Use of BODIPY and BORANIL Dyes to Improve Solar Conversion in the Fabrication of Organic Photovoltaic Cells Through the Co-Sensitization Method
Abstract
:1. Introduction
2. Experimental Details
2.1. Reagents and Instruments
2.2. Preparation of BORANIL and BODIPY
2.3. Preparation of the Cathode
2.4. Preparation of the Photoanode
2.5. Preparation of Different Sensitizers and Co-Sensitizes
2.6. Construction of DSSCs
3. Results and Discussion
3.1. FTIR Spectroscopy
3.2. UV-Vis Spectrophotometry
3.3. FESEM Morphological Characterization
3.4. AFM Structural Characterization
3.5. Electrochemical Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Conradie, J. Effective dyes for DSSCs–Important experimental and calculated parameters. Energy Nexus 2024, 13, 100282. [Google Scholar] [CrossRef]
- Rahmatian, M.; Sayyaadi, H. Steady and transient modeling of dye-sensitive solar cells: The impact of electrode thickness and dye specifications. Energy Convers. Manag. X 2024, 24, 100709. [Google Scholar] [CrossRef]
- Onyemowo, M.; Unpaprom, Y.; Ramaraj, R. Exploring the potential of natural dyes in DSSCs: Innovations for efficient light harvesting and charge separation through Co-sensitization. Opt. Mater. 2024, 148, 114860. [Google Scholar] [CrossRef]
- Korir, B.K.; Kibet, J.K.; Ngari, S.M. A review on the current status of dye-sensitized solar cells: Toward sustainable energy. Energy Sci. Eng. 2024, 12, 3188–3226. [Google Scholar] [CrossRef]
- Wu, W.; Li, Y.; Zhang, J.; Guo, X.; Wang, L.; Ågren, H. Theoretical modelling of metal-based and metal-free dye sensitizers for efficient dye-sensitized solar cells: A review. Sol. Energy 2024, 277, 112748. [Google Scholar] [CrossRef]
- O’Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740. [Google Scholar] [CrossRef]
- Ferreira, B.; Sampaio, D.; Babu, R.S.; de Barros, A. Influence of nanostructured TiO2 film thickness in dye-sensitized solar cells using naturally extracted dye from Thunbergia erecta flowers as a photosensitizer. Opt. Mater. 2018, 86, 239–246. [Google Scholar] [CrossRef]
- Nastasi, F.; Mineo, P.G.; Barichello, J.; La Ganga, G.; Di Marco, G.; Calogero, G.; Cordaro, M. Synthesis and Photophysics Characterization of Boronic Styril and Distyryl BODIPYs for Water-Based Dye-Sensitized Solar Cells. Biomimetics 2022, 7, 110. [Google Scholar] [CrossRef]
- Boens, N.; Verbelen, B.; Ortiz, M.J.; Jiao, L.; Dehaen, W. Synthesis of BODIPY dyes through postfunctionalization of the boron dipyrromethene core. Co-ord. Chem. Rev. 2019, 399, 213024. [Google Scholar] [CrossRef]
- Da Lama, A.; Sestelo, J.P.; Sarandeses, L.A.; Martínez, M.M. Synthesis and Photophysical Properties of β-Alkenyl-Substituted BODIPY Dyes by Indium(III)-Catalyzed Intermolecular Alkyne Hydroarylation. J. Org. Chem. 2024, 89, 4702–4711. [Google Scholar] [CrossRef]
- Mohajeri, A.; Kheshti, T. Improving the efficiency of dye-sensitized solar cells based on BODIPY dye and its analogous: The synergistic effect of benzo fusion and phenyl substitution. J. Photochem. Photobiol. A Chem. 2023, 442, 114781. [Google Scholar] [CrossRef]
