Strength and Erosion Resistance of Spinifex Fibre Reinforced Mudbrick
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Compression Test
3.2. Spray Test
4. Discussion
5. Conclusions
- Samples with a 0.5% spinifex to soil weight showed maximum compressive strength. The average compressive strength was 3.6 MPa in these samples. This is higher than most reported compressive strengths for mudbricks and suggests the suitability of the common laterite soil in the NT for making mudbricks.
- The inclusion of spinifex greater than 0.5% of soil weight was found to have a negative impact on both compressive strength and erosion resistance.
- Erosion resistance test results suggest that spinifex had a negative impact on erosion resistance until around 22 min from the start of the spray test, which is equivalent to approximately 2 mm of erosion pit depth.
- Spinifex was found to be more effective in improving the erosion resistance in the first half of the testing (before 30 min). This could be attributed to the loss of the matrix bond with fibres during the test.
- While the use of spinifex was found to be effective in improving the strength of mudbricks, it could cause grass-eating termite damage to the residence.
- Spinifex has been used by the First Nations people for thousands of years to make different items. So, their knowledge could be used in future work to improve the performance of construction materials made with spinifex.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fien, J.; Charlesworth, E. ‘Why isn’t it solved?’: Factors affecting improvements in housing outcomes in remote Indigenous communities in Australia. Habitat Int. 2012, 36, 20–25. [Google Scholar] [CrossRef]
- DRD. Resilient Families, Strong Communities: A Roadmap for Regional and Remote Aboriginal Communities; Regional Services Reform Unit, Department of Regional Development: Perth, Australia, 2016. [Google Scholar]
- Hay, A.; Zuo, J.; Han, S.; Zillante, G. Lessons learned from managing a remote construction project in Australia. In Proceedings of the 20th International Symposium on Advancement of Construction Management and Real Estate; Springer: Singapore, 2017; pp. 939–948. [Google Scholar]
- Moran, M.; Wright, A.; Renehan, P.; Szava, A.; Beard, N.; Rich, E. The Transformation of Assets for Sustainable Livelihoods in a Remote Aboriginal Settlement; Desert Knowledge CRC: Boca Raton, FL, USA, 2008. [Google Scholar]
- Burgess, P.; Bailie, R.; Mileran, A. Beyond the mainstream: Health gains in remote Aboriginal communities. Aust. Fam. Physician 2008, 37, 986. [Google Scholar] [PubMed]
- McDermott, R.; O’Dea, K.; Rowley, K.; Knight, S.; Burgess, P. Beneficial impact of the Homelands Movement on health outcomes in central Australian Aborigines. Aust. N. Z. J. Public Health 1998, 22, 653–658. [Google Scholar] [CrossRef] [PubMed]
- Rowley, K.G.; O’Dea, K.; Anderson, I.; McDermott, R.; Saraswati, K.; Tilmouth, R.; Roberts, I.; Fitz, J.; Wang, Z.; Jenkins, A. Lower than expected morbidity and mortality for an Australian Aboriginal population: 10-year follow-up in a decentralised community. Med. J. Aust. 2008, 188, 283–287. [Google Scholar] [CrossRef] [PubMed]
- MacCallum, J.; Palmer, D.; Wright, P.; Cumming-Potvin, W.; Brooker, M.; Tero, C. Australian perspectives: Community building through intergenerational exchange programs. J. Intergenerational Relatsh. 2010, 8, 113–127. [Google Scholar] [CrossRef]
- Morel, J.C.; Mesbah, A.; Oggero, M.; Walker, P. Building houses with local materials: Means to drastically reduce the environmental impact of construction. Build. Environ. 2001, 36, 1119–1126. [Google Scholar] [CrossRef]
