407554 (accessed on 18 August 2024).
- Humphrey, R.A. Precision Winding of Cylindrical Composites with Shaped Glass Filaments. NASA CR-517. August 1966. Available online: https://ntrs.nasa.gov/citations/19660023668 (accessed on 18 August 2024).
- Humphrey, R.A. Preparation of Filament Wound Glass Microtape Research Specimens. NASA CR-72459. July 1968. Available online: https://ntrs.nasa.gov/citations/19680026243 (accessed on 18 August 2024).
- Humphrey, R.A. Shaped Glass Fibers. In Modern Composite Materials; Broutman, L.J., Krock, P.R., Eds.; Addison-Wesley: Boston, MA, USA, 1967. [Google Scholar]
- Dow, N.F. Enhancement of the Transverse Properties of Fibrous Composites. CR-78307. February 1966. Available online: https://www.fid-move.de/en/search/id/ntis:9389d3553630d4e8b4372aa2efdc2632dfcf4807/Enhancement-of-the-Transverse-Properties-of-Fibrous?cHash=a533301bc9e00074eb90c05768fac9d8 (accessed on 18 August 2024).
- Bond, I.; Hucker, M.; Weaver, P.; Bleay, S.; Haq, S. Mechanical behaviour of circular and triangular glass fibres and their composites. Compos. Sci. Technol. 2002, 62, 1051–1061. [Google Scholar] [CrossRef]
- Robati, H.; Attar, M.M. Analytical study of a pin-loaded hole in unidirectional laminated composites with triangular and circular fibers. J. Appl. Mech. 2013, 80, 021018–210187. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, R.; Wu, Z.; Liu, W. The effect of triangle-shape carbon fiber on the flexural properties of the carbon fiber reinforced plastics. Mater. Lett. 2012, 73, 21–23. [Google Scholar] [CrossRef]
- Yang, L.; Liu, X.; Wu, Z.; Wang, R. Effects of triangle-shape fiber on the transverse mechanical properties of unidirectional carbon fiber reinforced plastics. Compos. Struct. 2016, 152, 617–625. [Google Scholar] [CrossRef]
- Gallucci, R.; Naar, R.; Liu, H.I.; Mordecai, W.; Yates, J.; Huey, L.; Schweizer, R. Reducing warp in thermoplastics with bilobe glass fibers. Plast. Eng. 1993, 49, 23–25. [Google Scholar]
- Huey, L.J. Method and Apparatus for Making Tapered Mineral and Organic Fibers. U.S. Patent 4,666,485, 19 May 1987. [Google Scholar]
- Huey, L.J.; Beuther, P.D. Method and Apparatus for Making Non-Circular Mineral Fibers. U.S. Patent 4,636,234, 13 January 1987. [Google Scholar]
- Harris, J.; Bond, I.; Weaver, P.; Wisnom, M.R. Improving through-thickness properties of fibre reinforced plastics using novel shaped fibres. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2004, 218, 29–35. [Google Scholar] [CrossRef]
- Harris, J.; Bond, I.; Weaver, P.; Wisnom, M.; Rezai, A. Measuring strain energy release rate (GIc) in novel fibre shape composites. Compos. Sci. Technol. 2006, 66, 1239–1247. [Google Scholar] [CrossRef]
- Agnese, F.; Scarpa, F. Damping properties of star-shaped biphase macro-composites. January 2012. Available online: https://www.academia.edu/download/42580807/Macro_composites_with_non-classical_Incl20160211-12036-17wypoi.pdf (accessed on 17 March 2024).
