Does Dietary Fiber Affect the Levels of Nutritional Components after Feed Formulation?
Abstract
:1. Introduction
2. Interactions of Dietary Fiber and Nutrient Components
2.1. Dietary Fiber and Mineral Bioavailability
2.1.1. Iron Bioavailability
2.1.2. Calcium Bioavailability
2.1.3. Selenium Bioavailability
2.1.4. Copper Absorption
2.1.5. Zinc Absorption
2.1.6. Magnesium Bioavailability
2.1.7. Manganese Bioavailability
2.1.8. Phosphorus Bioavailability
2.1.9. Chromium Bioavailability
2.1.10. Other Minerals
2.2. Interactions of Dietary Fibre on Protein Bioavailability
2.2.1. Dietary Fiber Modulation
Substitution Method
Addition Method
2.3. Interactions of Dietary Fibre on Vitamins Bioavailability
2.3.1. Bioavailability of Fat-Soluble Vitamins
2.3.2. Bioavailability of Water-Soluble Vitamins
2.4. Interaction of Dietary Fiber on Lipid Bioavailability
2.5. Fiber and Prebiotics on Gut Microbiota
3. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Gharibzahedi, S.M.T.; Jafari, S.M. The importance of minerals in human nutrition: Bioavailability, food fortification, processing effects and nanoencapsulation. Trends Food Sci. Technol. 2017, 62, 119–132. [Google Scholar] [CrossRef]
- Thompson, S.A.; Weber, C.W. Influence of pH on the binding of copper, zinc and iron in six fiber sources. J. Food Sci. 1979, 44, 752–754. [Google Scholar] [CrossRef]
- Laszlo, J.A. Mineral binding properties of soy hull. Modeling mineral interactions with an insoluble dietary fiber source. J. Agric. Food Chem. 1987, 35, 593–600. [Google Scholar] [CrossRef]
- Torre, M.; Rodriguez, A.R.; Saura-Calixto, F. Interactions of Fe(II), Ca(II) and Fe(III) with high dietary fibre materials: A physicochemical approach. Food Chem. 1995, 54, 23–31. [Google Scholar] [CrossRef]
- Chau, C.F.; Chen, C.H.; Lin, C.Y. Insoluble fiber-rich fractions derived from Averrhoa carambola: Hypoglycemic effects determined by in vitro methods. LWT—Food Sci. Technol. 2004, 37, 331–335. [Google Scholar] [CrossRef]
- Bosscher, D.; Van Caillie-Bertrand, M.; Van Cauwenbergh, R.; Deelstra, H. Availabilities of calcium, iron, and zinc from dairy infant formulas is affected by soluble dietary fibers and modified starch fractions. J. Nutr. 2003, 19, 641–645. [Google Scholar] [CrossRef]
- Argyri, K.; Birba, A.; Miller, D.D.; Komaitis, M.; Kapsokefalou, M. Predicting relative concentrations of bioavailable iron in foods using in vitro digestion: New developments. Food Chem. 2009, 113, 602–607. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Schulze, M.B.; Liu, S.; Rimm, E.B.; Manson, J.E.; Willett, W.C.; Hu, F.B. Glycemic index, glycemic load, and dietary fiber intake and incidence of type 2 diabetes in younger and middle-aged women. Am. J. Clin. Nutr. 2004, 80, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Caroline, J.; Gross, M.; Spillman, D.M. Fiber digestion in mammals. Pak. J. Biol. Sci. 2003, 6, 1564–1573. [Google Scholar]
- Paul, S.M.; Katke, J.J.; Krumhar, K.C. Bacteria-and Fiber-Containing Composition for Human Gastrointestinal Health. U.S. Patent US6241983B1, 5 June 2001. [Google Scholar]
- Brownlee, I.A. The physiological roles of dietary fibre. Food Hydrocoll. 2011, 25, 238–250. [Google Scholar] [CrossRef]
