Effects of Different Test Setups on the Experimental Tensile Behaviour of Basalt Fibre Bidirectional Grids for FRCM Composites
Abstract
:1. Introduction
2. Experimental Program
2.1. Basalt Textile Grid
2.2. Geometry of the Grid Strips and Clamping Solutions
2.2.1. Paper and Leather Tabs
2.2.2. Aluminium Tabs
2.3. Test Setup and Measuring Instrumentation
3. Experimental Results
3.1. Paper Tabs
3.2. Leather Tabs
3.3. Aluminium Tabs
3.4. Tests with the Video-Extensometer
4. Discussion
5. Conclusions
- In samples with the same width tested using paper tabs, the lowest strength was obtained with a 1 mm/min displacement rate. The strength values were obtained with speeds of 2 mm/min and 3 mm/min were similar. In samples tested with the same displacement rate, the highest strength was obtained for a width of 33.5 mm. The failure of samples with a smaller width was characterised by yarn failure close to the gripping area.
- The curves obtained with leather tabs reached higher peak loads compared to the ones with paper tabs. As for paper tabs, the highest strength was obtained for 2 mm/min and 4 mm/min displacement rates. In samples tested with the same displacement rate, greater strength values were obtained for a width of 13.5 mm. Most of the 33.5 and 47.5 mm wide specimens experienced slippage during testing, while the failure mode of the 13.5 mm wide strips was via tensile rupture of the grid in the central area of the strip.
- In samples tested using leather tabs, the shortest strips showed a more marked linear trend and a faster load transfer to the whole specimen for low load values.
- Strips tested using aluminium tabs showed slightly greater strength than samples tested with leather. The failure of the samples was characterised by the tensile rupture of the basalt yarns in the middle of the strips.
- Strains measured using a video-extensometer and gauge length in the central part of the samples were significantly lower than those obtained using the displacement of the machine crosshead.
- Based on the previous results, the mechanical characterisation of the basalt grid was carried out on 13.5 mm wide strips at a 2 mm/min displacement rate and using the video-extensometer to measure the strains. The average strength and strain at peak and Young’s modulus obtained for these tests were 2045 MPa, 2.55% and 81.91 GPa, respectively, with a COV lower than 11%.
Author Contributions
Funding
Conflicts of Interest
References
- He, W.; Wang, X.; Wu, Z. Flexural behavior of RC beams strengthened with prestressed and non-prestressed BFRP grids. Compos. Struct. 2020, 246, 112381. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, J.; Li, W.; Hu, B.; Huang, X. Reliability-based design analysis of FRP shear strengthened reinforced concrete beams considering different FRP configurations. Compos. Struct. 2020, 237, 111957. [Google Scholar] [CrossRef]
- Minafò, G.; Monaco, A.; D’Anna, J.; La Mendola, L. Compressive behaviour of eccentrically loaded slender masonry columns confined by FRP. Eng. Struct. 2018, 172, 214–227. [Google Scholar] [CrossRef]