- Agnese, F.; Scarpa, F. Macro composites with non-classical inclusions for vibration damping in wind turbine. In Active and Passive Smart Structures and Integrated Systems; SPIE: Cergy Pontoise, France, 2012; Volume 8341, pp. 94–104. [Google Scholar]
- Agnese, F.; Scarpa, F. Macro-composites with star-shaped inclusions for vibration damping in wind turbine blades. Compos. Struct. 2014, 108, 978–986. [Google Scholar] [CrossRef]
- Yang, L.; Li, Z.; Sun, T.; Wu, Z. Effects of gear-shape fibre on the transverse mechanical properties of unidirectional composites: Virtual material design by computational micromechanics. Appl. Compos. Mater. 2017, 24, 1165–1178. [Google Scholar] [CrossRef]
- Reichanadter, A.; Mansson, J.A. Extending the Gutowski model to kidney-bean and elliptically shaped fibers. J. Compos. Mater. 2022, 56, 1313–1318. [Google Scholar] [CrossRef]
- Reichanadter, A.; Mansson, J.-A.E. Permeability simulation of kidney-bean shaped carbon fibers. Mater. Today Commun. 2022, 31, 103385. [Google Scholar] [CrossRef]
- Hanhan, I.; Sangid, M.D. Design of Low Cost Carbon Fiber Composites via Examining the Micromechanical Stress Distributions in A42 Bean-Shaped versus T650 Circular Fibers. J. Compos. Sci. 2021, 5, 294. [Google Scholar] [CrossRef]
- Xu, Z.; Li, J.; Wu, X.; Huang, Y.; Chen, L.; Zhang, G. Effect of kidney-type and circular cross sections on carbon fiber surface and composite interface. Compos. Part A Appl. Sci. Manuf. 2008, 39, 301–307. [Google Scholar] [CrossRef]
- Xu, Z.; Huang, Y.; Liu, L.; Zhang, C.; Long, J.; He, J.; Shao, L. Surface characteristics of kidney and circular section carbon fibers and mechanical behavior of composites. Mater. Chem. Phys. 2007, 106, 16–21. [Google Scholar] [CrossRef]
- Clarke, R.J.; Miller, D.A.; Cairns, D.S. Effect of fiber shape on defect sensitivity of fiber kinking for pultruded carbon fiber composites. In Proceedings of the International SAMPE Technical Conference, Virtual Event, 29 June–1 July 2021; pp. 1211–1222. [Google Scholar]
- Kitagawa, Y.; Yoshimura, A.; Arai, M.; Goto, K.; Sugiura, N. Experimental and numerical evaluation of effects of kidney-shape carbon fiber on transverse cracking of carbon fiber reinforced plastics. Compos. Part A Appl. Sci. Manuf. 2022, 152, 106690. [Google Scholar] [CrossRef]
- Higuchi, R.; Yokozeki, T.; Nagashima, T.; Aoki, T. Evaluation of mechanical properties of noncircular carbon fiber reinforced plastics by using XFEM-based computational micromechanics. Compos. Part A Appl. Sci. Manuf. 2019, 126. [Google Scholar] [CrossRef]
- Camarena, E.; Clarke, R.J.; Ennis, B.L. Compressive strength improvements from noncircular carbon fibers: A numerical study. Compos. Sci. Technol. 2023, 242, 110168. [Google Scholar] [CrossRef]
- Wang, M.; Hang, X. Effects of microstructure characteristics on the transverse moisture diffusivity of unidirectional composite. Sci. Eng. Compos. Mater. 2023, 30, 20220201. [Google Scholar] [CrossRef]
- He, C.; Ge, J.; Cao, X.; Chen, Y.; Chen, H.; Fang, D. The effects of fiber radius and fiber shape deviations and of matrix void content on the strengths and failure mechanisms of UD composites by computational micromechanics. Compos. Sci. Technol. 2021, 218, 109139. [Google Scholar] [CrossRef]
- Wallenberger, F.T.; Watson, J.C.; Li, H. Glass fibers. In Composites, ASM Handbook; Miracle, D.B., Donaldson, S.L., Eds.; ASM International: Novelty, OH, USA, 2001; Volume 21. [Google Scholar]
- Thomason, J.L. Glass Fibre Sizing: A Review of Size Formulation Patents. Blurb Incorporated 2015. Available online: http://www.blurb.co.uk/b/6244662-glass-fibre-sizing (accessed on 12 September 2024).
- Thomason, J.L. Glass fibre sizing: A review. Compos. Part A Appl. Sci. Manuf. 2019, 127, 105619. [Google Scholar] [CrossRef]
- Chouffart, Q.; Simon, P.; Terrapon, V.E. Numerical and experimental study of the glass flow and heat transfer in the continuous glass fiber drawing process. J. Mech. Work. Technol. 2016, 231, 75–88. [Google Scholar] [CrossRef]
- Chouffart, Q. Experimental and Numerical Investigation of the Continuous Glass Fiber Drawing Process. Ph.D. Thesis, University of Liege, Liege, Belgium, 2018. [Google Scholar]
- Thomason, J.; Nagel, U.; Yang, L.; Sáez, E. Regenerating the strength of thermally recycled glass fibres using hot sodium hydroxide. Compos. Part A Appl. Sci. Manuf. 2016, 87, 220–227. [Google Scholar] [CrossRef]
- Yue, Y.; Zheng, Q. Fiber spinnability of glass melts. Int. J. Appl. Glass Sci. 2017, 8, 37–47. [Google Scholar] [CrossRef]
- Kraxner, J.; Liška, M.; Klement, R.; Chromčíková, M. Surface tension of borosilicate melts with the composition close to the E-glass. Ceram. Silik. 2009, 53, 141–143. [Google Scholar]
- Jensen, T.H. A Novel Fiber-Forming Bushing and Tip Plate. U.S. Patent 4,941,903, 17 July 1990. [Google Scholar]
- Jensen, T.H. Method and Apparatus for Forming Round Glass Fibers. U.S. Patent 5,062,876, 5 November 1991. [Google Scholar]
- Warthen, W.P. Attenuated Mineral Filaments. U.S. Patent 3,231,459, 25 January 1966. [Google Scholar]
- Russell, R.G. Method and Apparatus for Forming Fibers. U.S. Patent 4,144,044, 13 March 1979. [Google Scholar]
- Huang, J. Method of Making Shaped Fibers. U.S. Patent 5,776,223, 7 July 1998. [Google Scholar]
- Wright, R.F.; Boudreaux, E. Polymer/Bi-Lobal Fiber Composites Having Improved Strength. U.S. Patent 5,250,603, 5 October 1993. [Google Scholar]
- Nittobo Company History. Available online: https://www.nittobo.co.jp/eng/corporate/ataglance/100th.htm (accessed on 13 September 2024).