- Singh, P.; Prasad, S.; Aalbersberg, W. Bioavailability of Fe and Zn in selected legumes, cereals, meat and milk products consumed in Fiji. Food Chem. 2016, 207, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Van Moorsell, L. Improving calcium and iron bioavailability trough bioactive proteins. Int. Food Ingred. 1997, 4, 44–46. [Google Scholar]
- Whitney, E.; Rolfes, S.R. Understanding Nutrition, 11th ed.; Wadsworth Publishing: Boston, MA, USA, 2012. [Google Scholar]
- Saini, R.K.; Nile, S.H.; Keum, Y.S. Food science and technology for management of iron deficiency in humans: A review. Trends Food Sci. Technol. 2016, 53, 13–22. [Google Scholar] [CrossRef]
- Drago, S.R.; Valencia, M.E. Influence of components of infant formulas on in vitro iron, zinc, and calcium availability. J. Agric. Food Chem. 2004, 52, 3202–3207. [Google Scholar] [CrossRef] [PubMed]
- Bosscher, D.; Van Caillie-Bertrand, M.; Deelstra, H. Effect of thickening agents, based on soluble dietary fiber, on the availability of calcium, iron, and zinc from infant formulas. J. Nutr. 2001, 17, 614–618. [Google Scholar] [CrossRef]
- Fuqua, B.K.; Vulpe, C.D.; Anderson, G.J. Intestinal iron absorption. J. Trace Elem. Med. Biol. 2012, 26, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Bird, C.L.; Witte, J.S.; Swendseid, M.E.; Shikany, J.M.; Hunt, I.F.; Frankl, H.D.; Lee, E.R.; Longnecker, M.P.; Haile, R.W. Plasma Ferrtin, Iron Intake, and the Risk of Colorectal Polyps. Am. J. Epidemiol. 1996, 144, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Graf, E.; Eaton, J.W. Suppression of colonic cancer by dietary phytic acid. Nutr. Cancer 1993, 19, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.L. Iron deficiency anemia: A common and curable disease. Cold Spring Harb. Perspect. Med. 2013, 3, a011866. [Google Scholar] [CrossRef] [PubMed]
- Bhutta, Z.A.; Salam, R.A. Global nutrition epidemiology and trends. Ann. Nutr. Metab. 2012, 61, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Ross, C.A.; Taylor, C.L.; Yaktime, A.L.; Del Valle, H.B. Dietary Reference Intakes for Calcium and Vitamin. Committee to Review Dietary Reference Intakes for Vitamin D and Calcium; Institute of Medicine, National Academies Press: Washington, DC, USA, 2010. [Google Scholar]
- Bronner, F. Calcium absorption-A paradigm for mineral absorption. J. Nutr. 1998, 128, 917–920. [Google Scholar] [CrossRef] [PubMed]
- Sandberg, A.S.; Larsen, T.; Sandström, B. High dietary calcium level decreases colonic phytate degradation in pigs fed a rapeseed diet. J. Nutr. 1993, 123, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Hara, H.; Nagata, M.; Ohta, A.; Kasai, T. Increases in calcium absorption with ingestion of soluble dietary fibre, guar-gum hydrolysate, depend on the caecum in partially nephrectomized and normal rats. Br. J. Nutr. 2007, 76, 773–784. [Google Scholar] [CrossRef]
- Ohta, A.; Ohtsuki, M.; Baba, S.; Adachi, T.; Sakata, T.; Sakaguchi, E.L. Calcium and magnesium absorption from the colon and rectum are increased in rats fed fructooligosaccharides. J. Nutr. 1995, 125, 2417–2424. [Google Scholar] [CrossRef] [PubMed]
- Torre, M.; Rodríguez, A.R.; Saura-Calixto, F. Effects of dietary fiber and phytic acid on mineral availability. Crit. Rev. Food Sci. Nutr. 1991, 1, 1–22. [Google Scholar] [CrossRef]