- D’Anna, J.; Amato, G.; Chen, J.F.; La Mendola, L.; Minafò, G. BFRP grid confined clay brick masonry cylinders under axial compression: Experimental results. In Proceedings of the 9th International Conference on Fibre-Reinforced Polymer (FRP) Composites in Civil Engineering (CICE 2018), Paris, France, 17–19 July 2018; No. Part 2. pp. 123–129. [Google Scholar]
- D’Anna, J.; Amato, G.; Chen, J.F.; Minafò, G.; La Mendola, L. Effectiveness of BFRP confinement on the compressive behaviour of clay brick masonry cylinders. Compos. Struct. 2020, 249, 112558. [Google Scholar] [CrossRef]
- Capozucca, R.; Magagnini, E. Experimental response of masonry walls in-plane loading strengthened with GFRP strips. Compos. Struct. 2020, 235, 111735. [Google Scholar] [CrossRef]
- Chalioris, C.E.; Kosmidou, P.; Papadopoulos, N.A. Investigation of a New Strengthening Technique for RC Deep Beams Using Carbon FRP Ropes as Transverse Reinforcements. Fibers 2018, 6, 52. [Google Scholar] [CrossRef] [Green Version]
- Chalioris, C.E.; Zapris, A.G.; Karayannis, C.G.G. U-Jacketing Applications of Fiber-Reinforced Polymers in Reinforced Concrete T-Beams against Shear—Tests and Design. Fibers 2020, 8, 13. [Google Scholar] [CrossRef] [Green Version]
- Fossetti, M.; Minafò, G. Strengthening of masonry columns with BFRCM or with steel wires: An experimental study. Fibers 2016, 4, 15. [Google Scholar] [CrossRef] [Green Version]
- Minafò, G.; La Mendola, L. Experimental investigation on the effect of mortar grade on the compressive behaviour of FRCM confined masonry columns. Compos. Part B-Eng. 2018, 146, 1–12. [Google Scholar] [CrossRef]
- Meriggi, P.; de Felice, G.; De Santis, S. Design of the out-of-plane strengthening of masonry walls with Fabric Reinforced Cementitious Matrix composites. Constr. Build. Mater. 2020, 240, 117946. [Google Scholar] [CrossRef]
- D’Anna, J.; Amato, G.; Chen, J.F.; Minafò, G.; La Mendola, L. Performance assessment of basalt FRCM for the confinement of clay brick masonry cylinders. In Proceedings of the 12th International Conference on Structural Analysis of Historical Constructions (SAHC 2020), Barcelona, Spain, 29 September–1 October 2021. [Google Scholar]
- Brückner, A.; Ortlepp, R.; Curbach, M. Textile reinforced concrete for strengthening in bending and shear. Mater. Struct. 2006, 39, 741–748. [Google Scholar] [CrossRef]
- Al-Salloum, Y.A.; Elsanadedy, H.M.; Alsayed, S.H.; Iqbal, R.A. Experimental and Numerical Study for the Shear Strengthening of Reinforced Concrete Beams Using Textile-Reinforced Mortar. J. Compos. Constr. 2012, 16, 74–90. [Google Scholar] [CrossRef]
- Leone, M.; Aiello, M.A.; Balsamo, A.; Carozzi, F.G.; Ceroni, F.; Corradi, M.; Gams, M.; Garbin, E.; Gattesco, N.; Krajewski, P.; et al. Glass fabric reinforced cementitious matrix: Tensile properties and bond performance on masonry substrate. Compos. Part B-Eng. 2017, 127, 196–214. [Google Scholar] [CrossRef] [Green Version]
- De Santis, S.; Ceroni, F.; De Felice, G.; Fagone, M.; Ghiassi, B.; Kwiecień, A.; Lignola, G.P.; Morganti, M.; Santandrea, M.; Valluzzi, M.R.; et al. Round Robin Test on tensile and bond behaviour of Steel Reinforced Grout systems. Compos. Part B-Eng. 2017, 127, 100–120. [Google Scholar] [CrossRef]
