Applying Machine Learning to Nanoindentation Data of (Nano-) Enhanced Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Computational Data
2.2. Nanoindentation Testing
2.3. Computational Details
2.4. Statistical Metrics
3. Results and Discussion
3.1. Nanoindentation Mapping and Data Clustering
3.2. Descriptor Preprocessing
3.3. Split of Training and Test Sets
3.4. Results and Statistical Performance of Model Grid Tuning, Undersampling and SMOTE Setup
3.5. Model Validation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Newcomb, B.A. Processing, structure and properties of carbon fibers. Compos. Part A Appl. Sci. Manuf. 2016, 91, 262–282. [Google Scholar] [CrossRef]
- Sidorina, A.I.; Gunyaeva, A.G. Market for Carbon Fibres and Composites Based on them. A review. Fibre Chem. 2017, 48, 306–310. [Google Scholar] [CrossRef]
- Xiao, C.; Tan, Y.; Wang, X.; Gao, L.; Wang, L.; Qi, Z. Study on interfacial and mechanical improvement of carbon fiber/epoxy composites by depositing multi-walled carbon nanotubes on fibers. Chem. Phys. Lett. 2018, 703, 8–16. [Google Scholar] [CrossRef]
- Shi, C.; Lei, J.; Zhou, S.; Dai, X.; Zhang, L.-C. Microstructure and mechanical properties of carbon fibers strengthened Ni-based coatings by laser cladding: The effect of carbon fiber contents. J. Alloys Compd. 2018, 744, 146–155. [Google Scholar] [CrossRef]
- Wu, Q.; Zhao, R.; Liu, Q.; Jiao, T.; Zhu, J.; Wang, F. Simultaneous improvement of interfacial strength and toughness between carbon fiber and epoxy by introducing amino functionalized ZrO2 on fiber surface. Mater. Des. 2018, 149, 15–24. [Google Scholar] [CrossRef]
- Koumoulos, E.P.; Kainourios, P.; Charitidis, C.A. Assessing the integrity of CFRPs through nanomechanical mapping: The effect of CF surface modification. MATEC Web Conf. 2018, 188, 01006. [Google Scholar] [CrossRef]
- Reale Batista, M.D.; Drzal, L.T. Carbon fiber/epoxy matrix composite interphases modified with cellulose nanocrystals. Compos. Sci. Technol. 2018, 164, 274–281. [Google Scholar] [CrossRef]
- Hallad, S.A.; Banapurmath, N.R.; Hunashyal, A.M.; Shettar, A.S.; Ayachit, N.H.; Mruthunjaya, A.K.; Lohit, R.B.; Uttur, M. Experimental investigation for graphene and carbon fibre in polymer-based matrix for structural applications. J. Appl. Res. Technol. 2017, 15, 297–302. [Google Scholar] [CrossRef]
- Tam, D.K.Y.; Ruan, S.; Gao, P.; Yu, T. High-performance ballistic protection using polymer nanocomposites. In Advances in Military Textiles and Personal Equipment; Woodhead Publishing: Cambridge, UK, 2012; pp. 213–237. [Google Scholar] [CrossRef]
- Koumoulos, E.P.; Tofail, S.A.M.; Silien, C.; De Felicis, D.; Moscatelli, R.; Dragatogiannis, D.A.; Bemporad, E.; Sebastiani, M.; Charitidis, C.A. Metrology and nano-mechanical tests for nano-manufacturing and nano-bio interface: Challenges & future perspectives. Mater. Des. 2018, 137, 446–462. [Google Scholar] [CrossRef] [Green Version]
- Vignesh, B.; Oliver, W.C.; Kumar, G.S.; Phani, P.S. Critical assessment of high speed nanoindentation mapping technique and data deconvolution on thermal barrier coatings. Mater. Des. 2019, 181, 108084. [Google Scholar] [CrossRef]
- Gibson, R.F. A review of recent research on nanoindentation of polymer composites and their constituents. Compos. Sci. Technol. 2014, 105, 51–65. [Google Scholar] [CrossRef]