- Purdie, N.; Milgate, G.; Bell, H.R. Two Way Teaching and Learning: Toward Culturally Reflective and Relevant Education; Acer Press: Camberwell, VIC, Australia, 2011. [Google Scholar]
- Kutay, C. Knowledge Elicitation with Aboriginal Australian communities. Australas. J. Inf. Syst. 2021, 25, 1–21. [Google Scholar] [CrossRef]
- Kutay, C.; Gunay, B.; Tobin, C. Cross-cultural construction engineering with Aboriginal communities. In Proceedings of the AAEE 2018 Conference, Hamilton, NZ, USA, 9–12 December 2018; Australasian Association of Engineering Education: Sydney, Australia, 2018. [Google Scholar]
- Nash, D. Aboriginal Plant Use and Technology; Australian National Botanic Gardens: Acton, Australia, 2000. [Google Scholar]
- Powell, O.; Fensham, R.J.; Memmott, P. Indigenous Use of Spinifex Resin for Hafting in North-Eastern Australia. Econ. Bot. 2013, 67, 210–224. [Google Scholar] [CrossRef]
- Udoeyo, F.F.; Cassidy, A.O.; Jajere, S. Mound soil as construction material. J. Mater. Civ. Eng. 2000, 12, 205–211. [Google Scholar] [CrossRef]
- Memmott, P. Gunyah, Goondie+ Wurley: The Aboriginal Architecture of Australia; University of Queensland Press: Brisbane, QLD, Australia, 2007. [Google Scholar]
- Basedow, H. The Australian Aboriginal; FW Preece: Adelaide, Australia, 1925. [Google Scholar]
- Porter, R. Towards a Hybrid Model of Public Housing in Northern Territory Remote Aboriginal Communities? Citeseer: Princeton, NJ, USA, 2009. [Google Scholar]
- Lowell, A.; Maypilama, Ḻ; Fasoli, L.; Guyula, Y.; Guyula, A.; Yunupiŋu, M.; Godwin-Thompson, J.; Gundjarranbuy, R.; Armstrong, E.; Garrutju, J. The ‘invisible homeless’–challenges faced by families bringing up their children in a remote Australian Aboriginal community. BMC Public Health 2018, 18, 1382. [Google Scholar] [CrossRef]
- Bailie, R.S.; Wayte, K.J. Housing and health in Indigenous communities: Key issues for housing and health improvement in remote Aboriginal and Torres Strait Islander communities. Aust. J. Rural Health 2006, 14, 178–183. [Google Scholar] [CrossRef]
- Stewart, J.; Anda, M.; Harper, R.J. Low-carbon development in remote Indigenous communities: Applying a community-directed model to support endogenous assets and aspirations. Environ. Sci. Policy 2019, 95, 11–19. [Google Scholar] [CrossRef]
- Cox, E. Work with Us Not for Us’ to End the Indigenous Policy Chaos. The Conversation. 2014. Available online: https://theconversation.com/work-with-us-not-for-us-to-end-the-indigenous-policy-chaos-35047 (accessed on 16 April 2024).
- Seemann, K.; Marinova, D. Desert settlements: Towards understanding the mutuality of influence and scale-free network concepts. J. Econ. Soc. Policy 2010, 13, 5. [Google Scholar]
- Munir, M.J.; Abbas, S.; Nehdi, M.L.; Kazmi, S.M.; Khitab, A. Development of eco-friendly fired clay bricks incorporating recycled marble powder. J. Mater. Civ. Eng. 2018, 30, 04018069. [Google Scholar] [CrossRef]
- Schroeder, H.; Ziegert, C.; Fontana, P. The new German standards for earth blocks and earth masonry mortar. In Proceedings of the 9th IMC-International Masonry Conference 2014, Guimarães, Portugal, 7–9 July 2014; pp. 610, 681–682. [Google Scholar]
- Taylor, P.; Luther, M.B. Evaluating rammed earth walls: A case study. Sol. Energy 2004, 76, 79–84. [Google Scholar] [CrossRef]
- Downton, P. Rammed Earth. Available online: https://www.yourhome.gov.au/materials/rammed-earth (accessed on 16 April 2024).