- Munoz, J.M.; Harland, B.F. Overview of the Effects of Dietary Fiber on the Utilization of Minerals and Trace Elements; CRC Press: Boca Raton, FL, USA, 1993; pp. 245–252. [Google Scholar]
- Ross, A.C.; Caballero, B.; Cousins, R.J.; Tucker, K.L.; Ziegler, T.R. Modern Nutrition in Health and Disease, 11th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2012. [Google Scholar]
- Bowman, B.; Russell, R. Present Knowledge in Nutrition, 9th ed.; International Life Sciences Institute-Nutrition Foundation: Washington, DC, USA, 2006. [Google Scholar]
- Erdman, J.W.; Macdonald, I.A.; Zeisel, S.H. Present Knowledge in Nutrition, 10th ed.; Wiley-Blackwell: Iowa, ID, USA, 2012. [Google Scholar]
- Rayman, M.P. Selenium and human health. Lancet 2012, 379, 1256–1268. [Google Scholar] [CrossRef]
- Aggett, P.J.; Fairweather-Tait, S. Adaptation to high and low copper intakes: Its relevance to estimated safe and adequate daily dietary intakes. Am. J. Clin. Nutr. 1998, 67, 1061–1063. [Google Scholar] [CrossRef] [PubMed]
- Wapnir, R.A. Copper absorption and bioavailability. Am. J. Clin. Nutr. 1998, 67, 1054–1060. [Google Scholar] [CrossRef]
- Turnlund, J.R.; King, J.C.; Gong, B.; Keyes, W.R.; Michel, M.C. A stable isotope study of copper absorption in young men: Effect of phytate and alpha-cellulose. Am. J. Clin. Nutr. 1985, 42, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Wise, A.; Gilburt, D.J. In vitro competition between calcium phytate and the soluble fraction of rat small intestine contents for cadmium, copper and zinc. Toxicol. Lett. 1982, 11, 49–54. [Google Scholar] [CrossRef]
- Davis, P.N.; Norris, L.C.; Kratzer, F.H. Interference of soybean proteins with the utilization of trace minerals. J. Nutr. 1962, 77, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Lönnerdal, B.; Bell, J.G.; Keen, C.L. Copper absorption from human milk, cow’s milk, and infant formulas using a suckling rat model. Am. J. Clin. Nutr. 1985, 42, 836–844. [Google Scholar] [CrossRef] [PubMed]
- Drews, L.M.; Kies, C.; Fox, H.M. Effect of dietary fiber on copper, zinc, and magnesium utilization by adolescent boys. Am. J. Clin. Nutr. 1979, 32, 1893–1897. [Google Scholar] [CrossRef] [PubMed]
- Behall, K.M.; Scholfield, D.J.; Lee, K.; Powell, A.S.; Moser, P.B. Mineral balance in adult men: Effect of four refined fibers. Am. J. Clin. Nutr. 1987, 46, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Lutsenko, S.; Gupta, A.; Burkhead, J.L.; Zuzel, V. Cellular multitasking: The dual role of human Cu-ATPases in cofactor delivery and intracellular copper balance. Arch. Biochem. Biophys. 2008, 476, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Etcheverry, P.; Grusak, M.; Fleige, L. Application of in vitro bioaccessibility and bioavailability methods for calcium, carotenoids, folate, iron, magnesium, polyphenols, zinc, and vitamins B6, B12, D, and E. Front. Physiol. 2012, 3, 317. [Google Scholar] [CrossRef] [PubMed]
- Oberleas, D.; Muhrer, M.E.; O’Dell, B.L. Effects of Phytic Acid on zinc availability and parakeratosis in swine. J. Anim. Sci. 1962, 21, 57–61. [Google Scholar] [CrossRef]
- Luabeya, K.K.A.; Mpontshane, N.; Mackay, M.; Ward, H.; Elson, I.; Chhagan, M.; Bennish, M.L. Zinc or multiple micronutrient supplementation to reduce diarrhea and respiratory disease in South African children: A randomized controlled trial. PLoS ONE 2007, 2, e541. [Google Scholar] [CrossRef] [PubMed]