- Madrid-Úsuga, D.; Ortiz, A.; Reina, J.H. Photophysical Properties of BODIPY Derivatives for the Implementation of Organic Solar Cells: A Computational Approach. ACS Omega 2022, 7, 3963–3977. [Google Scholar] [CrossRef]
- Lu, T.; Li, M.; Yao, Z.; Lu, W. Accelerated discovery of boron-dipyrromethene sensitizer for solar cells by integrating data mining and first principle. J. Materiomics 2021, 7, 790–801. [Google Scholar] [CrossRef]
- Xie, B.; Yin, L.; Liu, C.; Guo, Y.; Fan, J.; Li, Y. Design of novel organoboron small-molecule dyes based on dipolar nitrogen-boron-nitrogen unit for solution-processed photovoltaic devices. Dye. Pigment. 2023, 217, 111415. [Google Scholar] [CrossRef]
- Higashino, Y.; Erten-Ela, S.; Kubo, Y. π-Expanded dibenzo-BODIPY with near-infrared light absorption: Investigation of photosensitizing properties of NiO-based p-type dye-sensitized solar cells. Dye. Pigment. 2019, 170, 107613. [Google Scholar] [CrossRef]
- Arrigo, A.; Gangemi, C.M.A.; Barattucci, A.; Bonaccorsi, P.M.; Greco, V.; Giuffrida, A.; Genovese, S.; Campagna, S.; Nastasi, F.; Puntoriero, F. Highly Efficient Luminescent Solar Concentrators Based on BODIPY Derivatives. Adv. Mater. Interfaces 2024, 11, 2400114. [Google Scholar] [CrossRef]
- Mao, M.; Wang, J.-B.; Xiao, Z.-F.; Dai, S.-Y.; Song, Q.-H. New 2,6-modified BODIPY sensitizers for dye-sensitized solar cells. Dye. Pigment. 2012, 94, 224–232. [Google Scholar] [CrossRef]
- Agren, S.; Chaabene, M.; Allouche, A.; Ben Chaâbane, R.; Lahcinie, M.; Baouab, M.H.V. Blue Highly Fluorescent Boranil Derived from Anil Ligand: Synthesis, Characterization, Experimental and Theoretical Evaluation of Solvent Effect on Structures and Photophysical Properties. Appl. Organomet. Chem. 2020, 34, e5764. [Google Scholar] [CrossRef]
- Massue, J.; Jacquemin, D.; Ulrich, G. Boranils: Versatile Multifunctional Organic Fluorophores for Innovative Applications. Organics 2021, 2, 365–375. [Google Scholar] [CrossRef]
- Klfout, H.; Stewart, A.; Elkhalifa, M.; He, H. BODIPYs for Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2017, 9, 39873–39889. [Google Scholar] [CrossRef]
- Lou, Z.; Hou, Y.; Chen, K.; Zhao, J.; Ji, S.; Zhong, F.; Dede, Y.; Dick, B. Different Quenching Effect of Intramolecular Rotation on the Singlet and Triplet Excited States of Bodipy. J. Phys. Chem. C 2017, 122, 185–193. [Google Scholar] [CrossRef]
- Jameson, L.P.; Dzyuba, S.V. Expeditious, mechanochemical synthesis of BODIPY dyes. Beilstein J. Org. Chem. 2013, 9, 786–790. [Google Scholar] [CrossRef]
- Machado, L.A.; De Souza, M.C.; Da Silva, C.M.; Yoneda, J.; De Rezende, L.C.D.; Emery, F.S.; De Simone, C.A.; da Silva Júnior, E.N.; Pedrosa, L.F. On the synthesis, optical and computational studies of novel BODIPY-based phosphoramidate fluorescent dyes. J. Fluor. Chem. 2019, 220, 9–15. [Google Scholar] [CrossRef]
- Caruso, E.; Gariboldi, M.; Sangion, A.; Gramatica, P.; Banfi, S. Synthesis, photodynamic activity, and quantitative structure-activity relationship modelling of a series of BODIPYs. J. Photochem. Photobiol. B Biol. 2017, 167, 269–281. [Google Scholar] [CrossRef] [PubMed]
