Synthesis and Transformation of Hollow Rutile Titania Wires by Single Spinneret Electrospinning with Sol-Gel Chemistry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Solution Preparation
2.2. Materials
2.3. Electrospinning
2.4. Calcination Profiles
2.5. Characterization
3. Results
3.1. Ceramic Nanofiber Confirmation
3.2. Nanofiber Morphology
3.3. Particle Size and Aspect Ratio
3.4. Surface Composition
3.5. Crystallography
3.6. Proposed Fiber Formation Mechanism
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tseng, T.K.; Lin, Y.S.; Chen, Y.J.; Chu, H. A review of photocatalysts prepared by sol-gel method for VOCs removal. Int. J. Mol. Sci. 2010, 11, 2336–2361. [Google Scholar] [CrossRef]
- Mu Jo, S.; Yeon Song, M.; Rack Ahn, Y.; Rae Park, C.; Young Kim, D. Nanofibril formation of electrospun TiO2 fibers and its application to dye-sensitized solar cells. J. Macromol. Sci. Part A Pure Appl. Chem. 2005, 42, 1529–1540. [Google Scholar] [CrossRef]
- Grätzel, M. Photoelectrochemical cells. Nature 2001, 414, 338–344. [Google Scholar] [CrossRef]
- Zukalová, M.; Kavan, L.; Procházka, J.; Zukal, A.; Yum, J.-H.; Graetzel, M. Nanofibrous TiO2 improving performance of mesoporous TiO2 electrode in dye-sensitized solar cell. J. Nanoparticle Res. 2013, 15, 1640. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Kim, I.-D.; Rothschild, A.; Lee, B.H.; Kim, D.Y.; Jo, S.M.; Tuller, H.L. Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers. Nano Lett. 2006, 6, 2009–2013. [Google Scholar] [CrossRef] [PubMed]
- Landau, O.; Rothschild, A. Fibrous TiO2 gas sensors produced by electrospinning. J. Electroceramics 2015, 35, 148–159. [Google Scholar] [CrossRef]
- Landau, O.; Rothschild, A. Microstructure evolution of TiO2 gas sensors produced by electrospinning. Sens. Actuators B Chem. 2012, 171, 118–126. [Google Scholar] [CrossRef]
- Lee, K.; Mazare, A.; Schmuki, P. One-dimensional titanium dioxide nanomaterials: Nanotubes. Chem. Rev. 2014, 114, 9385–9454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Li, Z.; Shi, J.; Yu, Y. One-dimensional titanium dioxide nanomaterials: Nanowires, nanorods, and nanobelts. Chem. Rev. 2014, 114, 9346–9384. [Google Scholar] [CrossRef] [PubMed]
- Lang, L.; Wu, D.; Xu, Z. Controllable Fabrication of TiO2 1D-Nano/Micro Structures: Solid, Hollow, and Tube-in-Tube Fibers by Electrospinning and the Photocatalytic Performance. Chem. A Eur. J. 2012, 18, 10661–10668. [Google Scholar] [CrossRef] [PubMed]
- Byrappa, K.; Adschiri, T. Hydrothermal technology for nanotechnology. Prog. Cryst. Growth Charact. Mater. 2007, 53, 117–166. [Google Scholar] [CrossRef] [Green Version]
- Roy, P.; Berger, S.; Schmuki, P. TiO2 nanotubes: Synthesis and applications. Angew. Chem. Int. Ed. 2011, 50, 2904–2939. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Chen, X.; Zhang, J.; Schwank, J.W. A review on TiO2-based nanotubes synthesized via hydrothermal method: Formation mechanism, structure modification, and photocatalytic applications. Catal. Today 2014, 225, 34–51. [Google Scholar] [CrossRef]
- Bavykin, D.V.; Friedrich, J.M.; Walsh, F.C. Protonated titanates and TiO2 nanostructured materials: Synthesis, properties, and applications. Adv. Mater. 2006, 18, 2807–2824. [Google Scholar] [CrossRef]