- O’Dell, B.L. Effect of dietary components upon zinc availability. A review with original data. Am. J. Clin. Nutr. 1969, 22, 1315–1322. [Google Scholar] [CrossRef] [PubMed]
- Vohra, P.; Kratzer, F.H. Influence of various chelating agents on the availability of zinc. J. Nutr. 1964, 82, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, E.; Sandström, B.; Solgaard, P. Zinc, Copper and magnesium absorption from a fibre-rich diet. J. Trace Elem. Med. Biol. 1996, 10, 68–76. [Google Scholar] [CrossRef]
- Barbro, N.; Brittmarie, S.; ÅKe, C. Reduction of the phytate content of bran by leavening in bread and its effect on zinc absorption in man. Br. J. Nutr. 2008, 53, 47–53. [Google Scholar] [CrossRef]
- Lönnerdal, B. Dietary factors influencing zinc absorption. J. Nutr. 2000, 130, 1378S–1383S. [Google Scholar] [CrossRef] [PubMed]
- Coudray, C.; Demigné, C.; Rayssiguier, Y. Effects of dietary fibers on magnesium absorption in animals and humans. J. Nutr. 2003, 133, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Tungland, B.C.; Meyer, D. Nondigestible oligo and polysaccharides (dietary fibre): Their physiology and role in human health and food. Compr. Rev. Food Sci. Food Saf. 2002, 1, 90–109. [Google Scholar] [CrossRef]
- Food and Nutrition Board. Dietary Reference Intakes; Institute of Medicine: Washington, DC, USA, 2001. [Google Scholar]
- Thebaudin, J.Y.; Lefebvre, A.C.; Harrington, M.; Bourgeois, C.M. Dietary fibres: Nutritional and technological interest. Trends Food Sci. Technol. 1997, 8, 41–48. [Google Scholar] [CrossRef]
- Kayne, L.H.; Lee, D.B. Intestinal magnesium absorption. Miner. Electrolyte Metab. 1993, 19, 210–217. [Google Scholar] [PubMed]
- Coudray, C.; Feillet-Coudray, C.; Grizard, D.; Tressol, J.C.; Gueux, E.; Rayssiguier, Y. Fractional intestinal absorption of magnesium is directly proportional to dietary magnesium intake in rats. J. Nutr. 2002, 132, 2043–2047. [Google Scholar] [CrossRef] [PubMed]
- Beyenbach, K.W. Renal handling of magnesium in fish: From whole animal to brush border membrane vesicles. Front. Biosci. 2000, 5, 712–719. [Google Scholar]
- Quamme, G.A. Magnesium homeostasis and renal magnesium handling. Miner. Electrolyte Metab. 1993, 19, 218–225. [Google Scholar] [PubMed]
- Rayssiguier, Y.; Remesy, C. Magnesium absorption in the caecum of rats related to volatile fatty acids production. Ann. Rech. Veterinaires 1977, 8, 105–110. [Google Scholar]
- Lopez, H.W.; Coudray, C.; Bellanger, J.; Levrat-Verny, M.-A.; Demigne, C.; Rayssiguier, Y.; Remesy, C. Resistant starch improves mineral assimilation in rats adapted to a wheat bran diet. Nutr. Res. 2000, 20, 141–155. [Google Scholar] [CrossRef]
- Delzenne, N.; Aertssens, J.; Verplaetse, H.; Roccaro, M.; Roberfroid, M. Effect of fermentable fructo-oligosaccharides on mineral, nitrogen and energy digestive balance in the rat. Life Sci. 1995, 57, 1579–1587. [Google Scholar] [CrossRef]
- Keen, L.; Ensunsa, J.L.; Watson, M.H. Nutritional aspects of manganese from experimental studies. Neurotoxicol. Teratol. 1999, 20, 213–223. [Google Scholar]
- Shils, M.; Olson, J.A.; Shike, M.; Ross, A.C. Modern Nutrition in Health and Disease, 9th ed.; Williams & Wilkins: Baltimore, MD, USA, 1999. [Google Scholar]