- Nandi, R.P.; Sudhakar, P.; Kalluvettukuzhy, N.K.; Thilagar, P. Triarylborane-Appended Anils and Boranils: Solid-State Emission, Mechanofluorochromism, and Phosphorescence. Chem. A Eur. J. 2020, 26, 16306–16317. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, B.C.; Babu, R.S.; da Conceição, L.R.B.; da Cunha, H.O.; Sampaio, D.M.; Samyn, L.M.; de Barros, A.L.F. Performance evaluation of DSSCs using naturally extracted dyes from petals of Lantana repens and Solidago canadensis flowers as light-harvesting units. Ionics 2022, 28, 5233–5242. [Google Scholar] [CrossRef]
- Sampaio, D.M.; Babu, R.S.; Costa, H.R.M.; de Barros, A.L.F. Investigation of nanostructured TiO2 thin film coatings for DSSCs application using natural dye extracted from jabuticaba fruit as photosensitizers. Ionics 2019, 25, 2893–2902. [Google Scholar] [CrossRef]
- Naik, P.; Pilicode, N.; Keremane, K.S.; Acharya, M.; Adhikari, A.V. Synthesis, optical, electrochemical, and computational investigation of new cyanopyridine-centered organic dyads. Opt. Mater. 2023, 142, 114002. [Google Scholar] [CrossRef]
- Yıldız, Y.; Bilen, K.; Atılgan, A. Experimental investigation of spin coating acceleration effect on the DSSC performance. Mater. Res. Express 2023, 11, 035502. [Google Scholar] [CrossRef]
- Tomar, N.; Dhaka, V.S.; Surolia, P.K. Testing the performance of dye sensitized solar cells under various temperature and humidity environments. J. Appl. Electrochem. 2024, 54, 573–580. [Google Scholar] [CrossRef]
- Pizarro-Castillo, L.; Mera, A.C.; Cabello-Guzmán, G.; Bernal, C.; Bizarro, M.; Carrasco, C.; Blesa, M.-J.; Rodríguez, C. The effect of sintering temperature on the properties of the BiOCl films for potential application in DSSC. Ceram. Int. 2023, 49, 16305–16313. [Google Scholar] [CrossRef]
- Choudhury, M.S.H.; Himu, S.E.A.; Khan, M.U.; Hasan, Z.; Alam, S.; Soga, T. Analysis of charge transport resistance of ZnO-based DSSCs because of the effect of different compression temperatures. AIP Adv. 2023, 13, 095129. [Google Scholar] [CrossRef]
- Kanwal, H.; Khan, A.A.B.; Shah, A.; Ubaidullah, M.; Hakeem, A.S.; Younas, M.; Ghani, T.; Mehmood, M. In-depth investigation of microstructure and optical properties of tri-phase TiO2 nanoparticles at varied calcination temperatures for dye Sensitized solar cells (DSSCs) applications. Mater. Chem. Phys. 2024, 320, 129415. [Google Scholar] [CrossRef]
- Abrari, M.; Ahmadi, M.; Chenari, H.M.; Ghanaatshoar, M. Investigating the effect of ZrO2 nanofibers in ZnO-based photoanodes to increase dye-sensitized solar cells (DSSC) efficiency: Inspecting the porosity and charge transfer properties in ZnO/ZrO2 nanocomposite photoanode. Opt. Mater. 2024, 147, 114690. [Google Scholar] [CrossRef]
- Dos Santos, F.M.M.; Leite, A.M.B.; da Conceição, L.R.B.; Sasikumar, Y.; Atchudan, R.; Pinto, M.F.; Babu, R.S.; de Barros, A.L.F. Effect of bandgap energies by various color petals of Gerbera jamesonii flower dyes as a photosensitizer on enhancing the efficiency of dye-sensitized solar cells. J. Mater. Sci. Mater. Electron. 2022, 33, 20338–20352. [Google Scholar] [CrossRef]