- Caggegi, C.; Carozzi, F.G.; De Santis, S.; Fabbrocino, F.; Focacci, F.; Hojdys, Ł.; Lanoye, E.; Zuccarino, L. Experimental analysis on tensile and bond properties of PBO and aramid fabric reinforced cementitious matrix for strengthening masonry structures. Compos. Part B-Eng. 2017, 127, 175–195. [Google Scholar] [CrossRef]
- Carozzi, F.G.; Bellini, A.; D’Antino, T.; De Felice, G.; Focacci, F.; Hojdys, Ł.; Laghi, L.; Lanoye, E.; Micelli, F.; Panizza, M.; et al. Experimental investigation of tensile and bond properties of Carbon-FRCM composites for strengthening masonry elements. Compos. Part B-Eng. 2017, 128, 100–119. [Google Scholar] [CrossRef]
- Ombres, L.; Mancuso, N.; Mazzuca, S.; Verre, S. Bond between Carbon Fabric-Reinforced Cementitious Matrix and Masonry Substrate. J. Mater. Civ. Eng. 2019, 31, 04018356. [Google Scholar] [CrossRef]
- D’Anna, J.; Amato, G.; Chen, J.F.; Minafò, G.; La Mendola, L. On the Use of Digital Image Correlation (DIC) for Evaluating the Tensile Behaviour of BFRCM Strips. Key Eng. Mater. 2019, 817, 377–384. [Google Scholar] [CrossRef]
- Caggegi, C.; Lanoye, E.; Djama, K.; Bassil, A.; Gabor, A. Tensile behaviour of a basalt TRM strengthening system: Influence of mortar and reinforcing textile ratios. Compos. Part B-Eng. 2017, 130, 90–102. [Google Scholar] [CrossRef]
- D’Antino, T.; Papanicolaou, C. Mechanical characterization of textile reinforced inorganic-matrix composites. Compos. Part. B-Eng. 2017, 127, 78–91. [Google Scholar] [CrossRef]
- D’Antino, T.; Papanicolaou, C.C. Comparison between different tensile test set-ups for the mechanical characterization of inorganic-matrix composites. Constr. Build. Mater. 2018, 171, 140–151. [Google Scholar] [CrossRef]
- Arboleda, D.; Carozzi, F.G.; Nanni, A.; Poggi, C. Testing procedures for the uniaxial tensile characterization of fabric-reinforced cementitious matrix composites. J. Compos. Constr. 2015, 20, 04015063. [Google Scholar] [CrossRef]
- Ghiassi, B. Mechanics and durability of textile reinforced mortars: A review of recent advances and open issues. RILEM Tech. Lett. 2019, 4, 130–137. [Google Scholar] [CrossRef]
- Lignola, G.; Caggegi, C.; Ceroni, F.; De Santis, S.; Krajewski, P.; Lourenço, P.B.; Morganti, M.; Papanicolaou, C. (Corina); Pellegrino, C.; Prota, A.; et al. Performance assessment of basalt FRCM for retrofit applications on masonry. Compos. Part. B-Eng. 2017, 128, 1–18. [Google Scholar] [CrossRef]
- D’Anna, J. Experimental Investigation on the Effectiveness of Basalt-Fibre Strengthening Systems for Confining Masonry Elements. Ph.D. Thesis, University of Palermo, Palermo, Italy, 2019. [Google Scholar]
- ISO 13934-1 Textiles—Tensile Properties of Fabrics—Part. 1: Determination of Maximum Force and Elongation at Maximum Force Using the Strip Method. 2013. Available online: https://www.iso.org/standard/60676.html (accessed on 15 September 2020).
- GOM GmbH. GOM Testing—Technical Documentation as of V8 SR1, Digital Image Correlation and Strain Computation Basics; GOM mbH: Braunschweig, Germany, 2016. [Google Scholar]
- Zwick/Roell Group, Germany—Austria. Zwick/Roell VideoXtens, Manual No. 255. 2015. Available online: https://www.zwickroell.com/en/extensometers (accessed on 15 September 2020).