- Finley, J.W.; Cindy, D.D. Manganese deficiency and toxicity: Are high or low dietary amounts of manganese cause for concern? Biofactors 1999, 10, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Dhingra, D.; Michael, M.; Rajput, H.; Patil, R.T. Dietary fibre in foods: A review. J. Food Sci. Technol. 2012, 49, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Bao, K.; Wang, K.; Wang, X.; Zhang, T.; Liu, H.; Li, G. Effects of dietary manganese supplementation on nutrient digestibility and production performance in male sika deer (Cervus Nippon). Anim. Sci. J. 2017, 88, 463–467. [Google Scholar] [CrossRef] [PubMed]
- Raboy, V. Seeds for a better future: ‘Low phytate’ grains help to overcome malnutrition and reduce pollution. Trends Plant Sci. 2001, 6, 458–462. [Google Scholar] [CrossRef]
- Harland, B.F.; Morris, E.R. Phytate: A good or a bad food component? Nutr. Res. 1995, 15, 733–754. [Google Scholar] [CrossRef]
- Mertz, W. Interaction of chromium with insulin:A progress report. Nutr. Rev. 1998, 56, 174–177. [Google Scholar] [CrossRef] [PubMed]
- Pechova, A.; Pavlata, L. Chromium as an essential nutrient: A review. Vet. Med. 2007, 52, 1–18. [Google Scholar] [CrossRef]
- Keim, K.S.; Holloway, C.L.; Hebsted, M.A.R.E.N. Absorption of chromium as affected by wheat bran. Cereal Chem. 1987, 64, 352–355. [Google Scholar]
- Harland, B.F. Dietary fibre and mineral bioavailability. Nutr. Res. Rev. 1989, 2, 133–147. [Google Scholar] [CrossRef] [PubMed]
- Platel, K.; Srinivasan, K. Bioavailability of micronutrients from plant foods: An update. Crit. Rev. Food Sci. Nutr. 2016, 56, 1608–1619. [Google Scholar] [CrossRef] [PubMed]
- Baer, D.J.; Stote, K.S.; Henderson, T.; Paul, D.R.; Okuma, K.; Tagami, H.; Kanahori, S.; Gordon, D.T.; Rumpler, W.V.; Ukhanova, M.; et al. The metabolizable energy of dietary resistant maltodextrin is variable and alters fecal microbiota composition in adult men. J. Nutr. 2014, 144, 1023–1029. [Google Scholar] [CrossRef] [PubMed]
- Carnovale, E.; Lugaro, E.; Lombardi-Boccia, G. Phytic acid in faba bean and pea: Effect on protein availability. Cereal Chem. 1988, 65, 114–117. [Google Scholar]
- Paulino, G.; Darcel, N.; Tome, D.; Raybould, H. Adaptation of lipid-induced satiation is not dependent on caloric density in rats. Physiol. Behav. 2008, 93, 930–936. [Google Scholar] [CrossRef] [PubMed]
- Raju, J.; Roberts, J.; Chen, Q.; Aziz, S.A.; Caldwell, D.; Bird, R.P.; Scoggan, K.A.; Brooks, S.P.J. Fermentable carbohydrates differentially affect colon tumor formation in azoxymethane-induced male Fischer 344 rats. J. Nutr. 2016, 146, 737–744. [Google Scholar] [CrossRef] [PubMed]
- Manuel, B.H.J.; Francisca, D.S.M.; del Refugio, F.V.M. Influence of commercial insoluble-dietary fibers on digestibility and protein utilization by rat bioassays. Eur. Int. J. Sci. Technol 2013, 2, 15–23. [Google Scholar]
- Li, Y.O.; Komarek, A.R. Dietary fibre basics: Health, nutrition, analysis, and applications. Food Qual. Saf. 2017, 1, 47–59. [Google Scholar] [CrossRef]
- Gallaher, D.; Schneeman, B. Effect of dietary fiber on protein digestibility and utilization. In CRC Handbook of Dietary Fiber in Human Nutrition; CRC Press: Boca Raton, FL, USA, 1986; pp. 133–160. [Google Scholar]
