Wettability and Anti-Corrosion Performances of Carbon Nanotube-Silane Composite Coatings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Carbon Nanotube Synthesis
2.2. Coating Synthesis
2.3. Experimental Analysis
3. Results and Discussion
3.1. Morphology
3.2. Wettability
3.3. Adhesion
3.4. Potentiodynamic Analysis
3.5. EIS Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Deflorian, F.; Rossi, S.; Fedel, M. Organic coatings degradation: Comparison between natural and artificial weathering. Corros. Sci. 2008, 50, 2360–2366. [Google Scholar] [CrossRef]
- Fihri, A.; Bovero, E.; Al-Shahrani, A.; Al-Ghamdi, A.; Alabedi, G. Recent progress in superhydrophobic coatings used for steel protection: A review. Colloids Surf. A Physicochem. Eng. Asp. 2017, 520, 378–390. [Google Scholar] [CrossRef]
- Bayer, I.S. Superhydrophobic Coatings from Ecofriendly Materials and Processes: A Review. Adv. Mater. Interfaces 2020, 7, 2000095. [Google Scholar] [CrossRef]
- Salehikahrizsangi, P.; Raeissi, K.; Karimzadeh, F.; Calabrese, L.; Proverbio, E. Highly hydrophobic Ni-W electrodeposited film with hierarchical structure. Surf. Coat. Technol. 2018, 344, 626–635. [Google Scholar] [CrossRef]
- Salehikahrizsangi, P.; Raeissi, K.; Karimzadeh, F.; Calabrese, L.; Patane, S.; Proverbio, E. Erosion-corrosion behavior of highly hydrophobic hierarchical nickel coatings. Colloids Surfaces A Physicochem. Eng. Asp. 2018, 558, 446–454. [Google Scholar] [CrossRef]
- Boyer, Q.; Duluard, S.; Tenailleau, C.; Ansart, F.; Turq, V.; Bonino, J.P. Functionalized superhydrophobic coatings with micro-/nanostructured ZnO particles in a sol–gel matrix. J. Mater. Sci. 2017, 52, 12677–12688. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, W.; He, G.; Zhang, P.; Zhang, Z.; Parkin, I.P. Flexible and mechanically robust superhydrophobic silicone surfaces with stable Cassie-Baxter state. J. Mater. Chem. A 2016, 4, 14180–14186. [Google Scholar] [CrossRef] [Green Version]
- Batalha Leoni, G.; de Freitas, D.S.; Ponciano Gomes, J.A.C.; Brasil, S.L.D.C. Multivariable analysis of electrodeposited silane based superhydrophobic coatings for corrosion protection of carbon steel. J. Sol-Gel Sci. Technol. 2020, 94, 695–707. [Google Scholar] [CrossRef]
- Rioboo, R.; Demnati, I.; Amin Ali, M.; Sevkan, R.; De Coninck, J. Superhydrophobicity of composite surfaces created from polymer blends. J. Colloid Interface Sci. 2020, 560, 596–605. [Google Scholar] [CrossRef]
- Yu, H.B.; Li, R.F. Preparation and properties of biomimetic superhydrophobic composite coating. Surf. Eng. 2016, 32, 79–84. [Google Scholar] [CrossRef]
- Lu, Z.; Xu, L.; He, Y.; Zhou, J. One-step facile route to fabricate functionalized nano-silica and silicone sealant based transparent superhydrophobic coating. Thin Solid Films 2019, 692, 137560. [Google Scholar] [CrossRef]
- Ghosal, A.; Iqbal, S.; Ahmad, S. NiO nanofiller dispersed hybrid Soy epoxy anticorrosive coatings. Prog. Org. Coat. 2019, 133, 61–76. [Google Scholar] [CrossRef]
