Pink Hybrid Pigments Resulting from the Adsorption of Congo Red Dye by Zinc Oxide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Porous Zinc Oxide
2.2. Preparation of the Hybrid Pigments (Hy-P)
2.2.1. Equilibrium Adsorption Experiments
2.2.2. Solvent Resistance
2.2.3. Application of Hybrid Pigments in White Paint
2.2.4. Light-Induced Aging of Prepared Hybrid Pigment in White Paint
2.3. Characterization
3. Results and Discussion
3.1. Characterization of ZnO-Starch
3.2. Hybrid Pigments
3.2.1. Study of Adsorption and Equilibrium
3.2.2. Color Study of the Hybrid Pigments
3.2.3. Light-Induced Aging
3.2.4. Solvent Resistance Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hamad, K.H.; Yasser, A.M.; Nabil, R.; Tarek, R.; Hesham, E.; El-telbany, A.; Saeed, A.; Selim, S.E.; Abdelhamid, A.E. Nylon fiber waste as a prominent adsorbent for Congo red dye removal. Sci. Rep. 2024, 14, 1088. [Google Scholar] [CrossRef]
- Purkayastha, S.; Ghosh, A.K.; Saha, S. Nano fibrillated cellulose-based foam by Pickering emulsion: Preparation, characterization, and application as dye adsorbent. Polym. Eng. Sci. 2021, 61, 2831–2842. [Google Scholar] [CrossRef]
- Oladoye, P.O.; Bamigboye, M.O.; Ogunbiyi, O.D.; Akano, M.T. Toxicity and decontamination strategies of Congo red dye. Groundw. Sustain. Dev. 2022, 19, 100844. [Google Scholar] [CrossRef]
- Vidya, C.; Manjunatha, C.; Chandraprabha, M.N.; Rajshekar, M.; Raj, M.A.L. Hazard free green synthesis of Zn-O nano-photocatalyst using Hrtocarpus Heterophyllus leaf extract for the degradation of Congo red dye in water treatment applications. J. Environ. Chem. Eng. 2017, 5, 3172–3180. [Google Scholar] [CrossRef]
- Siddiqui, S.I.; Allehyani, E.S.; Al-Harbi, S.; Hasan, Z.; Abomuti, M.A.; Rajor, H.K.; Oh, S. Investigation of Congo red toxicity towards different live organisms: A Review. Processes 2023, 11, 807. [Google Scholar] [CrossRef]
- Dwivedi, S. Effect of textile dyes on Spirulina platensis. J. Chem. Pharm. Res. 2013, 4, 66–80. [Google Scholar]
- Hernández-Zamora, M.; Martínez-Jerónimo, F.; Cristiani-Urbina, E.; Cañizares-Villanueva, R.O. Congo red dye affects survival and reproduction in the cladoceran Ceriodaphnia dubia. Effects of direct and dietary exposure. Ecotoxicology 2016, 25, 1832–1840. [Google Scholar] [CrossRef]
- Oberly, T.J.; Bewsey, B.J.; Probst, G.S. An evaluation of the L5178Y TK+/− mouse lymophoma forward mutation assay using 42 chemicals. Mutat. Res. Fundam. Mol. Mech. Mutagen. 1984, 2, 291–306. [Google Scholar] [CrossRef]
- Meigs, J.W.; Marrett, L.D.; Ulrich, F.U.; Flannery, J.T. Bladder tumor incidence among workers exposed to benzidine: A thirty-year follow-up. J. Natl. Cancer Inst. 1986, 1, 1–8. [Google Scholar]
- Lee, J.-W.; Choi, S.-P.; Thiruvenkatachari, R.; Shim, W.-G.; Moon, H. Evaluation of the Performance of Adsorption and Coagulation Processes for the Maximum Removal of Reactive Dyes. Dye. Pigment. 2006, 69, 196–203. [Google Scholar] [CrossRef]
- Chen, M.; Ding, W.; Wang, J.; Diao, G. Removal of Azo Dyes from Water by Combined Techniques of Adsorption, Desorption, and Electrolysis Based on a Supramolecular Sorbent. Ind. Eng. Chem. Res. 2013, 52, 2403–2411. [Google Scholar] [CrossRef]