- da Conceição, L.; da Cunha, H.; Leite, A.; Rodrigues, J.; Babu, R.S.; de Barros, A. Influence of various solvents in extraction of natural pigments from annona Atemoya and physalis Peruviana as photosensitizers for dye-sensitized solar cells. Optik 2024, 300, 171635. [Google Scholar] [CrossRef]
- da Conceição, L.R.B.; da Cunha, H.O.; Leite, A.M.B.; Babu, R.S.; Raja, S.; Ribeiro, C.; de Barros, A.L.F. Evaluation of Solar Conversion Efficiency in Dye-sensitized Solar Cells Using Natural Dyes Extracted from Alpinia purpurata and Alstroemeria Flower Petals as Novel Photosensitizers. Colorants 2023, 2, 618–631. [Google Scholar] [CrossRef]
- Chaabene, M.; Agren, S.; Allouche, A.; Lahcinie, M.; Ben Chaâbane, R.; Baouab, M.H.V. Theoretical and experimental investigations of complexation with BF3.Et2O effects on electronic structures, energies and photophysical properties of Anil and tetraphenyl (hydroxyl) imidazol. Appl. Organomet. Chem. 2019, 33, e5218. [Google Scholar] [CrossRef]
- Cihaner, A.; Algı, F. A new conducting polymer bearing 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) subunit: Synthesis and characterization. Electrochimica Acta 2008, 54, 786–792. [Google Scholar] [CrossRef]
- Taki, S.; Ardestani, M.S. Novel nanosized AS1411–chitosan–BODIPY conjugate for molecular fluorescent imaging. Int. J. Nanomed. 2019, 14, 3543–3555. [Google Scholar] [CrossRef]
- Bilgic, A.; Cimen, A. Two Novel BODIPY-Functional Magnetite Fluorescent Nano-Sensors for Detecting of Cr(VI) Ions in Aqueous Solutions. J. Fluoresc. 2020, 30, 867–881. [Google Scholar] [CrossRef] [PubMed]
- Gong, W.; Deng, X.; Dong, K.; Liu, L.; Ning, G. A boranil-based conjugated microporous polymer for efficient visible-light-driven heterogeneous photocatalysis. Polym. Chem. 2021, 12, 3153–3159. [Google Scholar] [CrossRef]
- Kursunlu, A.N.; Ozmen, M.; Guler, E. Novel magnetite nanoparticle based on BODIPY as fluorescent hybrid material for Ag(I) detection in aqueous medium. Talanta 2016, 153, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.M.; Wang, W.; Chen, Q.-Y. Structure and biomolecular recognition of nitro-BODIPY-andrographolide assembles for cancer treatment. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 263, 120180. [Google Scholar] [CrossRef]
- Soultati, A.; Verykios, A.; Panagiotakis, S.; Armadorou, K.-K.; Haider, M.I.; Kaltzoglou, A.; Drivas, C.; Fakharuddin, A.; Bao, X.; Yang, C.; et al. Suppressing the Photocatalytic Activity of Zinc Oxide Electron-Transport Layer in Nonfullerene Organic Solar Cells with a Pyrene-Bodipy Interlayer. ACS Appl. Mater. Interfaces 2020, 12, 21961–21973. [Google Scholar] [CrossRef]
- Leite, A.; da Cunha, H.; Rodrigues, J.; Babu, R.S.; de Barros, A. Construction and characterization of organic photovoltaic cells sensitized by Chrysanthemum based natural dye. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 284, 121780. [Google Scholar] [CrossRef]