- Selim, M.S.; Yang, H.; Wang, F.Q.; Fatthallah, N.A.; Li, X.; Li, Y.; Huang, Y. Superhydrophobic silicone/SiC nanowire composite as a fouling release coating material. J. Coat. Technol. Res. 2019, 16, 1165–1180. [Google Scholar] [CrossRef]
- Song, H.J.; Shen, X.Q.; Meng, X.F. Superhydrophobic surfaces produced by carbon nanotube modified polystyrene composite coating. J. Dispers Sci. Technol. 2010, 31, 1465–1468. [Google Scholar] [CrossRef]
- Men, X.H.; Zhang, Z.Z.; Yang, J.; Wang, K.; Jiang, W. Superhydrophobic/superhydrophilic surfaces from a carbon nanotube based composite coating. Appl. Phys. A Mater. Sci. Process. 2010, 98, 275–280. [Google Scholar] [CrossRef]
- Sethi, S.K.; Manik, G. Recent Progress in Super Hydrophobic/Hydrophilic Self-Cleaning Surfaces for Various Industrial Applications: A Review. Polym.-Plast. Technol. Eng. 2018, 57, 1932–1952. [Google Scholar] [CrossRef]
- Vazirinasab, E.; Jafari, R.; Momen, G. Application of superhydrophobic coatings as a corrosion barrier: A review. Surf. Coat. Technol. 2018, 341, 40–56. [Google Scholar] [CrossRef]
- Nguyen-Tri, P.; Tran, H.N.; Plamondon, C.O.; Tuduri, L.; Vo, D.V.N.; Nanda, S.; Mishra, A.; Chao, H.P.; Bajpai, A.K. Recent progress in the preparation, properties and applications of superhydrophobic nano-based coatings and surfaces: A review. Prog. Org. Coat. 2019, 132, 235–256. [Google Scholar] [CrossRef]
- Bakhsheshi-Rad, H.R.; Abdellahi, M.; Hamzah, E.; Daroonparvar, M.; Rafiei, M. Introducing a composite coating containing CNTs with good corrosion properties: Characterization and simulation. RSC Adv. 2016, 6, 108498–108512. [Google Scholar] [CrossRef]
- Shoujie, L.; Hejun, L.; Leilei, Z.; Shaoxian, L.; Lina, P. The corrosion properties of carbon nanotubes-reinforced apatite composite coating on carbon/carbon composite by a double in situ process. Surf. Eng. 2019, 35, 96–101. [Google Scholar] [CrossRef]
- Kausar, A. Corrosion Protection Behavior of Carbon Nanotube - based Nanocomposite. Am. J. Environ. Sci. Technol. 2019, 3, 22–29. [Google Scholar]
- Peitao, G.; Mingyang, T.; Chaoyang, Z. Tribological and corrosion resistance properties of graphite composite coating on AZ31 Mg alloy surface produced by plasma electrolytic oxidation. Surf. Coat. Technol. 2019, 359, 197–205. [Google Scholar] [CrossRef]
- Hussain, A.K.; Sudin, I.; Basheer, U.M.; Yusop, M.Z.M. A review on graphene-based polymer composite coatings for the corrosion protection of metals. Corros. Rev. 2019, 37, 343–363. [Google Scholar] [CrossRef]
- Foyet, A.; Wu, T.H.; Kodentsov, A.; van der Ven, L.G.J.; de With, G.; van Benthem, R.A.T.M. Corrosion Protection and Delamination Mechanism of Epoxy/Carbon Black Nanocomposite Coating on AA2024-T3. J. Electrochem. Soc. 2013, 160, C159–C167. [Google Scholar] [CrossRef]
- De Nicola, F.; Castrucci, P.; Scarselli, M.; Nanni, F.; Cacciotti, I.; De Crescenzi, M. Super-hydrophobic multi-walled carbon nanotube coatings for stainless steel Related content. Nanotechnology 2015, 26, 14570. [Google Scholar] [CrossRef]