- Wahi, R.K.; Yu, W.W.; Liu, Y.; Mejia, M.L.; Falkner, J.C.; Nolte, W.; Colvin, V.L. Photodegradation of Congo Red Catalyzed by Nanosized TiO2. J. Mol. Catal. A Chem. 2005, 242, 48–56. [Google Scholar] [CrossRef]
- Xiao, X.Z.; Dai, T.T.; Guo, J.; Wu, J.H. Flowerlike brochantite nanoplate superstructures for catalytic wet peroxide oxidation of congo red. ACS Appl. Nano Mater. 2019, 7, 4159–4168. [Google Scholar] [CrossRef]
- Aoopngan, C.; Nonkumwong, J.; Phumying, S.; Promjantuek, W.; Maensiri, S.; Noisa, P.; Pinitsoontorn, S.; Ananta, S.; Srisombat, L. Amine-functionalized and hydroxyl-functionalized magnesium ferrite nanoparticles for Congo red adsorption. ACS Appl. Nano Mater. 2019, 8, 5329–5341. [Google Scholar] [CrossRef]
- Khan, O.; Anjikar, N.D.; Nalabothu, M.K.; Dunn, M.E.; Sweilem, W.B.; Yang, S. The Synthesis of Amino-Acid-Anchored Two-Dimensional Silicoaluminophosphates and Congo Red Adsorption Application. Langmuir 2024, 20, 10526–10533. [Google Scholar] [CrossRef]
- Manzoor, K.; Batool, M.; Naz, F.; Nazar, M.F.; Hameed, B.H.; Zafar, M.N. A comprehensive review on application of plant-based bioadsorbents for Congo red removal. Biomass Conv. Bioref. 2024, 14, 4511–4537. [Google Scholar] [CrossRef]
- Sivamani, S.; Manimaran, D.R.; Banupriya, A.; Prathap, N.; Vasu, G.; Kanakasabai, P.A. Comprehensive Review on Liquid-Liquid Extraction Based Systems in Treatment of Textile Wastewater. Ind. J. Sci. Technol. 2021, 14, 2646–2662. [Google Scholar] [CrossRef]
- Giri, S.K.; Das, N.N.; Pradhan, G.C. Synthesis and characterization of magnetite nanoparticles using waste iron ore tailings for adsorptive removal of dyes from aqueous solution. Colloids Surf. A Physicochem. Eng. Asp. 2011, 1–3, 43–49. [Google Scholar] [CrossRef]
- Vimonses, V.; Lei, S.; Jin, B.; Chow, C.W.; Saint, C. Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay materials. Chem. Eng. J. 2009, 2–3, 354–364. [Google Scholar] [CrossRef]
- Harja, M.; Buema, G.; Bucur, D. Recent advances in removal of Congo Red dye by adsorption using an industrial waste. Sci. Rep. 2022, 12, 6087. [Google Scholar] [CrossRef]
- Litefti, K.; Freire, M.S.; Stitou, M.; González-Álvarez, J. Adsorption of an anionic dye (Congo red) from aqueous solutions by pine bark. Sci. Rep. 2019, 9, 16530. [Google Scholar] [CrossRef]
- Yang, K.; Li, Y.; Zheng, H.; Luan, X.; Li, H.; Wang, Y.; Du, Q.; Sui, K.; Li, H.; Xia, Y. Adsorption of Congo red with hydrothermal treated shiitake mushroom. Mater. Res. Express 2020, 7, 015103. [Google Scholar] [CrossRef]
- Rasilingwani, T.E.; Gumbo, J.R.; Masindi, V.; Foteinis, S. Removal of Congo red dye from industrial effluents using metal oxide-clay nanocomposites: Insight into adsorption and precipitation mechanisms. Water Resour. Ind. 2024, 31, 100253. [Google Scholar] [CrossRef]
- Lei, C.; Pi, M.; Jiang, C.; Cheng, B.; Yu, J. Synthesis of hierarchical porous zinc oxide (ZnO) microspheres with highly efficient adsorption of Congo red. J. Colloid Interface Sci. 2017, 490, 242–251. [Google Scholar] [CrossRef]