- Koumoulos, E.P.; Paraskevoudis, K.; Charitidis, C.A. Constituents Phase Reconstruction through Applied Machine Learning in Nanoindentation Mapping Data of Mortar Surface. J. Compos. Sci. 2019, 3, 63. [Google Scholar] [CrossRef] [Green Version]
- Hao, M.; Wang, Y.; Bryant, S.H. An efficient algorithm coupled with synthetic minority over-sampling technique to classify imbalanced PubChem BioAssay data. Anal. Chim. Acta 2014, 806, 117–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, C.Y.; Hsu, M.T.; Esposito, E.X.; Tseng, Y.J. Oversampling to overcome overfitting: Exploring the relationship between data set composition, molecular descriptors and predictive modeling methods. J. Chem. Inf. Model. 2013, 53, 958–971. [Google Scholar] [CrossRef]
- López, V.; Fernández, A.; Moreno-Torres, J.G.; Herrera, F. Analysis of preprocessing vs. cost-sensitive learning for imbalanced classification. Open problems on intrinsic data characteristics. Expert Syst. Appl. 2012, 39, 6585–6608. [Google Scholar] [CrossRef]
- Romanos, N.; Kalogerini, M.; Koumoulos, E.P.; Morozinis, A.K.; Sebastiani, M.; Charitidis, C. Innovative Data Management in advanced characterization: Implications for materials design. Mater. Today Commun. 2019, 20, 100541. [Google Scholar] [CrossRef]
- Kegelmeyer, W.P.; Hall, L.O.; Bowyer, K.W.; Chawla, N.V. SMOTE: Synthetic Minority Over-sampling Technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Breiman, L. Using Convex Pseudo-Data to Increase Prediction Accuracy; 513; University of California: Berkeley, CA, USA, 2000; pp. 1–18. [Google Scholar]
- Semitekolos, D.; Kainourgios, P.; Jones, C.; Rana, A.; Koumoulos, E.P.; Charitidis, C.A. Advanced carbon fibre composites via poly methacrylic acid surface treatment; surface analysis and mechanical properties investigation. Compos. Part B Eng. 2018, 155, 237–243. [Google Scholar] [CrossRef]
- Kainourgios, P.; Kartsonakis, I.A.; Dragatogiannis, D.A.; Koumoulos, E.P.; Goulis, P.; Charitidis, C.A. Electrochemical surface functionalization of carbon fibers for chemical affinity improvement with epoxy resins. Appl. Surf. Sci. 2017, 416, 593–604. [Google Scholar] [CrossRef]
- Termine, S.; Trompeta, A.-F.A.; Dragatogiannis, D.A.; Charitidis, C.A. Novel CNTs grafting on carbon fibres through CVD: Investigation of epoxy matrix/fibre interface via nanoindentation. In Proceedings of the 9th EASN International Conference on Innovation in Aviation & Space, Athens, Greece, 3–6 September 2019. [Google Scholar]
- Perez, J.J. Managing molecular diversity. Chem. Soc. Rev. 2005, 34, 143–152. [Google Scholar] [CrossRef]
- Tiwari, A.; Natarajan, S. Applied Nanoindentation in Advanced Materials; JohnWiley & Sons: Chichester, UK; Hoboken, NJ, USA, 2017. [Google Scholar]
- Hintsala, E.D.; Hangen, U.; Stauffer, D.D. High-Throughput Nanoindentation for Statistical and Spatial Property Determination. JOM 2018, 70, 494–503. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S. Cost-Sensitive KNN Classification. Neurocomputing 2019. [Google Scholar] [CrossRef]
- Ben-Hur, A.; Technologies, B.; Horn, D.; Siegelmann, H.; Vapnik, V.; Critianini, N.; Shawe-Taylor, J.; Williamson, B. Support Vector Clustering. J. Mach. Learn. Res. 2002, 2, 125–137. [Google Scholar] [CrossRef]