- Saravanan, V.; Ganesan, S.; Rajakumar, P. Synthesis and DSSC application of BODIPY decorated triazole bridged and benzene nucleus cored conjugated dendrimers. RSC Adv. 2020, 10, 18390–18399. [Google Scholar] [CrossRef] [PubMed]
- Helal, W.; Marashdeh, A.; Alkhatib, Q.; Qashmar, H.; Gharaibeh, M.; Afaneh, A.T. Tuning the photophysical properties ofBODIPYdyes used inDSSCsas predicted by double-hybridTD-DFT: The role of the methyl substituents. Int. J. Quantum Chem. 2022, 122, e27000. [Google Scholar] [CrossRef]
- Liu, H.; Liu, L.; Fu, Y.; Liu, E.; Xue, B. Theoretical Design of D−π–A–A Sensitizers with Narrow Band Gap and Broad Spectral Response Based on Boron Dipyrromethene for Dye-Sensitized Solar Cells. J. Chem. Inf. Model. 2019, 59, 2248–2256. [Google Scholar] [CrossRef]
- Yildiz, E.A.; Sevinc, G.; Yaglioglu, H.G.; Hayvali, M. The effect of molecular structure and ultrafast electron injection dynamics on the efficiency of BODIPY sensitized solar cells. Opt. Mater. 2019, 91, 50–57. [Google Scholar] [CrossRef]
- Leite, A.; da Cunha, H.; Babu, R.; Vinodh, R.; de Barros, A. Enhanced photovoltaic efficiency in dye-sensitized solar cells with natural co-sensitizers from Annona squamosa, Malus domestica and Musa fruits. Opt. Mater. 2024, 157, 116124. [Google Scholar] [CrossRef]
- Liu, W.; Tang, A.; Chen, J.; Wu, Y.; Zhan, C.; Yao, J. Photocurrent Enhancement of BODIPY-Based Solution-Processed Small-Molecule Solar Cells by Dimerization via the Meso Position. ACS Appl. Mater. Interfaces 2014, 6, 22496–22505. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.; Chen, C.-H.; Kao, M.-J.; Chien, S.-H.; Chou, C.-Y. Photoelectrode thin film of dye-sensitized solar cell fabricated by anodizing method and spin coating and electrochemical impedance properties of DSSC. Appl. Surf. Sci. 2013, 275, 252–257. [Google Scholar] [CrossRef]
- Fiter, L.; Mustafa, M.N.; Sulaiman, Y. Optimization of power conversion efficiency of BaTiO3 as a compact layer in DSSC using response surface methodology/Box-Behnken design. Optik 2023, 288, 171212. [Google Scholar] [CrossRef]
- Shahid, M.U.; Mohamed, N.M.; Muhsan, A.S.; Zaine, S.N.A.; Khatani, M.; Yar, A.; Ahmad, W.; Hussain, M.B.; Alothman, A.A.; Mushab, M.S.S. Graphene loaded TiO2 submicron spheres scattering layer for efficient dye-sensitized solar cell. Chemosphere 2023, 321, 138009. [Google Scholar] [CrossRef]
- Venkatraman, M.; Rajesh, G.; Rajkumar, S.; Ananthan, M.; Balaji, G. Semi-transparent dye-sensitized solar cells (DSSC) for energy-efficient windows with microwave-prepared TiO2 nanoparticles as photoanodes. Mater. Lett. 2024, 360, 135953. [Google Scholar] [CrossRef]
- Abdullah, H.; Xian, K.J.; Ying, K.C.; Naim, N.M.; Akhtaruzzaman, M.; Berhanuddin, D.D.; Keng, L.K.; Rizwan, M.; Othman, M.H.D.; Ahmad, M.F.; et al. Analysis of Dye-Sensitized Solar Cells Based on ZnO and ZnO–Ni Photoanodes with Various Ni Concentrations. Appl. Sol. Energy 2024, 60, 461–472. [Google Scholar] [CrossRef]
- Ansón-Casaos, A.; Martínez-Barón, C.; Angoy-Benabarre, S.; Hernández-Ferrer, J.; Benito, A.; Maser, W.; Blesa, M. Stability of a pyrimidine-based dye-sensitized TiO2 photoanode in sacrificial electrolytes. J. Electroanal. Chem. 2023, 929, 117114. [Google Scholar] [CrossRef]