- Shaba, E.Y.; Jacob, J.O.; Tijani, J.O.; Suleiman, M.A.T. A Critical review of synthesis parameters affecting the properties of zinc oxide nanoparticle and its application in wastewater treatment. Appl. Water Sci. 2021, 11, 48. [Google Scholar] [CrossRef]
- Arab, C.; El Kurdi, R.; Patra, D. Efficient Removal of Congo Red Using Curcumin Conjugated Zinc Oxide Nanoparticles as New Adsorbent Complex. Chemosphere 2021, 274, 129766. [Google Scholar] [CrossRef]
- Hassaan, M.A.; Hosny, S.; ElKatory, M.R.; Ali, R.M. Dual Action of Both Green and Chemically Synthesized Zinc Oxide Nanoparticles: Antibacterial Activity and Removal of Congo Red Dye. Desalin. Water Treat. 2021, 218, 423–432. [Google Scholar] [CrossRef]
- Singh, N.; Shah, K.; Pramanik, B.K. Synthesis and Application of Manganese-Doped Zinc Oxide as a Potential Adsorbent for Removal of Congo Red Dye from Wastewater. Environ. Res. 2023, 226, 115554. [Google Scholar]
- Jesionowski, T.; Nowacka, M.; Ciesielczyk, F. Electrokinetic Properties of Hybrid Pigments Obtained via Adsorption of Organic Dyes on the Silica Support. Pigment Resin Technol. 2012, 41, 9–19. [Google Scholar] [CrossRef]
- Szadkowski, B.; Kuśmierek, M.; Kozanecki, M.; Nowakowska, J.; Rogowski, J.; Maniukiewicz, W.; Marzec, A. Ecological hybrid pigments with improved thermal, light, and chemical stability based on purpurin dye and different minerals for applications in polymer materials. Dye. Pigment. 2023, 217, 111430. [Google Scholar] [CrossRef]
- Siwińska-Stefańska, K.; Nowacka, M.; Kołodziejczak-Radzimska, A.; Jesionowski, T. Preparation of Hybrid Pigments via Adsorption of Selected Food Dyes onto Inorganic Oxides Based on Anatase Titanium Dioxide. Dye. Pigment. 2012, 94, 338–348. [Google Scholar] [CrossRef]
- Dejoie, C.; Martinetto, P.; Dooryhée, E.; Strobel, P.; Blanc, S.; Bordat, P.; Brown, R.; Porcher, F.; Sanchez del Rio, M.; Anne, M. Indigo@Silicalite: A New Organic−Inorganic Hybrid Pigment. ACS Appl. Mater. Interfaces 2010, 8, 2308–2316. [Google Scholar] [CrossRef]
- Jesionowski, T.; Przybylska, A.; Kurc, B.; Ciesielczyk, F. Hybrid pigments preparation via adsorption of CI Mordant Red 3 on both unmodified and aminosilane–functionalised silica supports. Dye. Pigment. 2011, 2, 127–136. [Google Scholar] [CrossRef]
- Szadkowski, B.; Rogowski, J.; Maniukiewicz, W.; Beyou, E.; Marzec, A. New natural organic-inorganic pH indicators: Synthesis and characterization of pro-ecological hybrid pigments based on anthraquinone dyes and mineral supports. J. Ind. Eng. Chem. 2022, 105, 446–462. [Google Scholar] [CrossRef]
- Moujahid, E.; Lahkale, R.; Ouassif, H.; Bouragba, F.Z.; Elhatimi, W. New organic dye-anionic clay hybrid pigments: Preparation, optical properties and structural stability. Dyes. Pigm. 2019, 162, 998–1004. [Google Scholar] [CrossRef]
- Primo, J.D.O.; Bittencourt, C.; Acosta, S.; Sierra-Castillo, A.; Colomer, J.F.; Jaerger, S.; Teixeira, V.C.; Anaissi, F.J. Synthesis of zinc oxide nanoparticles by ecofriendly routes: Adsorbent for copper removal from wastewater. Front. Chem. 2020, 8, 571790. [Google Scholar] [CrossRef]
- Albo Hay Allah, M.A.; Alshamsi, H.A. Green synthesis of ZnO NPs using Pontederia crassipes leaf extract: Characterization, their adsorption behavior and anti-cancer property. Biomass Conv. Bioref. 2024, 14, 10487–10500. [Google Scholar] [CrossRef]