- Kolmakov, A.; Moskovits, M. Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures. Annu. Rev. Mater. Res. 2004, 34, 151–180. [Google Scholar] [CrossRef] [Green Version]
- Zhai, T.; Yao, J. One-Dimensional Nanostructures: Principles and Applications; Wiley Online Library: Hoboken, NJ, USA, 2013. [Google Scholar]
- Cho, J.S.; Hong, Y.J.; Kang, Y.C. Electrochemical properties of fiber-in-tube-and filled-structured TiO2 nanofiber anode materials for lithium-ion batteries. Chem. A Eur. J. 2015, 21, 11082–11087. [Google Scholar] [CrossRef]
- Li, L.; Peng, S.; Lee, J.K.Y.; Ji, D.; Srinivasan, M.; Ramakrishna, S. Electrospun hollow nanofibers for advanced secondary batteries. Nano Energy 2017, 39, 111–139. [Google Scholar] [CrossRef]
- Xue, J.; Wu, T.; Dai, Y.; Xia, Y. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem. Rev. 2019, 119, 5298–5415. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Pan, W.; Lin, D.; Li, H. Electrospinning of ceramic nanofibers: Fabrication, assembly and applications. J. Adv. Ceram. 2012, 1, 2–23. [Google Scholar] [CrossRef] [Green Version]
- Ding, B.; Kim, C.K.; Kim, H.Y.; Seo, M.K.; Park, S.J. Titanium dioxide nanofibers prepared by using electrospinning method. Fibers Polym. 2004, 5, 105–109. [Google Scholar] [CrossRef]
- Watthanaarun, J.; Pavarajarn, V.; Supaphol, P. Titanium (IV) oxide nanofibers by combined sol–gel and electrospinning techniques: Preliminary report on effects of preparation conditions and secondary metal dopant. Sci. Technol. Adv. Mater. 2005, 6, 240–245. [Google Scholar] [CrossRef]
- Tang, Z.S.; Bolong, N.; Saad, I.; Ayog, J.L. The Morphology of Electrospun Titanium Dioxide Nanofibers and Its Influencing Factors. In Proceedings of the 3rd International Conference on Civil and Environmental Engineering for Sustainability (IConCEES 2015), Ulysse, France, 1 April 2016. [Google Scholar]
- Park, J.-Y.; Lee, I.-H. Characterization and morphology of prepared titanium dioxide nanofibers by electrospinning. J. Nanosci. Nanotechnol. 2010, 10, 3402–3405. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Lee, S. Multifunctionality of poly (vinyl alcohol) nanofiber webs containing titanium dioxide. J. Appl. Polym. Sci. 2012, 124, 4038–4046. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, Y.; Chen, H.; Xu, Y. Revisiting the calcination-induced multi-layer hollowing of electrospun solid fibers. CrystEngComm 2016, 18, 8637–8644. [Google Scholar] [CrossRef]
- Jian, P.-Z.; Chiu, Y.-C.; Sun, H.-S.; Chen, T.-Y.; Chen, W.-C.; Tung, S.-H. Using a single electrospun polymer nanofiber to enhance carrier mobility in organic field-effect transistors toward nonvolatile memory. ACS Appl. Mater. Interfaces 2014, 6, 5506–5515. [Google Scholar] [CrossRef]
- Zhao, C.; Gong, H.; Niu, G.; Wang, F. Electrospun Ca-doped In2O3 nanotubes for ethanol detection with enhanced sensitivity and selectivity. Sens. Actuators B Chem. 2019, 299, 126946. [Google Scholar] [CrossRef]
- Wang, Y.; Li, D.; Ma, Q.; Tian, J.; Song, Y.; Xi, X.; Dong, X.; Yu, W.; Wang, J.; Liu, G. A novel and facile approach to obtain NiO nanowire-in-nanotube structured nanofibers with enhanced photocatalysis. R. Soc. Adv. 2018, 8, 11051–11060. [Google Scholar] [CrossRef] [Green Version]