- Shioura, K.; Yamazaki, S.; Shono, H. Method for Producing Glass Fibers Having Non-Circular Cross Sections. U.S. Patent 4,698,083, 6 October 1987. [Google Scholar]
- JEC Press Release 2 March 2011. Available online: https://pieweb.plasteurope.com/members/pdf/p218820c.PDF (accessed on 14 September 2024).
- Imaizumi, H.; Yamanaka, Y.; Morimoto, K. Fiber-Reinforced Thermoplastic Resin Molded Article. U.S. Patent 7,858,172, 28 December 2010. [Google Scholar]
- Taguchi, H.; Shioura, K.; Sugeno, M. Nozzle tip For Spinning Glass Fiber Having Deformed Cross-Section and a Plurality of Projections. U.S. Patent 5,462,571, 31 October 1995. [Google Scholar]
- Konno, M.; Miura, Y.; Saito, S.; Kasai, S. Glass Fiber Nonwoven Fabric and Printed Wiring Board. U.S. Patent 6,543,258, 8 April 2003. [Google Scholar]
- Deng, S.; Ye, L.; Mai, Y.-W. Influence of fibre cross-sectional aspect ratio on mechanical properties of glass fibre/epoxy composites I. Tensile and flexure behaviour. Compos. Sci. Technol. 1999, 59, 1331–1339. [Google Scholar] [CrossRef]
- Deng, S.; Ye, L.; Mai, Y.-W. Influence of fibre cross-sectional aspect ratio on mechanical properties of glass-fibre/epoxy composites II. Interlaminar fracture and impact behaviour. Compos. Sci. Technol. 1999, 59, 1725–1734. [Google Scholar] [CrossRef]
- Koike, R.; Shioura, K.; Shimanuki, S. Glass-Fiber Reinforced Resin Molded Articles and a Method for Producing the Same. E.P. 0246620, 19 May 1987. [Google Scholar]
- Stöppelmann, G.; Rexin, O.; Eichhorn, V. Polyamide Moulding Materials Reinforced with Flat Glass Fibers and Articles Injec-Tion-Moulded Therefrom. E.P. 1942147, 28 December 2006. [Google Scholar]
- Harder, P.; Jeltsch, T.; Lamberts, N. High-Temperature Polyamide Molding Compounds Reinforced with Flat Glass Fibers. U.S. Patent 8,324,307, 4 December 2012. [Google Scholar]
- Thomason, J. The influence of fibre properties of the performance of glass-fibre-reinforced polyamide 6,6. Compos. Sci. Technol. 1999, 59, 2315–2328. [Google Scholar] [CrossRef]
- Thomason, J.L. Structure–property relationships in glass reinforced polyamide, part 2: The effects of average fiber diameter and diameter distribution. Polym. Compos. 2007, 28, 331–343. [Google Scholar] [CrossRef]
- Tanaka, K.; Katayama, T.; Tanaka, T.; Anguri, A. Injection Molding of Flat Glass Fiber Reinforced Thermoplastics. Int. J. Mod. Phys. B 2010, 24, 2555–2560. [Google Scholar] [CrossRef]
- Heo, K.Y.; Park, S.M.; Lee, E.S.; Kim, M.S.; Sim, J.H.; Bae, J.S. A study on properties of the glass fiber reinforced PPS composites for automotive headlight source module. Compos. Res. 2016, 29, 293–298. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, E.S.; Kim, M.S.; Sim, J.H. Mechanical characteristics of gf/recycled PET thermoplastic composites with chopped fiber according to cross section. Text. Color. Finish. 2017, 29, 239–246. [Google Scholar]
- Sim, J.-H.; Yu, S.-H.; Yoon, H.-S.; Kwon, D.-J.; Lee, D.-H.; Bae, J.-S. Characteristic evaluation and finite element analysis of glass fiber/recycled polyester thermoplastic composites by cross-sectional shape of glass fiber. Compos. Part B Eng. 2021, 223, 109095. [Google Scholar] [CrossRef]
- Kim, T.Y. Polyamide Formulations Comprising Semi-Crystalline Copolyamide and Flat Glass Fibers. U.S. Patent 11,555,117, 17 January 2023. [Google Scholar]
- Robert, G.; Kim, T.Y.; Wang, W.; Speroni, F. Polyamide Composition Containing Flat Glass Fibres with Improved Fatigue Resistance. U.S. Patent 11,920,034, 5 March 2024. [Google Scholar]
- Bürenhaus, F.; Moritzer, E. Influence of fiber geometry and sizing on glass fiber breakage. In AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2023; Volume 2607. [Google Scholar]
- Nittobo Flat Fibers Centre. Available online: https://polymer-additives.specialchem.com/centers/nittobo-flat-glass-fibers/main-features (accessed on 14 September 2024).