- Verma, L.M.; Kumar, A.; Bashir, A.U.; Gangwar, U.; Ingole, P.P.; Sharma, S. Phase controlled green synthesis of wurtzite (P 63 mc) ZnO nanoparticles: Interplay of green ligands with precursor anions, anisotropy and photocatalysis. Nanoscale Adv. 2024, 1, 155–169.u. [Google Scholar] [CrossRef]
- Sing, K.S. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 1985, 4, 603–619. [Google Scholar] [CrossRef]
- Santos, A.; Viante, M.F.; Anjos, P.P.; Moises, M.P.; Castro, E.G.D.; Downs, A.J.; Carlos, A.P.; Moises, M.P.; Castro, E.G.D.; Downs, A.J.; et al. Removal of Astrazon Blue Dye from Aqueous Media by a Low-Cost Adsorbent from Coal Mining. Desalin. Water Treat. 2016, 57, 27213–27225. [Google Scholar] [CrossRef]
- dos Santos, A.; Viante, M.F.; Pochapski, D.J.; Downs, A.J.; Almeida, C.A.P. Enhanced Removal of P-Nitrophenol from Aqueous Media by Montmorillonite Clay Modified with a Cationic Surfactant. J. Hazard. Mater. 2018, 355, 136–144. [Google Scholar] [CrossRef]
- Fontana, I.B.; Peterson, M.; Cechinel, M.A.P. Application of Brewing Waste as Biosorbent for the Removal of Metallic Ions Present in Groundwater and Surface Waters from Coal Regions. J. Environ. Chem. Eng. 2018, 6, 660–670. [Google Scholar] [CrossRef]
- Ho, Y.S.; Mckay, G. Sorption of Dye from Aqueous Solution by Peat. J. Chem. Eng. 1998, 70, 115–124. [Google Scholar] [CrossRef]
- Ma, P.; Yao, S.; Wang, Z.; Qi, F.; Liu, X. Preparation of Nitrogen-Doped Hierarchical Porous Carbon Aerogels from Agricultural Wastes for Efficient Pollution Adsorption. Sep. Purif. Technol. 2023, 311, 123250. [Google Scholar] [CrossRef]
- Jaerger, S.; Dos Santos, A.; Fernandes, A.N.; Almeida, C.A.P. Removal of P-Nitrophenol from Aqueous Solution Using Brazilian Peat: Kinetic and Thermodynamic Studies. Water. Air. Soil Pollut. 2015, 226, 236. [Google Scholar] [CrossRef]
- Horsth, D.F.L.; Primo, J.O.; Dalpasquale, M.; Bittencourt, C.; Anaissi, F.J. Colored aluminates pigments obtained from metallic aluminum waste, an opportunity in the circular economy. Clean. Eng. Technol. 2021, 5, 100313. [Google Scholar] [CrossRef]
- Diebold, M.P. Optimizing the benefits of TiO2 in paints. J. Coat. Technol. Res. 2020, 1, 1–17. [Google Scholar] [CrossRef]
- Gupta, V.K.; Tyagi, I.; Agarwal, S.; Sadegh, H.; Shahryari-ghoshekandi, R.; Yari, M.; Yousefi-nejat, O. Experimental study of surfaces of hydrogel polymers HEMA, HEMA–EEMA–MA, and PVA as adsorbent for removal of azo dyes from liquid phase. J. Mol. Liq. 2015, 206, 129–136. [Google Scholar] [CrossRef]
- Mokrzycki, W.S.; Tatol, M. Colour difference ∆ EA survey. Mach. Graph. Vis. 2011, 4, 383–411. [Google Scholar]
- Queiroga, L.N.F.; Franca, D.B.; Rodrigues, F.; Santos, I.M.; Fonseca, M.G.; Jaber, M. Functionalized bentonites for dye adsorption: Depollution and production of new pigments. J. Environ. Chem. Eng. 2019, 5, 103333. [Google Scholar] [CrossRef]
- FasterCapital. (n.d.). Coefficient of Variation. Available online: https://fastercapital.com/startup-topic/Coefficient-of-Variation.html (accessed on 18 August 2024).