- Zhu, X.; Zhou, S.; Yan, Q.; Wang, S. Multi-walled carbon nanotubes enhanced superhydrophobic MWCNTs-Co/a-C:H carbon-based film for excellent self-cleaning and corrosion resistance. Diam. Relat. Mater. 2018, 86, 87–97. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Zhu, X.; Ma, L.; Yan, Q.; Wang, S. Outstanding superhydrophobicity and corrosion resistance on carbon-based film surfaces coupled with multi-walled carbon nanotubes and nickel nano-particles. Surf. Sci. 2018, 677, 193–202. [Google Scholar] [CrossRef]
- Canobre, S.C.; Almeida, D.A.L.; Polo Fonseca, C.; Neves, S. Synthesis and characterization of hybrid composites based on carbon nanotubes. Electrochim. Acta 2009, 54, 6383–6388. [Google Scholar] [CrossRef]
- Serp, P.; Corrias, M.; Kalck, P. Carbon nanotubes and nanofibers in catalysis. Appl. Catal. A Gen. 2003, 253, 337–358. [Google Scholar] [CrossRef]
- Deyab, M.A. Corrosion protection of aluminum bipolar plates with polyaniline coating containing carbon nanotubes in acidic medium inside the polymer electrolyte membrane fuel cell. J. Power Sources 2014, 268, 50–55. [Google Scholar] [CrossRef]
- Khun, N.W.; Rincon Troconis, B.C.; Frankel, G.S. Effects of carbon nanotube content on adhesion strength and wear and corrosion resistance of epoxy composite coatings on AA2024-T3. Prog. Org. Coat. 2014, 77, 72–80. [Google Scholar] [CrossRef]
- Hammer, P.; dos Santos, F.C.; Cerrutti, B.M.; Pulcinelli, S.H.; Santilli, C.V. Corrosion Resistant Coatings Based on Organic-Inorganic Hybrids Reinforced by Carbon Nanotubes. In Recent Researches in Corrosion Evaluation and Protection; Reza, S.R., Ed.; Intech: London, UK, 2012; pp. 117–142. [Google Scholar]
- Liu, Y.; Cao, H.; Yu, Y.; Chen, S. Corrosion Protection of Silane Coatings Modified by Carbon Nanotubes on Stainless Steel. Int. J. Electrochem. Sci. 2015, 10, 3497–3509. [Google Scholar]
- Jeeva Jothi, K.; Palanivelu, K. Synergistic effect of silane modified nanocomposites for active corrosion protection. Ceram. Int. 2013, 39, 7619–7625. [Google Scholar] [CrossRef]
- Montemor, M.F.; Ferreira, M.G.S. Analytical characterisation and corrosion behaviour of bis-aminosilane coatings modified with carbon nanotubes activated with rare-earth salts applied on AZ31 Magnesium alloy. Surf. Coat. Technol. 2008, 202, 4766–4774. [Google Scholar] [CrossRef]
- Nezamdoust, S.; Seifzadeh, D.; Rajabalizadeh, Z. PTMS/OH-MWCNT sol-gel nanocomposite for corrosion protection of magnesium alloy. Surf. Coat. Technol. 2018, 335, 228–240. [Google Scholar] [CrossRef]
- Piperopoulos, E.; Calabrese, L.; Mastronardo, E.; Proverbio, E.; Milone, C. Synthesis of reusable silicone foam containing carbon nanotubes for oil spill remediation. J. Appl. Polym. Sci. 2018, 135, 46067. [Google Scholar] [CrossRef]
- Messina, G.; Modafferi, V.; Santangelo, S.; Tripodi, P.; Donato, M.G.; Lanza, M.; Galvagno, S.; Milone, C.; Piperopoulos, E.; Pistone, A. Large-scale production of high-quality multi-walled carbon nanotubes: Role of precursor gas and of Fe-catalyst support. Diam. Relat. Mater. 2008, 17, 1482–1488. [Google Scholar] [CrossRef]
- Milone, C.; Shahul Hameed, A.R.; Piperopoulos, E.; Santangelo, S.; Lanza, M.; Galvagno, S. Catalytic wet air oxidation of p-coumaric acid over carbon nanotubes and activated carbon. Ind. Eng. Chem. Res. 2011, 50, 9043–9053. [Google Scholar] [CrossRef]