- Reboul, E.; Borel, P. Proteins involved in uptake, intracellular transport and basolateral secretion of fat-soluble vitamins and carotenoids by mammalian enterocytes. Prog. Lipid Res. 2011, 50, 388–402. [Google Scholar] [CrossRef] [PubMed]
- Robert, R.; Selvendran, A.; Verena, F.; Verne, V. Dietary Fiber: Chemistry, Physiology, and Health Effects, 1st ed.; Plenum Press: New York, NY, USA, 2012; pp. 1–498. [Google Scholar]
- Kasper, H.; Rabast, U.; Fassl, H.; Fehle, F. The effect of dietary fiber on the postprandial serum vitamin A concentration in man. Am. J. Clin. Nutr. 1979, 32, 1847–1849. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-S.; Yu, O.-K.; Byun, M.-S.; Cha, Y.-S. Okara, a soybean by-product, prevents high fat diet-induced obesity and improves serum lipid profiles in C57BL/6 mice. J. Food Sci. Biotechnol. 2016, 25, 607–613. [Google Scholar] [CrossRef]
- Natri, A.M.; Salo, P.; Vikstedt, T.; Palssa, A.; Huttunen, M.; Kärkkäinen, M.U.M.; Salovaara, H.; Piironen, V.; Jakobsen, J.; Lamberg-Allardt, C.J. Bread fortified with cholecalciferol increases the serum 25-hydroxyvitamin D concentration in women as effectively as a cholecalciferol supplement. J. Nutr. 2006, 136, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, A.L.; Vuksan, V.; Jenkins, D.J. Fiber in the treatment of hyperlipidemia. In CRC Handbook of Dietary Fiber in Human Nutrition, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Johnson, S.A. The Doctors Guide to Surviving When Modern Medicine Fails: The Ultimate Natural Medicine Guide to Preventing Disease and Living Longer; Skyhorse Publishing, Inc.: New York, NY, USA, 2015; Volume 1, pp. 74–75. [Google Scholar]
- Kelsay, J.L. Effects of Fiber on Vitamin Bioavailability. In Dietary Fiber: Chemistry, Physiology, and Health Effects; Kritchevsky, D., Bonfield, C.T., Anderson, J., Eds.; Springer: Boston, MA, USA, 1990; pp. 129–135. [Google Scholar]
- Van den, B.H.; van der, G.M.; Hendriks, H. Influence of lifestyle on vitamin bioavailability. Int. J. Vitam. Nutr. Res. 2002, 72, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Horn, S.J.; Vaaje-Kolstad, G.; Westereng, B.; Eijsink, V.G.H. Novel enzymes for the degradation of cellulose. Biotechnol. Biofuels 2012, 5, 45. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.W.; Allgood, L.D.; Lawrence, A.; Altringer, L.A.; Jerdack, G.R.; Hengehold, D.A.; Morel, J.G. Cholesterol-lowering effects of psyllium intake adjunctive to diet therapy in men and women with hypercholesterolemia: Meta-analysis of 8 controlled trials. Am. J. Clin. Nutr. 2000, 71, 472–479. [Google Scholar] [CrossRef] [PubMed]
- Ripsin, C.M.; Keenan, J.M.; Jacobs, D.R.; Elmer, P.J.; Welch, R.R.; Van Horn, L.; Hegsted, M. Oat products and lipid lowering: A meta-analysis. JAMA 1992, 267, 3317–3325. [Google Scholar] [CrossRef] [PubMed]
- Chau, C.F.; Huang, Y.L. Effects of the insoluble fiber derived from Passiflora edulis seed on plasma and hepatic lipids and fecal output. Mol. Nutr. Food Res. 2005, 49, 786–790. [Google Scholar] [CrossRef] [PubMed]
- Cho, I.J.; Lee, C.; Ha, T.Y. Hypolipidemic effect of soluble fiber isolated from seeds of Cassia tora Linn. in rats fed a high-cholesterol diet. J. Agric. Food Chem. 2007, 55, 1592–1596. [Google Scholar] [CrossRef] [PubMed]
