Waste Bombyx Mori Silk Textiles as Efficient and Reuseable Bio-Adsorbents for Methylene Blue Dye Removal and Oil–Water Separation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Hollow Silk Particle Synthesis and Fabric Treatment
2.3. Electrospinning Silk Nanofiber Mats
2.4. Dye Adsorption Studies and Reuse Studies
2.5. Oil Adsorbent and Reuse Studies
2.6. Characterization of Hollow Silk Particles and Treated and Pristine Fabrics
3. Results
3.1. Conformational Analysis of Silk Textiles from FTIR Spectra
3.2. Dye Adsorption Studies of Pristine and Treated Silk Textiles
3.3. Adsorption Kinetics, Equilibrium Isotherms, and Reusability Studies of PWY
3.4. Oil–Water Separation by Pristine and Treated Silk Textiles
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rafatullah, M.; Sulaiman, O.; Hashim, R.; Ahmad, A. Adsorption of Methylene Blue on Low-Cost Adsorbents: A Review. J. Hazard. Mater. 2010, 177, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Cláudio Barros, F. Removal of petroleum spill in water by chitin and chitosan. Orbital-Electron. J. Chem. 2014, 39. [Google Scholar] [CrossRef]
- Xiang, B.; Sun, Q.; Zhong, Q.; Mu, P.; Li, J. Current Research Situation and Future Prospect of Superwetting Smart Oil/Water Separation Materials. J. Mater. Chem. A Mater. 2022, 10, 20190–20217. [Google Scholar] [CrossRef]
- Gore, P.M.; Naebe, M.; Wang, X.; Kandasubramanian, B. Progress in Silk Materials for Integrated Water Treatments: Fabrication, Modification and Applications. Chem. Eng. J. 2019, 374, 437–470. [Google Scholar] [CrossRef]
- Belda Marín, C.; Egles, C.; Landoulsi, J.; Guénin, E. Silk Bionanocomposites for Organic Dye Absorption and Degradation. Appl. Sci. 2022, 12, 9152. [Google Scholar] [CrossRef]
- Rastogi, S.; Kandasubramanian, B. Progressive Trends in Heavy Metal Ions and Dyes Adsorption Using Silk Fibroin Composites. Environ. Sci. Pollut. Res. 2020, 27, 210–237. [Google Scholar] [CrossRef]
- Gupta, S.; Kandasubramanian, B. Silk Adsorbent for Green and Efficient Removal of Methylene Blue from Wastewater. Environ. Sci. Pollut. Res. 2024, 1–16. [Google Scholar] [CrossRef]
- Martis, L.J.; Parushuram, N.; Sangappa, Y. Preparation, Characterization, and Methylene Blue Dye Adsorption Study of Silk Fibroin–Graphene Oxide Nanocomposites. Environ. Sci. Adv. 2022, 1, 285–296. [Google Scholar] [CrossRef]
- Roberts, A.D.; Lee, J.S.M.; Magaz, A.; Smith, M.W.; Dennis, M.; Scrutton, N.S.; Blaker, J.J. Hierarchically Porous Silk/Activated-Carbon Composite Fibres for Adsorption and Repellence of Volatile Organic Compounds. Molecules 2020, 25, 1207. [Google Scholar] [CrossRef]
- Song, P.; Zhang, D.Y.; Yao, X.H.; Feng, F.; Wu, G.H. Preparation of a Regenerated Silk Fibroin Film and Its Adsorbability to Azo Dyes. Int. J. Biol. Macromol. 2017, 102, 1066–1072. [Google Scholar] [CrossRef]
- Mehdi, M.; Jiang, W.; Zeng, Q.; Thebo, K.H.; Kim, I.S.; Khatri, Z.; Wang, H.; Hu, J.; Zhang, K.Q. Regenerated Silk Nanofibers for Robust and Cyclic Adsorption-Desorption on Anionic Dyes. Langmuir 2022, 38, 6376–6386. [Google Scholar] [CrossRef] [PubMed]
- Shulha, H.; Po Foo, C.W.; Kaplan, D.L.; Tsukruk, V.V. Unfolding the Multi-Length Scale Domain Structure of Silk Fibroin Protein. Polymer 2006, 47, 5821–5830. [Google Scholar] [CrossRef]
- Belbéoch, C.; Lejeune, J.; Vroman, P.; Salaün, F. Silkworm and Spider Silk Electrospinning: A Review. Environ. Chem. Lett. 2021, 19, 1737–1763. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.P.; Nguyen, Q.V.; Nguyen, V.H.; Le, T.H.; Huynh, V.Q.N.; Vo, D.V.N.; Trinh, Q.T.; Kim, S.Y.; Van Le, Q. Silk Fibroin-Based Biomaterials for Biomedical Applications: A Review. Polymers 2019, 11, 1933. [Google Scholar] [CrossRef]