- Calabrese, L.; Bonaccorsi, L.; Caprì, A.; Proverbio, E. Adhesion aspects of hydrophobic silane zeolite coatings for corrosion protection of aluminium substrate. Prog. Org. Coat. 2014, 77, 1341–1350. [Google Scholar] [CrossRef]
- Akbarzadeh, S.; Naderi, R.; Mahdavian, M. Fabrication of a highly protective silane composite coating with limited water uptake utilizing functionalized carbon nano-tubes. Compos. Part B Eng. 2019, 175, 107109. [Google Scholar] [CrossRef]
- Calabrese, L.; Bonaccorsi, L.; Caprì, A.; Proverbio, E. Effect of silane matrix composition on performances of zeolite composite coatings. Prog. Org. Coat. 2016, 101, 100–110. [Google Scholar] [CrossRef]
- Gerhard Kreysa, M.S. Corrosion Handbook, Corrosive Agents and Their Interaction with Materials, Volume 7, Sodium Chloride; Wiley VCH: Weinheim, Germany, 2007; ISBN 9783527311231. [Google Scholar]
- Linardi, E.; Haddad, R.; Lanzani, L. Stability Analysis of the Mg2Si Phase in AA 6061 Aluminum Alloy. Procedia Mater. Sci. 2012, 1, 550–557. [Google Scholar] [CrossRef] [Green Version]
- Calabrese, L.; Bonaccorsi, L.; Proverbio, E. Corrosion protection of aluminum 6061 in NaCl solution by silane-zeolite composite coatings. J. Coat. Technol. Res. 2012, 9, 597–607. [Google Scholar] [CrossRef]
- Vargel, C. Corrosion of Aluminium; Elsevier: Amsterdam, The Netherlands, 2004; ISBN 9780080444956. [Google Scholar]
- Calabrese, L.; Bonaccorsi, L.; Caprì, A.; Proverbio, E. Assessment of hydrophobic and anticorrosion properties of composite silane–zeolite coatings on aluminum substrate. J. Coat. Technol. Res. 2016, 13, 287–297. [Google Scholar] [CrossRef]
- van Ooij, W.J.; Zhu, D.; Stacy, M.; Seth, A.; Mugada, T.; Gandhi, J.; Puomi, P. Corrosion protection properties of organofunctional silanes—An overview. Tsinghua Sci. Technol. 2005, 10, 639–664. [Google Scholar] [CrossRef]
- Calabrese, L.; Bonaccorsi, L.; Caprì, A.; Proverbio, E. Electrochemical behavior of hydrophobic silane–zeolite coatings for corrosion protection of aluminum substrate. J. Coat. Technol. Res. 2014, 11, 883–898. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, Y.; Zhang, Y. Effect of Graphene on Micro-Structure and Properties of MAO Coating Prepared on Mg-Li Alloy. Int. J. Electrochem. Sci. 2017, 12, 6081–6091. [Google Scholar] [CrossRef]
- Zhou, C.; Lu, X.; Xin, Z.; Liu, J.; Zhang, Y. Polybenzoxazine/SiO2 nanocomposite coatings for corrosion protection of mild steel. Corros. Sci. 2014, 80, 269–275. [Google Scholar] [CrossRef]
- Han, J.T.; Kim, S.Y.; Woo, J.S.; Lee, G.-W. Transparent, Conductive, and Superhydrophobic Films from Stabilized Carbon Nanotube/Silane Sol Mixture Solution. Adv. Mater. 2008, 20, 3724–3727. [Google Scholar] [CrossRef]
- Sharma, V.; Goyat, M.S.; Hooda, A.; Pandey, J.K.; Kumar, A.; Gupta, R.; Upadhyay, A.K.; Prakash, R.; Kirabira, J.B.; Mandal, P.; et al. Recent progress in nano-oxides and CNTs based corrosion resistant superhydrophobic coatings: A critical review. Prog. Org. Coat. 2020, 140, 105512. [Google Scholar] [CrossRef]