- EBAA. Earth Building Association of Australia. Home—Earth Building Association of Australia (ebaa.asn.au). Available online: https://www.ebaa.asn.au/ (accessed on 16 April 2024).
- Lawson, B.; Rudder, D. Building Materials Energy and the Environment: Towards Ecologically Sustainable Development; Royal Australian Institute of Architects: Red Hill, ACT, Australia, 1996. [Google Scholar]
- Heathcote, K.A. Durability of earthwall buildings. Constr. Build. Mater. 1995, 9, 185–189. [Google Scholar] [CrossRef]
- Friesem, D.; Boaretto, E.; Eliyahu-Behar, A.; Shahack-Gross, R. Degradation of mud brick houses in an arid environment: A geoarchaeological model. J. Archaeol. Sci. 2011, 38, 1135–1147. [Google Scholar] [CrossRef]
- Ren, K.B.; Kagi, D.A. Upgrading the durability of mud bricks by impregnation. Build. Environ. 1995, 30, 433–440. [Google Scholar] [CrossRef]
- Atzeni, C.; Pia, G.; Sanna, U.; Spanu, N. Surface wear resistance of chemically or thermally stabilised earth-based materials. Mater. Struct. 2008, 41, 751–758. [Google Scholar] [CrossRef]
- Lanzón, M.; Martínez, E.; Mestre, M.; Madrid, J.A. Use of zinc stearate to produce highly-hydrophobic adobe materials with extended durability to water and acid-rain. Constr. Build. Mater. 2017, 139, 114–122. [Google Scholar] [CrossRef]
- Sturman, A.P.; Tapper, N.J. The Weather and Climate of Australia and New Zealand; Oxford University Press: Oxford, MI, USA, 1996. [Google Scholar]
- Caitcheon, G.G.; Olley, J.M.; Pantus, F.; Hancock, G.; Leslie, C. The dominant erosion processes supplying fine sediment to three major rivers in tropical Australia, the Daly (NT), Mitchell (Qld) and Flinders (Qld) Rivers. Geomorphology 2012, 151, 188–195. [Google Scholar] [CrossRef]
- Brooks, K.N.; Ffolliott, P.F.; Magner, J.A. Hydrology and the Management of Watersheds; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Quagliarini, E.; Lenci, S. The influence of natural stabilisers and natural fibres on the mechanical properties of ancient Roman adobe bricks. J. Cult. Herit. 2010, 11, 309–314. [Google Scholar] [CrossRef]
- Sharma, V.; Vinayak, H.K.; Marwaha, B.M. Enhancing compressive strength of soil using natural fibers. Constr. Build. Mater. 2015, 93, 943–949. [Google Scholar] [CrossRef]
- Ismail, S.; Yaacob, Z. Properties of laterite brick reinforced with oil palm empty fruit bunch fibres. Pertanika J. Sci. Technol. 2011, 19, 33–43. [Google Scholar]
- Muguda, S.; Lucas, G.; Hughes, P.N.; Augarde, C.E.; Perlot, C.; Bruno, A.W.; Gallipoli, D. Durability and hygroscopic behaviour of biopolymer stabilised earthen construction materials. Constr. Build. Mater. 2020, 259, 119725. [Google Scholar] [CrossRef]
- Khorasani, F.F.; Kabir, M.Z. Experimental study on the effectiveness of short fiber reinforced clay mortars and plasters on the mechanical behavior of adobe masonry walls. Case Stud. Constr. Mater. 2022, 16, e00918. [Google Scholar] [CrossRef]
- Malkanthi, S.N.; Wickramasinghe, W.G.S.; Perera, A.A.D.A.J. Use of construction waste to modify soil grading for compressed stabilised earth blocks (CSEB) production. Case Stud. Constr. Mater. 2021, 15, e00717. [Google Scholar] [CrossRef]
- Baker, L.; Lawrence, S.; Page, A. Australian Masonry Manual; Deakin University Press: Burwood, VIC, Australia, 1991. [Google Scholar]
- Middleton, G.F.; Schneider, L.M. Earth-Wall Construction; Australian Government Publishing Service: Australia, Canberra, 1976.