Tab Type | Sample ID | Sample Geometry | Displacement Rate (mm/min) | Strain Rate (1/min) | Displacement Measurement System | ||||
---|---|---|---|---|---|---|---|---|---|
Width | Total Length | Length between Grips | Gripping Length | Gauge Length | |||||
(mm) | (mm) | (mm) | (mm) | (mm) | |||||
Paper | 1P200-W1S1 | 13.5 | 300 | 200 | 50 | 200 | 1 | 0.005 | Crosshead Travel Monitor |
1P200-W1S2 | 2 | 0.01 | |||||||
1P200-W1S3 | 3 | 0.015 | |||||||
1P200-W3S1 | 33.5 | 300 | 200 | 50 | 200 | 1 | 0.005 | ||
1P200-W3S2 | 2 | 0.01 | |||||||
1P200-W3S3 | 3 | 0.015 | |||||||
1P200-W4S1 | 47.5 | 300 | 200 | 50 | 200 | 1 | 0.005 | ||
1P200-W4S2 | 2 | 0.01 | |||||||
1P200-W4S3 | 3 | 0.015 | |||||||
Leather | 1L200-W1S1 | 13.5 | 300 | 200 | 50 | 200 | 1 | 0.005 | |
2L200-W1S1 | 1 | 0.005 | |||||||
3L200-W1S1 | 1 | 0.005 | |||||||
1L200-W1S2 | 2 | 0.01 | |||||||
2L200-W1S2 | 2 | 0.01 | |||||||
1L200-W1S4 | 4 | 0.02 | |||||||
1L200-W3S1 | 33.5 | 300 | 200 | 50 | 200 | 1 | 0.005 | ||
1L200-W3S2 | 2 | 0.01 | |||||||
2L200-W3S2 | 2 | 0.01 | |||||||
3L200-W3S2 | 2 | 0.01 | |||||||
1L200-W3S4 | 4 | 0.02 | |||||||
1L200-W5S1 | 47.5 | 300 | 200 | 50 | 200 | 1 | 0.005 | ||
1L200-W5S2 | 2 | 0.01 | |||||||
1L200-W5S4 | 4 | 0.02 | |||||||
1L150-W1S1 | 13.5 | 250 | 150 | 50 | 150 | 1 | 0.007 | ||
1L150-W1S2 | 2 | 0.013 | |||||||
2L150-W1S2 | 2 | 0.013 | |||||||
Aluminium | 1A100-W1S1 | 13.5 | 260 | 160 | 50 | 1 | 0.01 | ||
1A100-W1S2 | 100 | 2 | 0.02 | ||||||
2A100-W1S2 | 2 | 0.02 | |||||||
1A100-W1S2_ | 13.5 | 260 | 160 | 50 | 80 | 2 | 0.02 | Video-Extensometer | |
2A100-W1S2_ | |||||||||
3A100-W1S2_ | |||||||||
4A100-W1S2_ | |||||||||
5A100-W1S2_ | |||||||||
6A100-W1S2_ | |||||||||
7A100-W1S2_ | |||||||||
8A100-W1S2_ | |||||||||
9A100-W1S2_ | |||||||||
10A100-W1S2_ | |||||||||
11A100-W1S2_ | |||||||||
12A100-W1S2_ |
Material | Unit Weight | Mesh Size | Density | Tensile Strength | Elastic Modulus | Equivalent Thickness | Elongation at Failure |
---|---|---|---|---|---|---|---|
Basalt fiber Grid | 250 g/m2 | 6 × 6 mm | 2.75 g/cm3 | 60 kN/m | 89 GPa | 0.039 mm | 1.8% |
Clamping Method | Sample | Tensile Strength (MPa) | Tensile Strain (%) | Failure Mode |
---|---|---|---|---|
Paper | 1P200-W1S1 | 1201.87 | 2.13 | A |
1P200-W1S2 | 1300.81 | 2.44 | A | |
1P200-W1S3 | 1195.92 | 2.23 | A | |
1P200-W3S1 | 1302.31 | 2.38 | C | |
1P200-W3S2 | 1539.38 | 2.90 | C | |
1P200-W3S3 | 1546.69 | 3.00 | C | |
1P200-W4S1 | 1030.76 | 2.08 | A | |
1P200-W4S2 | 1253.00 | 2.35 | A | |
1P200-W4S3 | 1213.33 | 2.35 | C | |
Leather | 1L200-W1S1 | 2103.38 | 3.78 | A |
2L200-W1S1 | 1765.94 | 3.21 | A | |