- Kumar, Y.; Chhalodia, T.; Bedi, P.K.G.; Meena, P.L. Photoanode modified with nanostructures for efficiency enhancement in DSSC: A review. Carbon Lett. 2023, 33, 35–58. [Google Scholar] [CrossRef]
- Alizadeh, A.; Roudgar-Amoli, M.; Shariatinia, Z.; Abedini, E.; Asghar, S.; Imani, S. Recent developments of perovskites oxides and spinel materials as platinum-free counter electrodes for dye-sensitized solar cells: A comprehensive review. Renew. Sustain. Energy Rev. 2023, 187, 113770. [Google Scholar] [CrossRef]
- Robledo, A.G.F.; Enríquez, J.P.; Avendaño, C.A.M.; Hernández, G.P.; Gutiérrez, P.J.J. Characterization of natural dyes on ZnO and TiO2 thin films for applications in DSSC. J. Mater. Sci. Mater. Electron. 2023, 34, 980. [Google Scholar] [CrossRef]
- Deogratias, G.; Al-Qurashi, O.S.; Wazzan, N. Optical and electronic properties enhancement via chalcogenides: Promising materials for DSSC applications. J. Mol. Model. 2023, 29, 86. [Google Scholar] [CrossRef] [PubMed]
- Masud; Kim, H.K. Redox Shuttle-Based Electrolytes for Dye-Sensitized Solar Cells: Comprehensive Guidance, Recent Progress, and Future Perspective. ACS Omega 2023, 8, 6139–6163. [Google Scholar] [CrossRef] [PubMed]
- Akdogan, N.; Ortatepe, B.; Atli, A.; Disli, A.; Erdogdu, Y.; Yildiz, A. A Joint Theoretical and Experimental Study on a Tetrazole-Anchored BODIPY-Based Dye at the Surface of TiO2 for Dye-Sensitized Solar Cell Applications. Phys. Status Solidi (A) 2024, 221, 2300513. [Google Scholar] [CrossRef]
- Lerrick, R.I.; Bere, W.; Braga, M.D.S.; Supriyanto, A.; Essa, A.H. T-grafting BODIPY-Based Photosensitizers: The Synthesis of 2,6-Diethylacrylic-8-(o-methoxyphenyl)BODIPY and Its DSSC Performance. Indones. J. Chem. 2023, 23, 232–241. [Google Scholar] [CrossRef]
Dyes | RS (Ω) | R1 (Ω) | R2 (Ω) | R3 (Ω) | C1 (μF) | C2 (μF) | C3 (μF) |
---|---|---|---|---|---|---|---|
BORANIL ATH017 (A) | 36.39 ± 1.22 | 119.0 ± 2.44 | 46.88 ± 6.57 | 38.94 ± 3.02 | 6.32 ± 6.14 | 2.65 ± 3.19 | 7.14 ± 2.17 |
BORANIL ATH019 (B) | 38.87 ± 1.14 | 89.91 ± 3.75 | 48.84 ± 6.79 | 40.07 ± 4.71 | 5.98 ± 8.03 | 2.14 ± 3.03 | 6.55 ± 3.81 |
BORANIL ATH024 (C) | 62.70 ± 0.92 | 86.28 ± 4.94 | 66.25 ± 6.33 | 49.52 ± 3.72 | 7.44 ± 10.39 | 1.90 ± 2.91 | 6.49 ± 3.02 |
BODIPY ATH1005 (D) | 32.02 ± 0.30 | 27.23 ± 14.6 | 34.31 ± 11.6 | 34.14 ± 2.78 | 82.49 ± 23.71 | 3.62 ± 1.01 | 6.94 ± 2.88 |
BODIPY ATH1006 (E) | 100.1 ± 0.14 | 38.63 ± 8.01 | 40.98 ± 7.58 | 35.93 ± 4.80 | 43.33 ± 13.3 | 13.35 ± 3.49 | 7.13 ± 4.55 |
BODIPY ATH031 (F) | 46.61 ± 0.31 | 35.48 ± 7.57 | 48.56 ± 4.62 | 8.62 ± 8.98 | 39.54 ± 12.7 | 8.38 ± 2.90 | 8.19 ± 4.40 |
BODIPY ATH032 (G) | 31.77 ± 0.30 | 33.46 ± 10.9 | 35.70 ± 10.3 | 40.29 ± 8.16 | 43.64 ± 17.9 | 14.52 ± 5.35 | 7.78 ± 4.42 |
DG 1:1 | 35.23 ± 1.75 | 22.93 ± 5.77 | 60.28 ± 3.13 | 47.36 ± 3.75 | 54.96 ± 13.6 | 6.27 ± 7.57 | 1.10 ± 3.18 |
DG 1:3 | 62.05 ± 0.13 | 18.27 ± 1.73 | 23.97 ± 1.85 | 42.34 ± 2.26 | 97.70 ± 3.63 | 8.21 ± 5.15 | 2.54 ± 3.23 |
DG 3:1 | 98.93 ± 0.16 | 39.43 ± 9.48 | 33.68 ± 11.1 | 45.91 ± 3.77 | 33.08 ± 15.4 | 13.33 ± 5.30 | 3.93 ± 4.01 |