- Xiang, H.; Long, Y.; Yu, X.; Zhang, X.; Zhao, N.; Xu, J. A novel and facile method to prepare porous hollow CuO and Cu nanofibers based on electrospinning. CrystEngComm 2011, 13, 4856–4860. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, X.; Wang, C.; Wei, L.; Liu, Y.; Shao, C. ZnO hollow nanofibers: Fabrication from facile single capillary electrospinning and applications in gas sensors. J. Phys. Chem. C 2009, 113, 19397–19403. [Google Scholar] [CrossRef]
- Eid, C.; Brioude, A.; Salles, V.; Plenet, J.-C.; Asmar, R.; Monteil, Y.; Khoury, R.; Khoury, A.; Miele, P. Iron-based 1D nanostructures by electrospinning process. Nanotechnology 2010, 21, 125701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, Y.; Zou, B.; Wang, C.; Liu, Y.; Fan, X.; Zhu, L.; Wang, Y.; Ma, H.; Cao, X. Formation mechanism of Fe2O3 hollow fibers by direct annealing of the electrospun composite fibers and their magnetic, electrochemical properties. CrystEngComm 2011, 13, 2863–2870. [Google Scholar] [CrossRef]
- Livage, J.; Henry, M.; Sanchez, C. Sol-gel chemistry of transition metal oxides. Prog. Solid State Chem. 1988, 18, 259–341. [Google Scholar] [CrossRef]
- Silva, C.R.; Airoldi, C. Acid and base catalysts in the hybrid silica sol–gel process. J. Colloid Interface Sci. 1997, 195, 381–387. [Google Scholar] [CrossRef]
- Jaramillo, J.; Garzón, B.A.; Mejía, L.T. Influence of the pH of the Synthesis Using Sol-Gel Method on the Structural and Optical Properties of TiO2. In Proceedings of the 3rd International Meeting for Researchers in Materials and Plasma Technology (IMRMPT) & 1st Symposium on Nanoscience and Nanotechnology, Bucaramanga, Colombia, 4–9 May 2015; p. 12099. [Google Scholar]
- Burgos, M.; Langlet, M. The sol-gel transformation of TIPT coatings: A FTIR study. Thin Solid Film. 1999, 349, 19–23. [Google Scholar] [CrossRef]
Formula | TIP/PVP (Mass Ratio) | Solvent Type | As-Spun Fiber Diameter (nm) |
---|---|---|---|
Low | 0.05 | Ethanol | 1594 ± 16 |
Medium | 0.62 | Chloroform/DMF | 1008 ± 59 |
High | 1.50 | Chloroform/DMF | 877 ± 10 |
Formula | Applied Voltage (kV) | Tip-to-Collector Distance (cm) | Pumping Rate (mL/h) |
---|---|---|---|
Low | 5 | 5 | 1 |
Medium | 7 | 7 | 1.5 |
High | 8 | 10 | 1 |
Calcination Profile | Ramping Rate (°C/h) | Soaking Time (h) | Cooling Rate (°C/h) |
---|---|---|---|
R2400-0h | 2400 | 0 | 150 |
R600-0h | 600 | 0 | 150 |
R600-24h | 600 | 24 | 150 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, C.-S.; Evans, E. Synthesis and Transformation of Hollow Rutile Titania Wires by Single Spinneret Electrospinning with Sol-Gel Chemistry. Fibers 2021, 9, 18. https://doi.org/10.3390/fib9030018
Kang C-S, Evans E. Synthesis and Transformation of Hollow Rutile Titania Wires by Single Spinneret Electrospinning with Sol-Gel Chemistry. Fibers. 2021; 9(3):18. https://doi.org/10.3390/fib9030018
Chicago/Turabian StyleKang, Chin-Shuo, and Edward Evans. 2021. "Synthesis and Transformation of Hollow Rutile Titania Wires by Single Spinneret Electrospinning with Sol-Gel Chemistry" Fibers 9, no. 3: 18. https://doi.org/10.3390/fib9030018
APA StyleKang, C. -S., & Evans, E. (2021). Synthesis and Transformation of Hollow Rutile Titania Wires by Single Spinneret Electrospinning with Sol-Gel Chemistry. Fibers, 9(3), 18. https://doi.org/10.3390/fib9030018