3L200-W1S1 | 2214.50 | 4.05 | B | |
1L200-W1S2 | 1961.39 | 3.47 | B | |
2L200-W1S2 | 2206.78 | 4.00 | A | |
1L200-W1S4 | 2129.43 | 3.87 | A | |
1L200-W3S1 | 1631.88 | 3.18 | D | |
1L200-W3S2 | 2101.72 | 4.07 | C | |
2L200-W3S2 | 1916.20 | 4.03 | D | |
3L200-W3S2 | 1934.43 | 3.87 | D | |
1L200-W3S4 | 2009.21 | 3.74 | C | |
1L200-W5S1 | 1365.02 | 2.59 | D | |
1L200-W5S2 | 1601.61 | 3.17 | D | |
1L200-W5S4 | 1725.31 | 3.57 | D | |
1L150-W1S1 | 1813.45 | 2.87 | A | |
1L150-W1S2 | 2191.78 | 3.78 | B | |
2L150-W1S2 | 2215.46 | 3.82 | B | |
Aluminium | 1A100-W1S1 | 1693.75 | 2.67 | B |
1A100-W1S2 | 2066.60 | 3.96 | B | |
2A100-W1S2 | 2072.38 | 3.65 | B |
Sample | Tensile Strength (MPa) | Average Tensile Strength (MPa) and COV | Tensile Strain (%) | Average Tensile Strain (%) and COV | Elastic Modulus (GPa) | Average Elastic Modulus (GPa) and COV | Failure Mode |
---|---|---|---|---|---|---|---|
1A100-W1S2_ | 2162 | 2045 (10.55%) | 2.50 | 2.55 (8.21%) | 84.02 | 81.91 (3.48%) | B |
2A100-W1S2_ | 2431 | 2.92 | 87.96 | B | |||
3A100-W1S2_ | 2289 | 2.87 | 81.08 | A | |||
4A100-W1S2_ | 2221 | 2.70 | 84.18 | B | |||
5A100-W1S2_ | 2096 | 2.55 | 88.73 | B | |||
6A100-W1S2_ | 1976 | 2.60 | 80.64 | B | |||
7A100-W1S2_ | 1941 | 2.44 | 79.35 | A | |||
8A100-W1S2_ | 1779 | 2.56 | 81.32 | B | |||
9A100-W1S2_ | 2037 | 2.39 | 81.03 | B | |||
10A100-W1S2_ | 2083 | 2.58 | 83.07 | B | |||
11A100-W1S2_ | 1703 | 2.20 | 77.26 | A | |||
12A100-W1S2_ | 1819 | 2.31 | 79.24 | B | |||
Manufacturer Values | 1542 * | 1.80 | 89.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Anna, J.; Amato, G.; Chen, J.; Minafò, G.; La Mendola, L. Effects of Different Test Setups on the Experimental Tensile Behaviour of Basalt Fibre Bidirectional Grids for FRCM Composites. Fibers 2020, 8, 68. https://doi.org/10.3390/fib8110068
D’Anna J, Amato G, Chen J, Minafò G, La Mendola L. Effects of Different Test Setups on the Experimental Tensile Behaviour of Basalt Fibre Bidirectional Grids for FRCM Composites. Fibers. 2020; 8(11):68. https://doi.org/10.3390/fib8110068
Chicago/Turabian StyleD’Anna, Jennifer, Giuseppina Amato, Jianfei Chen, Giovanni Minafò, and Lidia La Mendola. 2020. "Effects of Different Test Setups on the Experimental Tensile Behaviour of Basalt Fibre Bidirectional Grids for FRCM Composites" Fibers 8, no. 11: 68. https://doi.org/10.3390/fib8110068
APA StyleD’Anna, J., Amato, G., Chen, J., Minafò, G., & La Mendola, L. (2020). Effects of Different Test Setups on the Experimental Tensile Behaviour of Basalt Fibre Bidirectional Grids for FRCM Composites. Fibers, 8(11), 68. https://doi.org/10.3390/fib8110068