- Marzec, A.; Szadkowski, B.; Rogowski, J.; Maniukiewicz, W.; Szynkowska, M.I.; Zaborski, M. Characteristics of hybrid pigments made from alizarin dye on a mixed oxide host. Materials 2019, 3, 360. [Google Scholar] [CrossRef]
Pseudo-First-Order | Pseudo-Second-Order | |||||
---|---|---|---|---|---|---|
qexp (mg g−1) | 102 k1 (h−1) | qcal (mg g−1) | R2 | k2 (g mg−1 h−1) | qcal (mg g−1) | R2 |
10.06 | 2.34 | 0.82 | 0.9624 | 8.60 | 10.10 | 1.0000 |
Sample | Medium | Colorimetric Parameters | Photo | ||||
---|---|---|---|---|---|---|---|
L* | a* | b* | C* | ∆E | |||
Zn-25 | Powder | 85.4 | 10.8 | 6.1 | 12.5 | 8.7 | |
White Paint | 91.7 | 5.2 | 3.9 | 6.5 | |||
Zn-50 | Powder | 79.8 | 16.0 | 7.2 | 17.6 | 11.3 | |
White Paint | 88.8 | 9.7 | 4.6 | 10.7 | |||
Zn-100 | Powder | 75.4 | 19.1 | 5.8 | 19.9 | 13.5 | |
White Paint | 87.0 | 12.3 | 4.4 | 13.1 | |||
Zn-200 | Powder | 66.8 | 25.2 | 4.7 | 25.6 | 21.9 | |
White Paint | 85.2 | 13.9 | 2.7 | 14.1 | |||
Zn-400 | Powder | 64.3 | 28.9 | 6.3 | 29.6 | 15.2 | |
White Paint | 76.9 | 21.0 | 3.2 | 21.2 | |||
Zn-500 | Powder | 63.9 | 30.2 | 8.8 | 31.5 | 15.8 | |
White Paint | 77.6 | 23.5 | 5.1 | 24.0 |
Sample | Heating Temperature (°C) | Colorimetric Parameters | ||||
---|---|---|---|---|---|---|
L* | a* | b* | C* | ∆E | ||
Zn-25 | Without heating | 85.39 | 10.83 | 6.18 | 12.49 | -- |
250 | 86.17 | 6.33 | 6.95 | 9.40 | 4.63 | |
300 | 89.58 | 3.91 | 8.53 | 9.38 | 8.42 | |
Zn-50 | Without heating | 79.87 | 16.05 | 7.16 | 17.58 | -- |
250 | 84.29 | 9.58 | 8.51 | 12.81 | 7.95 | |
300 | 87.57 | 6.08 | 9.26 | 11.08 | 12.77 | |
Zn-100 | Without heating | 75.39 | 19.07 | 5.84 | 19.94 | -- |
250 | 72.70 | 17.37 | 9.72 | 19.90 | 5.08 | |
300 | 82.39 | 9.42 | 6.45 | 11.42 | 11.94 | |
Zn-200 | Without heating | 66.79 | 25.20 | 4.71 | 25.63 | -- |
250 | 71.03 | 18.94 | 8.39 | 20.72 | 8.41 | |
300 | 76.17 | 14.23 | 8.82 | 16.75 | 15.01 | |
Zn-400 | Without heating | 64.33 | 28.91 | 6.27 | 29.58 | -- |
250 | 64.34 | 22.23 | 9.18 | 24.05 | 7.28 | |
300 | 70.57 | 19.32 | 11.83 | 22.65 | 12.72 | |
Zn-500 | Without heating | 63.86 | 30.24 | 8.78 | 31.49 | -- |
250 | 62.24 | 23.65 | 11.22 | 26.18 | 7.21 | |
300 | 68.64 | 20.11 | 12.75 | 23.82 | 11.88 |
Sample | |||
---|---|---|---|
Zn-25 | 6.5 | 4.7 | 1.8 |
Zn-50 | 10.7 | 5.7 | 5.0 |
Zn-100 | 13.1 | 6.9 | 6.2 |
Zn-200 | 14.1 | 7.2 | 6.9 |
Zn-400 | 21.2 | 12.4 | 8.8 |
Zn-500 | 24.0 | 15.6 | 8.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Primo, J.d.O.; Fleck, R.W.; Horsth, D.F.L.; Santos, A.d.; Dlugoviet, T.L.; Anaissi, F.J. Pink Hybrid Pigments Resulting from the Adsorption of Congo Red Dye by Zinc Oxide. Colorants 2024, 3, 298-310. https://doi.org/10.3390/colorants3040021
Primo JdO, Fleck RW, Horsth DFL, Santos Ad, Dlugoviet TL, Anaissi FJ. Pink Hybrid Pigments Resulting from the Adsorption of Congo Red Dye by Zinc Oxide. Colorants. 2024; 3(4):298-310. https://doi.org/10.3390/colorants3040021
Chicago/Turabian StylePrimo, Julia de Oliveira, Raphaella Wolf Fleck, Dienifer F. L. Horsth, Andressa dos Santos, Taiane L. Dlugoviet, and Fauze J. Anaissi. 2024. "Pink Hybrid Pigments Resulting from the Adsorption of Congo Red Dye by Zinc Oxide" Colorants 3, no. 4: 298-310. https://doi.org/10.3390/colorants3040021
APA StylePrimo, J. d. O., Fleck, R. W., Horsth, D. F. L., Santos, A. d., Dlugoviet, T. L., & Anaissi, F. J. (2024). Pink Hybrid Pigments Resulting from the Adsorption of Congo Red Dye by Zinc Oxide. Colorants, 3(4), 298-310. https://doi.org/10.3390/colorants3040021