- ASTM-D-559-03; Standard Test Methods for Wetting and Drying Compacted Soil-Cement Mixtures. American Society for Testing and Materials: West Conshohocken, PA, USA, 2003.
- Webb, T.L.; Cilliers, T.; Stutterheim, N. The Properties of Compacted Soil and Soil-Cement Mixtures for Use in Building; National Building Research Institute = Nasionale Bounavorsings Instituut: Roorkee, India, 1950. [Google Scholar]
- Walker, P.; Standards Australia. The Australian Earth Building Handbook, HB 195; Standards Australia International Ltd.: Sydney, Australia, 2002. [Google Scholar]
- Hejazi, S.M.; Sheikhzadeh, M.; Abtahi, S.M.; Zadhoush, A. A simple review of soil reinforcement by using natural and synthetic fibers. Constr. Build. Mater. 2012, 30, 100–116. [Google Scholar] [CrossRef]
- Yusoff, M.Z.M.; Salit, M.S.; Ismail, N.; Wirawan, R. Mechanical properties of short random oil palm fibre reinforced epoxy composites. Sains Malays. 2010, 39, 87–92. [Google Scholar]
- Bos, H.L. The Potential of Flax Fibres as Reinforcement for Composite Materials; Technische Universiteit Eindhoven: Eindhoven, The Netherlands, 2004. [Google Scholar]
- Segetin, M.; Jayaraman, K.; Xu, X. Harakeke reinforcement of soil–cement building materials: Manufacturability and properties. Build. Environ. 2007, 42, 3066–3079. [Google Scholar] [CrossRef]
- Ramesh, H.; Manoj Krishna, K.; Mamatha, H. Compaction and strength behavior of lime-coir fiber treated Black Cotton soil. Geomech. Eng. 2010, 2, 19–28. [Google Scholar] [CrossRef]
- Soundara, B.; Senthil Kumar, K.P. Effect of Fibers on Properties of Clay. Int. J. Eng. Appl. Sci. 2015, 2, 257909. [Google Scholar]
- Taylor, D.W. Fundamentals of Soil Mechanics; LWW: Baltimore, MD, USA, 1948; Volume 66. [Google Scholar]
- Vincenzini, A.; Augarde, C.E.; Gioffrè, M. Experimental characterisation of natural fibre–soil interaction: Lessons for earthen construction. Mater. Struct. 2021, 54, 110. [Google Scholar] [CrossRef]
- Imanzadeh, S.; Jarno, A.; Hibouche, A.; Bouarar, A.; Taibi, S. Ductility analysis of vegetal-fiber reinforced raw earth concrete by mixture design. Constr. Build. Mater. 2020, 239, 117829. [Google Scholar] [CrossRef]
- Khedari, J.; Watsanasathaporn, P.; Hirunlabh, J. Development of fibre-based soil–cement block with low thermal conductivity. Cem. Concr. Compos. 2005, 27, 111–116. [Google Scholar] [CrossRef]
- Agoudjil, B.; Benchabane, A.; Boudenne, A.; Ibos, L.; Fois, M. Renewable materials to reduce building heat loss: Characterisation of date palm wood. Energy Build. 2011, 43, 491–497. [Google Scholar] [CrossRef]
- Azwa, Z.N.; Yousif, B.F.; Manalo, A.C.; Karunasena, W. A review on the degradability of polymeric composites based on natural fibres. Mater. Des. 2013, 47, 424–442. [Google Scholar] [CrossRef]
- Juluwarlu Aboriginal Corporation. Wanggalili: Yindjibarndi and Ngarluma Plants; Juluwarlu Aboriginal Corporation: Roeburne, Australia, 2003. [Google Scholar]
- Jessop, J. Flora of Central Australia; Reed: London, UK, 1981. [Google Scholar]
- Pitman, H.T.; Wallis, L.A. The Point of Spinifex: Aboriginal uses of spinifex grasses in Australia. Ethnobot. Res. Appl. 2012, 10, 109–131. [Google Scholar] [CrossRef]
- Milan, S.; Christopher, T.; Manivannan, A.; Mayandi, K.; Jappes, J.W. Mechanical and thermal properties of a novel Spinifex Littoreus fiber reinforced polymer composites as an alternate for synthetic glass fiber composites. Mater. Res. Express 2021, 8, 035301. [Google Scholar]