- Galisteo, M.; Morón, R.; Rivera, L.; Romero, R.; Anguera, A.; Zarzuelo, A. Plantago ovata husks-supplemented diet ameliorates metabolic alterations in obese Zucker rats through activation of AMP-activated protein kinase. Comparative study with other dietary fibers. Clin. Nutr. 2010, 29, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Delzenne, N.M.; Kok, N. Effects of fructans-type prebiotics on lipid metabolism. Am. J. Clin. Nutr. 2001, 73, 456–458. [Google Scholar] [CrossRef]
- Kimura, Y.; Watanabe, K.; Okuda, H. Effects of soluble sodium alginate on cholesterol excretion and glucose tolerance in rats. J. Ethnopharmacol. 1996, 54, 47–54. [Google Scholar] [CrossRef]
- Kaur, H.; Gupta, A.K.; Saijpal, S. Hypotriglyceridaemic effect of cichorium intybus roots in ethanol injected and saturated fat-fed rats. Med. Sci. Res. 1988, 16, 91–92. [Google Scholar]
- Kaur, N.; Gupta, A.K.; Saijpal, S.; Gupta, P.I. Triglyceride and cholesterol lowering effect of chicory roots in the liver of dexamethasone-injected rats. Med. Sci. Res. 1989, 17, 1009–1010. [Google Scholar]
- Trautwein, E.A.; Rieckhoff, D.R.; Erbersdobler, H.F. Dietary inulin lowers plasma cholesterol and triacylglycerol and alters biliary bile acid profile in hamsters. J. Nutr. 1998, 128, 1937–1943. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, A.; Sandström, B.; Van Amelsvoort, J.M.M. The effect of ingestion of inulin on blood lipids and gastrointestinal symptoms in healthy females. Br. J. Nutr. 2007, 78, 215–222. [Google Scholar] [CrossRef]
- Kim, M.; Shin, H.K. The water-soluble extract of chicory influences serum and liver lipid concentrations, cecal short-chain fatty acid concentrations and fecal lipid excretion in rats. J. Nutr. 1998, 128, 1731–1736. [Google Scholar] [CrossRef] [PubMed]
- Blaut, M. Relationship of prebiotics and food to intestinal microflora. Eur. J. Nutr. 2002, 41, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Van Loo, J.; Coussement, P.; De Leenheer, L.; Hoebregs, H.; Smits, G. On the presence of Inulin and Oligofructose as natural ingredients in the western diet. Crit. Rev. Food Sci. Nutr. 1995, 35, 525–552. [Google Scholar] [CrossRef] [PubMed]
- Suriano, F.; Bindels, L.B.; Verspreet, J.; Courtin, C.M.; Verbeke, K.; Cani, P.D.; Neyrinck, A.M.; Delzenne, N.M. Fat binding capacity and modulation of the gut microbiota both determine the effect of wheat bran fractions on adiposity. Sci. Rep. 2017, 7, 5621. [Google Scholar] [CrossRef] [PubMed]
- Sheflin, A.M.; Melby, C.L.; Carbonero, F.; Weir, T.L. Linking dietary patterns with gut microbial composition and function. Gut Microbes 2017, 8, 113–129. [Google Scholar] [CrossRef] [PubMed]
- Tamang, J.P.; Shin, D.H.; Jung, S.J.; Chae, S.W. Functional properties of microorganisms in fermented foods. Front. Microbiol. 2016, 7, 578. [Google Scholar] [CrossRef] [PubMed]
- Havenaar, R. Intestinal health functions of colonic microbial metabolites: A review. Benef. Microbes 2011, 2, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Wichmann, A.; Allahyar, A.; Greiner, T.U.; Plovier, H.; Lundén, G.Ö.; Larsson, T.; Drucker, D.J.; Delzenne, N.M.; Cani, P.D.; Bäckhed, F. Microbial modulation of energy availability in the colon regulates intestinal transit. Cell Host Microbe 2013, 14, 582–590. [Google Scholar] [CrossRef] [PubMed]