- Tzimas, M.; Michopoulos, J.; Po, G.; Reid, A.C.E.; Papanikolaou, S. Inference and Prediction of Nanoindentation Response in FCC Crystals: Methods and Discrete Dislocation Simulation Examples. arXiv 2019, arXiv:1910.07587. [Google Scholar]
- Asch, V.V. Macro- and Micro-Averaged Evaluation Measures; Technical Report; CLiPS: Antwerpen, Belgium, 2013. [Google Scholar]
- Bangaru, S.S.; Wang, C.; Hassan, M.; Jeon, H.W.; Ayiluri, T. Estimation of the degree of hydration of concrete through automated machine learning based microstructure analysis—A study on effect of image magnification. Adv. Eng. Inform. 2019, 42, 100975. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Bholowalia, P.; Kumar, A. EBK-Means: A Clustering Technique based on Elbow Method and K-Means in WSN. Int. J. Comput. Appl. 2014, 105, 17–24. [Google Scholar]
- Miyagawa, H.; Mase, T.; Sato, C.; Drown, E.; Drzal, L.T.; Ikegami, K. Comparison of experimental and theoretical transverse elastic modulus of carbon fibers. Carbon 2006, 44, 2002–2008. [Google Scholar] [CrossRef]
- Hardiman, M.; Vaughan, T.J.; McCarthy, C.T. Fibrous composite matrix characterisation using nanoindentation: The effect of fibre constraint and the evolution from bulk to in-situ matrix properties. Compos. Part A Appl. Sci. Manuf. 2015, 68, 296–303. [Google Scholar] [CrossRef]
- Sun, J.; Zhao, F.; Yao, Y.; Jin, Z.; Liu, X.; Huang, Y. High efficient and continuous surface modification of carbon fibers with improved tensile strength and interfacial adhesion. Appl. Surf. Sci. 2017, 412, 424–435. [Google Scholar] [CrossRef]
- Cole, D.P.; Henry, T.C.; Gardea, F.; Haynes, R.A. Interphase mechanical behavior of carbon fiber reinforced polymer exposed to cyclic loading. Compos. Sci. Technol. 2017, 151, 202–210. [Google Scholar] [CrossRef]
- Li, Y.; Li, M.; Gu, Y.; Zhang, Z.; Guan, P. Investigation of the nanoscale mechanical properties of carbon fiber/epoxy resin interphase. I. analysis of fiber-stiffening effect during the nanoindentation process based on numerical simulation. Polym. Compos. 2012, 33, 1387–1394. [Google Scholar] [CrossRef]
- Hardiman, M.; Vaughan, T.J.; McCarthy, C.T. A review of key developments and pertinent issues in nanoindentation testing of fibre reinforced plastic microstructures. Compos. Struct. 2017, 180, 782–798. [Google Scholar] [CrossRef]
- Díez-Pascual, A.M.; Gómez-Fatou, M.A.; Ania, F.; Flores, A. Nanoindentation Assessment of the Interphase in Carbon Nanotube-Based Hierarchical Composites. J. Phys. Chem. C 2012, 116, 24193–24200. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, G.; Yang, F. Anisotropic Behavior of the Nanoindentation of Single Carbon Fibers. Nanosci. Nanotechnol. Lett. 2014, 6, 596–600. [Google Scholar] [CrossRef]
- Chevalier, J.; Camanho, P.P.; Lani, F.; Pardoen, T. Multi-scale characterization and modelling of the transverse compression response of unidirectional carbon fiber reinforced epoxy. Compos. Struct. 2019, 209, 160–176. [Google Scholar] [CrossRef]
- Csanádi, T.; Németh, D.; Zhang, C.; Dusza, J. Nanoindentation derived elastic constants of carbon fibres and their nanostructural based predictions. Carbon 2017, 119, 314–325. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.; Li, M.; Wang, J.; Zhang, Z. Characterization of the interphase in carbon fiber/polymer composites using a nanoscale dynamic mechanical imaging technique. Carbon 2010, 48, 3229–3235. [Google Scholar] [CrossRef]