- Sherman, L.S. Novel ‘Flat’ Fiberglass Enhances Injection Molded TP Composites. Available online: https://www.ptonline.com/articles/novel-flat-fiberglass-enhances-injection-molded-tp-composites (accessed on 14 September 2024).
- Mapleston, P. Reinforcing Options for Compounders. Compounding World, October 2018; pp. 77–84. Available online: https://content.yudu.com/web/1rl19/0A1rl2p/CWOct18/html/index.html?page=78&origin=reader (accessed on 15 September 2024).
- Nukui, Y.; Sasamoto, T. Glass-Fiber-Reinforced Resin Plate. U.S. Patent Application 2023/0118488, 20 April 2023. [Google Scholar]
- Carlin, A.; Yang, L.; Thomason, J.L. An investigation into flat glass fibres for injection moulded polyamide 6,6 composites. Paper 193. In Proceedings of the 23rd International Conference on Composite Materials, Belfast, UK, 30 July–4 August 2023. [Google Scholar]
- Thomason, J. The influence of fibre cross section shape and fibre surface roughness on composite micromechanics. Micro 2023, 3, 353–368. [Google Scholar] [CrossRef]
- Thomason, J.L. Flat glass fibres: The influence of fibre cross section shape on composite micromechanics and composite strength. Compos. Part A Appl. Sci. Manuf. 2023, 169, 107503. [Google Scholar] [CrossRef]
- Bregar, B. Flat Fiberglass Offers Higher Loading and Lower Warpage in Thin-Wall Parts. Available online: https://www.plasticsnews.com/article/20180221/NEWS/180229979 (accessed on 1 November 2024).
Using ribbon glass fibres in UD composites |
Increased in-plane transverse stiffness [8,9] |
Improved creep resistance [12] |
Fluid permeability reduction [10,14] |
Increased modulus and strength [14,18,20] |
Very high glass volume fractions are possible [14,18] |
Using experimental fibre cross-section shapes in UD Composites |
Elliptical fibres gave higher transverse stiffness [15] |
Triangular fibres gave higher transverse stiffness [21] |
Triangular fibres gave higher compressive and tensile strength [22] |
Triangular fibres gave higher flexural strength and modulus [24] |
Lobular fibres improved vibration damping [31,32,33] |
Lobular fibres gave higher transverse modulus and strength [34] |
Using commercial flat glass fibres in injection-moulded thermoplastic composites |
Higher mechanical properties, especially at higher fibre content [68,69,70,71,72,74,75,76,77,84] |
LFT-PP Improved impact [73] |
Improved fatigue performance obtained in GF-PA [78] |
Significant warpage reduction [2,27,28,80,81,82,87] |
Lower interface stress leading to higher composite strength [85,86] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thomason, J.; Carlin, A.; Yang, L. Non-Circular Cross-Section Fibres for Composite Reinforcement—A Review with a Focus on Flat Glass Fibres. Fibers 2024, 12, 98. https://doi.org/10.3390/fib12110098
Thomason J, Carlin A, Yang L. Non-Circular Cross-Section Fibres for Composite Reinforcement—A Review with a Focus on Flat Glass Fibres. Fibers. 2024; 12(11):98. https://doi.org/10.3390/fib12110098
Chicago/Turabian StyleThomason, James, Andrew Carlin, and Liu Yang. 2024. "Non-Circular Cross-Section Fibres for Composite Reinforcement—A Review with a Focus on Flat Glass Fibres" Fibers 12, no. 11: 98. https://doi.org/10.3390/fib12110098
APA StyleThomason, J., Carlin, A., & Yang, L. (2024). Non-Circular Cross-Section Fibres for Composite Reinforcement—A Review with a Focus on Flat Glass Fibres. Fibers, 12(11), 98. https://doi.org/10.3390/fib12110098