- Qi, Y.; Wang, H.; Wei, K.; Yang, Y.; Zheng, R.Y.; Kim, I.S.; Zhang, K.Q. A Review of Structure Construction of Silk Fibroin Biomaterials from Single Structures to Multi-Level Structures. Int. J. Mol. Sci. 2017, 18, 237. [Google Scholar] [CrossRef]
- Wandrekar, S.D. An Unstable Lattice in Silk Fibroin. Nature 1938, 165, 319–320. [Google Scholar]
- Sashina, E.S.; Bochek, A.M.; Novoselov, N.P.; Kirichenko, D.A. Structure and Solubility of Natural Silk Fibroin. Russ. J. Appl. Chem. 2006, 79, 869–876. [Google Scholar] [CrossRef]
- Valluzzi, R.; Gido, S.P.; Zhang, W.; Muller, W.S.; Kaplan, D.L. Trigonal Crystal Structure of Bombyx Mori Silk Incorporating a Threefold Helical Chain Conformation Found at the Air-Water Interface. Macromolecules 1996, 29, 8606–8614. [Google Scholar] [CrossRef]
- Hu, X.; Kaplan, D.; Cebe, P. Determining Beta-Sheet Crystallinity in Fibrous Proteins by Thermal Analysis and Infrared Spectroscopy. Macromolecules 2006, 39, 6161–6170. [Google Scholar] [CrossRef]
- Tretinnikov, O.N.; Tamada, Y. Influence of Casting Temperature on the Near-Surface Structure and Wettability of Cast Silk Fibroin Films. Langmuir 2001, 17, 7406–7413. [Google Scholar] [CrossRef]
- Zhang, X.; Pan, Z. Microstructure Transitions and Dry-Wet Spinnability of Silk Fibroin Protein from Waste Silk Quilt. Polymers 2019, 11, 1622. [Google Scholar] [CrossRef] [PubMed]
- Mukerjee, P.; Kumar Ghosh, A. Thermodynamic Aspects of the Self-Association and Hydrophobic Bonding of Methylene Blue. A Model System for Stacking Interactions. J. Am. Chem. Soc. 1963, 92, 6419–6424. [Google Scholar] [CrossRef]
- Yavari, M.; Salman Tabrizi, N. Adsorption of Methylene Blue from Aqueous Solutions by Silk Cocoon. Int. J. Eng. 2016, 29, 1191–1197. [Google Scholar] [CrossRef]
- Somashekarappa, H.; Annadurai, V.; Subramanya, G.; Somashekar, R. Structure-Property Relation in Varieties of Acid Dye Processed Silk Fibers. Mater. Lett. 2002, 53, 415–420. [Google Scholar] [CrossRef]
- Kalmár, J.; Lente, G.; Fábián, I. Kinetics and Mechanism of the Adsorption of Methylene Blue from Aqueous Solution on the Surface of a Quartz Cuvette by On-Line UV-Vis Spectrophotometry. Dyes Pigments 2016, 127, 170–178. [Google Scholar] [CrossRef]
- Chairat, M.; Rattanaphani, S.; Bremner, J.B.; Rattanaphani, V. An Adsorption and Kinetic Study of Lac Dyeing on Silk. Dyes Pigments 2005, 64, 231–241. [Google Scholar] [CrossRef]
- Mussa, Z.H.; Al-Ameer, L.R.; Al-Qaim, F.F.; Deyab, I.F.; Kamyab, H.; Chelliapan, S. A Comprehensive Review on Adsorption of Methylene Blue Dye Using Leaf Waste as a Bio-Sorbent: Isotherm Adsorption, Kinetics, and Thermodynamics Studies. Environ. Monit. Assess. 2023, 195, 940. [Google Scholar] [CrossRef]
- Wang, J.; Guo, X. Adsorption Isotherm Models: Classification, Physical Meaning, Application and Solving Method. Chemosphere 2020, 258, 127279. [Google Scholar] [CrossRef]
- Tunçeli, A.; Ulaş, A.; Acar, O.; Türker, A.R. Adsorption Isotherms, Kinetic and Thermodynamic Studies on Cadmium and Lead Ions from Water Solutions Using Amberlyst 15 Resin. Turk. J. Chem. 2022, 46, 193–205. [Google Scholar] [CrossRef]
- Huang, W.; Ling, S.; Li, C.; Omenetto, F.G.; Kaplan, D.L. Silkworm Silk-Based Materials and Devices Generated Using Bio-Nanotechnology. Chem. Soc. Rev. 2018, 47, 6486–6504. [Google Scholar] [CrossRef]