- Kamarul, Z.M.; Chin, K.-F.; Rai, V.; Majid, H.A. Fiber and prebiotic supplementation in enteral nutrition: A systematic review and meta-analysis. World J. Gastroenterol. 2015, 21, 5372–5381. [Google Scholar] [CrossRef] [PubMed]
- Gibson, G.; Willis, C.L.; Van Loo, J. Non digestible oligosaccharides and bifidobacteria: Implications for health. Int. Sugar J. 1994, 96, 381–387. [Google Scholar]
- Roberfroid, M.B.; Van Loo, J.A.E.; Gibson, G.R. The bifidogenic nature of chicory inulin and its hydrolysis products. J. Nutr. 1998, 128, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Kleessen, B.; Hartmann, L.; Blaut, M. Oligofructose and long-chain inulin: Influence on the gut microbial ecology of rats associated with a human fecal flora. Br. J. Nutr. 2007, 86, 291–300. [Google Scholar] [CrossRef]
- Scheppach, W. Effects of short chain fatty acids on gut morphology and function. Gut 1994, 35, 35–38. [Google Scholar] [CrossRef]
- Lewis, B.; Hall, M.B.; Van Soest, P. Interaction between human gut bacteria and dietary fiber substrates. Handbook of dietary fiber in human nutrition. Estados Unidos Gene A Spiller 2001, 3, 271–275. [Google Scholar]
Substrate | Degradability | Bacterial Species |
---|---|---|
Cellulose | Partially fermentable | Bacteroides sp. |
Methyl and carboxymethyl cellulose | Partially fermentable or non-fermentable | Not Known |
Hemicellulose | Partially fermentable | Bacteroides eggerthii; Bacteroides. fragilis subspecies; Bacteroides. ovatus; B. vulgatus; Bifidobacterium adolescentis; B. Infantis |
Pectin | Highly fermentable | Bacteroides fragilis subspecies; B. ovatus; B. thetaiotaomicron; B. “3452A”; Eubacterium eligens. |
Cereal gums | Highly fermentable | Bacteroides distansnis; B. thetaiotaomicron; B. uniformis; B. “T4-1” |
Guar gum, locust bean gum | Highly fermentable | Bacteroides ovatus; B. uniformis; Bifidobacterium adolescentis; Ruminococcus albus |
Arabinogalactans | Partially fermentable | Bacteroides ovatus; B. thetaiotaomicron; B. uniformis; B. vulgatus; B. “T4-1”;B. “3452A”; B. Longum |
Maillard polymer | Non-fermentable | Not Known |
Algal gum | Non-fermentable | Not Known |
Mucopolysaccharide | Highly fermentable | Bacteroides fragilis subspecies; B. ovatus; B. thetaiotaomicron; B. “3452A” |
Mucin glycoprotein | Partially fermentable | Few Bacteroides strains: B. bifidum; R. torques. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adams, S.; Sello, C.T.; Qin, G.-X.; Che, D.; Han, R. Does Dietary Fiber Affect the Levels of Nutritional Components after Feed Formulation? Fibers 2018, 6, 29. https://doi.org/10.3390/fib6020029
Adams S, Sello CT, Qin G-X, Che D, Han R. Does Dietary Fiber Affect the Levels of Nutritional Components after Feed Formulation? Fibers. 2018; 6(2):29. https://doi.org/10.3390/fib6020029
Chicago/Turabian StyleAdams, Seidu, Cornelius Tlotliso Sello, Gui-Xin Qin, Dongsheng Che, and Rui Han. 2018. "Does Dietary Fiber Affect the Levels of Nutritional Components after Feed Formulation?" Fibers 6, no. 2: 29. https://doi.org/10.3390/fib6020029
APA StyleAdams, S., Sello, C. T., Qin, G. -X., Che, D., & Han, R. (2018). Does Dietary Fiber Affect the Levels of Nutritional Components after Feed Formulation? Fibers, 6(2), 29. https://doi.org/10.3390/fib6020029