- Mondal, S.; Memmott, P.; Martin, D. Preparation and characterisation of green bio-composites based on modified spinifex resin and spinifex grass fibres. J. Compos. Mater. 2014, 48, 1375–1382. [Google Scholar] [CrossRef]
- Kępa, K.; Chaléat, C.M.; Amiralian, N.; Batchelor, W.; Grøndahl, L.; Martin, D.J. Evaluation of properties and specific energy consumption of spinifex-derived lignocellulose fibers produced using different mechanical processes. Cellulose 2019, 26, 6555–6569. [Google Scholar] [CrossRef]
- Sumanasena, V.; Rajabipour, A.; Bazli, M.; Kutay, C.; Guo, D. Strength and erosion resistance of mudbrick as an alternative local material for Australia’s Northern Territory remote housing. Case Stud. Constr. Mater. 2022, 16, e01023. [Google Scholar] [CrossRef]
- Abrecht, D. No-till crop establishment on red earth soils at Katherine, Northern Territory: Effect of sowing depth and firming wheel pressure on the establishment of cowpea, mung bean, soybean and maise. Aust. J. Exp. Agric. 1989, 29, 397–402. [Google Scholar] [CrossRef]
- Kirkpatrick, J.; Bowman, D.; Wilson, B.; Dickinson, K. A transect study of the Eucalyptus forests and woodlands of a dissected sandstone and laterite plateau near Darwin, Northern Territory. Aust. J. Ecol. 1987, 12, 339–359. [Google Scholar] [CrossRef]
- Karan, M.; Liddell, M.; Prober, S.M.; Arndt, S.; Beringer, J.; Boer, M.; Cleverly, J.; Eamus, D.; Grace, P.; Van Gorsel, E. The Australian SuperSite Network: A continental, long-term terrestrial ecosystem observatory. Sci. Total Environ. 2016, 568, 1263–1274. [Google Scholar] [CrossRef] [PubMed]
- Alausa, S.; Adekoya, B.; Aderibigbe, J.; Nwaokocha, C. Thermal characteristics of laterite-mud and concrete-block for walls in building construction in Nigeria. Int. J. Eng. 2013, 4, 8269. [Google Scholar]
- Binici, H.; Aksogan, O.; Shah, T. Investigation of fibre reinforced mud brick as a building material. Constr. Build. Mater. 2005, 19, 313–318. [Google Scholar] [CrossRef]
- Saing, Z.; Samang, L.; Harianto, T.; Patanduk, J. Mechanical characteristic of ferro laterite soil with cement stabilisation as a subgrade material. Int. J. Civ. Eng. Technol. IJCIET 2017, 8, 609–616. [Google Scholar]
- Burroughs, S. Recommendations for the selection, stabilisation, and compaction of soil for rammed earth wall construction. J. Green Build. 2010, 5, 101–114. [Google Scholar] [CrossRef]
- Arooz, F.; Halwatura, R. Mud-concrete block (MCB): Mix design & durability characteristics. Case Stud. Constr. Mater. 2018, 8, 39–50. [Google Scholar]
- Bhavsar, S.N.; Patel, A.J. Analysis of swelling & shrinkage properties of expansive soil using brick dust as a stabiliser. Int. J. Emerg. Technol. Adv. Eng. 2014, 4, 303–308. [Google Scholar]
- Khalid, U.; ur Rehman, Z. Evaluation of compaction parameters of fine-grained soils using standard and modified efforts. Int. J. Geo-Eng. 2018, 9, 15. [Google Scholar] [CrossRef]
- Malkanthi, S.; Balthazaar, N.; Perera, A. Lime stabilisation for compressed stabilised earth blocks with reduced clay and silt. Case Stud. Constr. Mater. 2020, 12, e00326. [Google Scholar]
- ASTM-C136/C136M-14; Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates. ASTM International: West Conshohocken, PA, USA, 2014.