Description | Yarn Type | Annotation | Grams/Meter2 (GSM) | |
---|---|---|---|---|
1 | Plain woven fabric | filament | PW | 88 |
2 | Plain woven fabric—treated | filament | PW-T | 88 |
3 | Plain woven fabric—dyed | filament | PW-D | 34 |
4 | Noil woven fabric | spun yarn | NW | 135 |
5 | Noil woven fabric—treated | spun yarn | NW-T | 135 |
6 | Noil woven fabric—dyed | spun yarn | NW-D | 176 |
7 | Dyed Shantung (Duponi) fabric | filament and spun-slub yarn | SW-D | 100 |
8 | Dyed Satin (Charmeuse) fabric | filament | CW-D | 80 |
9 | Dyed silk Jersey knit fabric | filament | JK-D | 142 |
10 | Electrospun fiber mats | nanofibers | ES | 9 |
11 | Natural silk fibers | natural fibers | SF | - |
12 | Unraveled Noil fabric | filament and spun yarn | NWY | - |
13 | Unraveled Plain fabric | filament | PWY | - |
14 | Unraveled Noil fabric—treated | filament and spun yarn | NWY-T | - |
15 | Unraveled Plain fabric—treated | filament | PWY-T | - |
16 | Unraveled Plain woven dyed fabric | filament | PW-DY | - |
Sample | (%) | Random Coils (%) | (%) | s (%) |
---|---|---|---|---|
PW | 80.9 | - | 13.6 | 5.55 |
SF | 79.2 | - | 10.7 | 4.77 |
SF solution (SFS) | 5.84 | 77.2 | 2.81 | 14.1 |
SP | 67.3 | 1.81 | 25.8 | 5.13 |
ES | 10.7 | 89.3 | - | 0.0206 |
Sample | Adsorption at 30 min (%) | Complete Adsorption (>90.0%) (minutes) |
---|---|---|
PW | 27.7 | 360 |
PW-T | 39.4 | 360 |
NW | 12.6 | 420 |
NW-T | 32.6 | 420 |
PW-D | 15.8 | 420+ |
NW-D | 32.3 | 420+ |
SW-D | 23.4 | 420+ |
CW-D | 2.78 | 420+ |
JK-D | 19.4 | 420+ |
PWY | 96.9 | 1 |
PWY-T | 94.1 | 3 |
NWY | 92.9 | 1 |
NWY-T | 92.8 | 5 |
PW-DY | 87.8 | 40 |
ES | 56.8 | 240 |
SF | 91.0 | 30 |
Experimental | Pseudo-First-Order Model | Pseudo-Second-Order Model | ||||
---|---|---|---|---|---|---|
Qe (mg/g) | Qe (mg/g) | K1 (min−1) | R2 | Qe (mg/g) | K2 (g.mg−1.min−1) | R2 |
2.96 | 1.16 | −0.0180 | 0.427 | 1.04 | 3.71 | 0.999 |
Langmuir Isotherm | Freundlich Isotherm | ||||
---|---|---|---|---|---|
Qm (mg/g) | B (L/mg) | R2 | n | KF | R2 |
436 | 6.32 × 10−4 | 0.999 | 1.22 | 0.611 | 0.997 |
Sample | CA After 5 min (Degrees) |
---|---|
PW | 139 |
PW-T | 140 |
PW-D | 0 |
NW | 142 |
NW-T | 140 |
NW-D | 0 |
ES | 0 |
SW-D | 0 |
CW-D | 0 |
JK-D | 0 |
HW-D | 0 |
SP | 0 |
Sample | PW | PW-T | NW | NW-T |
---|---|---|---|---|
Corn Oil Capacity (g/g) | 2.19 (±0.39) | 2.01 (±0.16) | 3.28 (±0.08) | 3.21 (±0.37) |
Gasoline Capacity (g/g) | 0.829 (±0.063) | 0.862 (±0.214) | 1.92 (±0.12) | 1.47 (±0.08) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jayamaha, H.; Schorn, I.; Shepherd, L.M. Waste Bombyx Mori Silk Textiles as Efficient and Reuseable Bio-Adsorbents for Methylene Blue Dye Removal and Oil–Water Separation. Fibers 2024, 12, 99. https://doi.org/10.3390/fib12110099
Jayamaha H, Schorn I, Shepherd LM. Waste Bombyx Mori Silk Textiles as Efficient and Reuseable Bio-Adsorbents for Methylene Blue Dye Removal and Oil–Water Separation. Fibers. 2024; 12(11):99. https://doi.org/10.3390/fib12110099
Chicago/Turabian StyleJayamaha, Hansadi, Isabel Schorn, and Larissa M. Shepherd. 2024. "Waste Bombyx Mori Silk Textiles as Efficient and Reuseable Bio-Adsorbents for Methylene Blue Dye Removal and Oil–Water Separation" Fibers 12, no. 11: 99. https://doi.org/10.3390/fib12110099
APA StyleJayamaha, H., Schorn, I., & Shepherd, L. M. (2024). Waste Bombyx Mori Silk Textiles as Efficient and Reuseable Bio-Adsorbents for Methylene Blue Dye Removal and Oil–Water Separation. Fibers, 12(11), 99. https://doi.org/10.3390/fib12110099