EG 1:1 | 34.75 ± 1.69 | 22.06 ± 5.82 | 59.95 ± 3.10 | 846.17 ± 3.82 | 52.61 ± 13.9 | 6.27 ± 7.49 | 1.14 ± 3.10 |
EG 1:3 | 32.23 ± 0.35 | 26.56 ± 14.3 | 42.40 ± 9.05 | 41.02 ± 2.95 | 10.17 ± 24.4 | 20.65 ± 4.39 | 4.14 ± 2.27 |
EG 3:1 | 91.55 ± 0.15 | 18.50 ± 13.3 | 44.46 ± 5.55 | 39.22 ± 3.43 | 61.80 ± 22.3 | 8.18 ± 2.48 | 7.23 ± 5.73 |
Dye | JSC (mA/cm2) | VOC (V) | FF | η (%) | Ref. |
---|---|---|---|---|---|
BODIPY | 1.42 | 0.43 | 0.55 | 0.34 | [64] |
BODIPY 1 | 0.73 | 0.26 | 0.55 | 0.11 | [8] |
BODIPY 2 | 3.10 | 0.37 | 0.54 | 0.63 | [8] |
BODIPY 3 | 1.66 | 0.49 | 0.52 | 0.42 | [50] |
BODIPY 9 | 1.32 | 0.18 | 0.51 | 0.49 | [65] |
BODIPY 1/KI/I2 | 3.40 | 0.67 | 0.51 | 1.70 | [47] |
BODIPY 2/KI/I2 | 4.00 | 0.69 | 0.52 | 2.10 | [47] |
BODIPY 3/KI/I2 | 4.70 | 0.72 | 0.52 | 2.50 | [47] |
H-T-BO:PC71BM 1:2 | 6.80 | 0.67 | 34.3 | 1.56 | [52] |
Br-T-BO:PC71BM 1:2.5 | 7.62 | 0.72 | 35.7 | 1.96 | [52] |
H-T-BO:PC71BM 1:2.5 | 11.3 | 0.74 | 35.5 | 3.13 | [52] |
ATH017 (A) | 0.99 | 0.49 | 0.48 | 1.46 | [this work] |
ATH019 (B) | 0.96 | 0.60 | 0.39 | 1.40 | [this work] |
ATH024 (C) | 0.95 | 0.60 | 0.44 | 1.57 | [this work] |
ATH1005 (D) | 1.57 | 0.59 | 0.39 | 2.26 | [this work] |
ATH1006 (E) | 1.46 | 0.60 | 0.38 | 2.09 | [this work] |
ATH031 (F) | 1.25 | 0.60 | 0.45 | 2.10 | [this work] |
ATH032 (G) | 1.26 | 0.60 | 0.48 | 2.25 | [this work] |
DG 1:1 | 1.44 | 0.60 | 0.45 | 2.43 | [this work] |
DG 1:3 | 2.41 | 0.59 | 0.39 | 3.45 | [this work] |
DG 3:1 | 1.26 | 0.52 | 0.46 | 1.90 | [this work] |
EG 1:1 | 1.41 | 0.60 | 0.45 | 2.41 | [this work] |
EG 1:3 | 1.60 | 0.55 | 0.49 | 2.71 | [this work] |
EG 3:1 | 1.24 | 0.60 | 0.45 | 2.08 | [this work] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leite, A.M.B.; da Cunha, H.O.; Romanhi, P.; Pedrosa, L.F.; Babu, R.S.; de Barros, A.L.F. Use of BODIPY and BORANIL Dyes to Improve Solar Conversion in the Fabrication of Organic Photovoltaic Cells Through the Co-Sensitization Method. Colorants 2024, 3, 311-328. https://doi.org/10.3390/colorants3040022
Leite AMB, da Cunha HO, Romanhi P, Pedrosa LF, Babu RS, de Barros ALF. Use of BODIPY and BORANIL Dyes to Improve Solar Conversion in the Fabrication of Organic Photovoltaic Cells Through the Co-Sensitization Method. Colorants. 2024; 3(4):311-328. https://doi.org/10.3390/colorants3040022
Chicago/Turabian StyleLeite, Arcano Matheus Bragança, Higor Oliveira da Cunha, Paula Romanhi, Leandro Ferreira Pedrosa, Rajendran Suresh Babu, and Ana Lucia Ferreira de Barros. 2024. "Use of BODIPY and BORANIL Dyes to Improve Solar Conversion in the Fabrication of Organic Photovoltaic Cells Through the Co-Sensitization Method" Colorants 3, no. 4: 311-328. https://doi.org/10.3390/colorants3040022
APA StyleLeite, A. M. B., da Cunha, H. O., Romanhi, P., Pedrosa, L. F., Babu, R. S., & de Barros, A. L. F. (2024). Use of BODIPY and BORANIL Dyes to Improve Solar Conversion in the Fabrication of Organic Photovoltaic Cells Through the Co-Sensitization Method. Colorants, 3(4), 311-328. https://doi.org/10.3390/colorants3040022