- Danso, H. Suitability of soil for earth construction as building material. Adv. Civ. Eng. Technol. 2018, 2, 199–211. [Google Scholar] [CrossRef]
- AS 3700; Design of Masonry Structures. Standards Australia: Sydney, Australia, 2018.
- Obonyo, E.; Exelbirt, J.; Baskaran, M. Durability of compressed earth bricks: Assessing erosion resistance using the modified spray testing. Sustainability 2010, 2, 3639–3649. [Google Scholar] [CrossRef]
- Dass, A.; Malhotra, S.K. Lime-stabilised red mud bricks. Mater. Struct. 1990, 23, 252–255. [Google Scholar] [CrossRef]
- Bell, F. Lime stabilisation of clay minerals and soils. Eng. Geol. 1996, 42, 223–237. [Google Scholar] [CrossRef]
- Lin, K.-L.; Chen, B.-Y.; Chiou, C.-S.; Cheng, A. Waste brick’s potential for use as a pozzolan in blended Portland cement. Waste Manag. Res. 2010, 28, 647–652. [Google Scholar] [CrossRef] [PubMed]
- ASTM-C1314-12; Standard Test Method for Compressive Strength of Masonry Prisms. Masonry Test Methods and Specifications for the Building Industry. ASTM International: West Conshohocken, PA, USA, 2012.
- Lima, S.A.; Varum, H.; Sales, A.; Neto, V.F. Analysis of the mechanical properties of compressed earth block masonry using the sugarcane bagasse ash. Constr. Build. Mater. 2012, 35, 829–837. [Google Scholar] [CrossRef]
- Miccoli, L.; Müller, U.; Fontana, P. Mechanical behaviour of earthen materials: A comparison between earth block masonry, rammed earth and cob. Constr. Build. Mater. 2014, 61, 327–339. [Google Scholar] [CrossRef]
- Andersen, A.N.; Jacklyn, P. Termites of the Top End; CSIRO Publishing: Clayton, VIC, Australia, 1993. [Google Scholar]
- Watson, J. An Old Mound of the Spinifex Termite, Nasutitermes Triodiae (Froggatt) (Isoptera: Termitidae). Austr. J. Entomol. 1972, 11, 79–80. [Google Scholar] [CrossRef]
- Nasutitermes Triodiae (Froggatt, 1898). Available online: https://isoptera.speciesfile.org/otus/84809/overview (accessed on 16 April 2024).