- Lasia, A. Electrochemical Impedance Spectroscopy and Its Applications; Springer: Berlin/Heidelberg, Germany, 2014; ISBN 9781461489337. [Google Scholar]
- Huang, Y.; Shih, H.; Daugherty, J.; Mansfeld, F. Evaluation of the properties of anodized aluminum 6061 subjected to thermal cycling treatment using electrochemical impedance spectroscopy (EIS). Corros. Sci. 2009, 51, 2493–2501. [Google Scholar] [CrossRef]
- Jeon, H.R.; Park, J.H.; Shon, M.Y. Corrosion protection by epoxy coating containing multi-walled carbon nanotubes. J. Ind. Eng. Chem. 2013, 19, 849–853. [Google Scholar] [CrossRef]
- Vivar Mora, L.; Naik, S.; Paul, S.; Dawson, R.; Neville, A.; Barker, R. Influence of silica nanoparticles on corrosion resistance of sol-gel based coatings on mild steel. Surf. Coat. Technol. 2017, 324, 368–375. [Google Scholar] [CrossRef] [Green Version]
- Poh, C.L.; Mariatti, M.; Noor, A.F.M.; Sidek, O.; Chuah, T.P.; Chow, S.C. Dielectric properties of surface treated multi-walled carbon nanotube/epoxy thin film composites. Compos. Part B Eng. 2016, 85, 50–58. [Google Scholar] [CrossRef]
- Chang, J.; Liang, G.; Gu, A.; Cai, S.; Yuan, L. The production of carbon nanotube/epoxy composites with a very high dielectric constant and low dielectric loss by microwave curing. Carbon 2012, 50, 689–698. [Google Scholar] [CrossRef]
- Song, D.; Yin, Z.; Liu, F.; Wan, H.; Gao, J.; Zhang, D.; Li, X. Effect of carbon nanotubes on the corrosion resistance of water-borne acrylic coatings. Prog. Org. Coat. 2017, 110, 182–186. [Google Scholar] [CrossRef]
- Calabrese, L.; Proverbio, E. A brief overview on the anticorrosion performances of sol-gel zeolite coatings. Coatings 2019, 9, 409. [Google Scholar] [CrossRef] [Green Version]
Code | CNT wt.% | Silane | Notes |
---|---|---|---|
Al | - | - | Bare aluminum |
AS3 | - | S3 | Silane coating |
AS3-CNT2 | 0.2 | S3 | Composite coating |
AS3-CNT4 | 0.4 | S3 | Composite coating |
AS3-CNT6 | 0.6 | S3 | Composite coating |
Code | Icorr (mA/cm2) | Ecorr (V vs. Ag/AgClsat) |
---|---|---|
Al | 1.0 × 10−2 | −1.380 |
AS3 | 0.8 × 10−2 | −1.210 |
AS3-CNT2 | 2.0 × 10−4 | −0.160 |
AS3-CNT4 | 3.0 × 10−4 | −0.190 |
AS3-CNT6 | 1.0 × 10−5 | −0.220 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calabrese, L.; Khaskoussi, A.; Proverbio, E. Wettability and Anti-Corrosion Performances of Carbon Nanotube-Silane Composite Coatings. Fibers 2020, 8, 57. https://doi.org/10.3390/fib8090057
Calabrese L, Khaskoussi A, Proverbio E. Wettability and Anti-Corrosion Performances of Carbon Nanotube-Silane Composite Coatings. Fibers. 2020; 8(9):57. https://doi.org/10.3390/fib8090057
Chicago/Turabian StyleCalabrese, Luigi, Amani Khaskoussi, and Edoardo Proverbio. 2020. "Wettability and Anti-Corrosion Performances of Carbon Nanotube-Silane Composite Coatings" Fibers 8, no. 9: 57. https://doi.org/10.3390/fib8090057
APA StyleCalabrese, L., Khaskoussi, A., & Proverbio, E. (2020). Wettability and Anti-Corrosion Performances of Carbon Nanotube-Silane Composite Coatings. Fibers, 8(9), 57. https://doi.org/10.3390/fib8090057