- Wang, L.; Khan, L.; Thuraisingham, B. An Effective Evidence Theory Based K-Nearest Neighbor (KNN) Classification. In Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, Sydney, Australia, 9–12 December 2008; pp. 797–801. [Google Scholar]
CFRP Phases | Epoxy Matrix | Matrix (Fiber Constraint Effect) | CF Interface | CF Interphase/Tip in Mere Contact with CF | CF |
---|---|---|---|---|---|
Er (GPa) | 2–4 | 4–10 GPa | 10–28 | 28–40 | >40 |
Reference | [33,34,35,36,37] | [34,37,38,39] | [34,36,40] | [34,36,40,41,42] | [36,40,43] |
k-means centers (GPa) | 7 | 27 | 43 | 48 |
KNN | CF PMAA | Growth CNTs | Oxygen Species | Pristine |
CF PMAA | 0 | 0 | 3 | 0 |
Growth CNTs | 5 | 9 | 5 | 0 |
Oxygen species | 1 | 2 | 12 | 2 |
Pristine | 11 | 0 | 13 | 29 |
Metrics | CF PMAA | Growth CNTs | Oxygen species | Pristine |
Accuracy | 0.543 | |||
Precision | 0.000 | 0.818 | 0.364 | 0.935 |
Recall | 0.000 | 0.474 | 0.706 | 0.547 |
F1 | NaN | 0.600 | 0.480 | 0.690 |
SVM | CF PMAA | Growth CNTs | Oxygen Species | Pristine |
CF PMAA | 3 | 0 | 0 | 0 |
Growth CNTs | 3 | 11 | 5 | 0 |
Oxygen species | 1 | 0 | 7 | 5 |
Pristine | 10 | 0 | 21 | 26 |
Metrics | CF PMAA | Growth CNTs | Oxygen species | Pristine |
Accuracy | 0.511 | |||
Precision | 0.176 | 1.000 | 0.212 | 0.839 |
Recall | 1 | 0.579 | 0.538 | 0.456 |
F1 | 0.300 | 0.733 | 0.304 | 0.591 |
SVM: Undersampling | CF PMAA | Growth CNTs | Oxygen Species | Pristine |
CF PMAA | 5 | 2 | 5 | 2 |
Growth CNTs | 1 | 6 | 0 | 0 |
Oxygen species | 4 | 2 | 1 | 6 |
Pristine | 4 | 0 | 4 | 3 |
Metrics | CF PMAA | Growth CNTs | Oxygen species | Pristine |
Accuracy | 0.333 | |||
Precision | 0.357 | 0.600 | 0.100 | 0.273 |
Recall | 0.357 | 0.857 | 0.077 | 0.273 |
F1 | 0.357 | 0.706 | 0.087 | 0.273 |
SVM: SMOTE | CF PMAA | Growth CNTs | Oxygen Species | Pristine |
CF PMAA | 4 | 0 | 2 | 2 |
Growth CNTs | 4 | 11 | 4 | 0 |
Oxygen species | 1 | 0 | 4 | 1 |
Pristine | 2 | 0 | 1 | 8 |
Metrics | CF PMAA | Growth CNTs | Oxygen species | Pristine |
Accuracy | 0.614 | |||
Precision | 0.364 | 1.000 | 0.364 | 0.727 |
Recall | 0.500 | 0.579 | 0.667 | 0.727 |
F1 | 0.421 | 0.733 | 0.471 | 0.727 |
SVM Model | CF PMAA Validation Dataset | Growth CNTs Validation Dataset | Oxygen Species Validation Dataset | Pristine Validation Dataset |
---|---|---|---|---|
CF PMAA | 15 | 2 | 2 | 18 |
Growth CNTs | 2 | 36 | 13 | 0 |
Oxygen species | 10 | 0 | 20 | 3 |
Pristine | 6 | 0 | 0 | 31 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koumoulos, E.; Konstantopoulos, G.; Charitidis, C. Applying Machine Learning to Nanoindentation Data of (Nano-) Enhanced Composites. Fibers 2020, 8, 3. https://doi.org/10.3390/fib8010003
Koumoulos E, Konstantopoulos G, Charitidis C. Applying Machine Learning to Nanoindentation Data of (Nano-) Enhanced Composites. Fibers. 2020; 8(1):3. https://doi.org/10.3390/fib8010003
Chicago/Turabian StyleKoumoulos, Elias, George Konstantopoulos, and Costas Charitidis. 2020. "Applying Machine Learning to Nanoindentation Data of (Nano-) Enhanced Composites" Fibers 8, no. 1: 3. https://doi.org/10.3390/fib8010003
APA StyleKoumoulos, E., Konstantopoulos, G., & Charitidis, C. (2020). Applying Machine Learning to Nanoindentation Data of (Nano-) Enhanced Composites. Fibers, 8(1), 3. https://doi.org/10.3390/fib8010003