- Lo, N. Cathedrals in the desert. Australas. Sci. 2017, 38, 24–26. [Google Scholar]
Sieve Size (mm) | Weight Retained on the Sieve (%) | Description |
---|---|---|
4.75 | 31 | Coarse Aggregate |
2.36 | 5 | Sand |
2 | 5 | |
0.85 | 4 | |
0.425 | 3 | |
0.25 | 3 | |
0.075 | 2 | |
Pan | 47 | Clay and Silt |
Technique | Clay (%) | Clay and Silt (%) | Sand (%) | Gravel (%) | Sand and Gravel (%) |
---|---|---|---|---|---|
Rammed earth | 5–20 | 15–35 | 35–80 | 0–30 | 50–80 |
Pressed soil | 5–25 | 20–40 | 40–80 | 0–20 | 60–80 |
Adobe | 10–30 | 20–50 | 50–80 | - | 50–80 |
General-purpose | 15 | 35 | 60 | 5 | 65 |
Materials | Weight of Material to Soil Weight (Percentage) |
---|---|
Soil | 100% |
Cement | 5% |
Water | 16.6% |
Spinifex | 0%, 0.3%, 0.5% and 0.7% |
Weight of Spinifex to Soil (Percentage) | Mean Compression Strength (MPa) | Coefficient of Deviation (%) |
---|---|---|
0% | 3.2 | 1.5 |
0.3% | 3.3 | 1.5 |
0.5% | 3.6 | 4.1 |
0.7% | 3.0 | 1.7 |
Exposure Time in Spray Test (min) | Pit Depth (mm) | Mean Value (mm) | Coefficient of Deviation (%) | ||
---|---|---|---|---|---|
0% Spinifex | |||||
Sample I | Sample II | Sample III | |||
15 | 0.7 | 1.1 | 0.9 | 0.9 | 18 |
30 | 2.6 | 3.8 | 2.5 | 3.0 | 20 |
45 | 3.9 | 4.2 | 4.5 | 4.2 | 6 |
60 | 5.4 | 5.5 | 5.9 | 5.6 | 4 |
0.3% Spinifex | |||||
Sample I | Sample II | Sample III | |||
15 | 1.1 | 1 | 1.4 | 1.2 | 15 |
30 | 1.7 | 2.4 | 2.9 | 2.3 | 21 |
45 | 3 | 3.6 | 4.2 | 3.6 | 14 |
60 | 3.8 | 5.6 | 6.6 | 5.3 | 22 |
0.5% Spinifex | |||||
Sample I | Sample II | Sample III | |||
15 | 1.3 | 1.1 | 1.2 | 1.2 | 7 |
30 | 2.3 | 2.1 | 1.6 | 2 | 15 |
45 | 3.3 | 3.4 | 3.5 | 3.4 | 2 |
60 | 5.3 | 5.2 | 5.1 | 5.2 | 2 |
0.7% Spinifex | |||||
Sample I | Sample II | Sample III | |||
15 | 1.9 | 1.3 | 1.2 | 1.5 | 21 |
30 | 3.2 | 3.8 | 2.7 | 3.2 | 14 |
45 | 4.2 | 4.2 | 4.5 | 4.3 | 3 |
60 | 6.4 | 6.1 | 6.4 | 6.3 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, D.; Rajabipour, A.; Bazli, M.; Kutay, C.; Sumanasena, V.; Pham, T.N.P. Strength and Erosion Resistance of Spinifex Fibre Reinforced Mudbrick. Fibers 2024, 12, 39. https://doi.org/10.3390/fib12050039
Guo D, Rajabipour A, Bazli M, Kutay C, Sumanasena V, Pham TNP. Strength and Erosion Resistance of Spinifex Fibre Reinforced Mudbrick. Fibers. 2024; 12(5):39. https://doi.org/10.3390/fib12050039
Chicago/Turabian StyleGuo, Dongxiu, Ali Rajabipour, Milad Bazli, Cat Kutay, Varuna Sumanasena, and Truong Nhat Phuong Pham. 2024. "Strength and Erosion Resistance of Spinifex Fibre Reinforced Mudbrick" Fibers 12, no. 5: 39. https://doi.org/10.3390/fib12050039
APA StyleGuo, D., Rajabipour, A., Bazli, M., Kutay, C., Sumanasena, V., & Pham, T. N. P. (2024). Strength and Erosion Resistance of Spinifex Fibre Reinforced Mudbrick. Fibers, 12(5), 39. https://doi.org/10.3390/fib12050039