Novice Female Exercisers Exhibited Different Biomechanical Loading Profiles during Full-Squat and Half-Squat Practice
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Instruments
2.3. Experimental Protocol
2.4. Outcome Measures
2.5. Data Processing and Statistical Analysis
3. Results
3.1. Kinematics
3.2. Kinetics Analysis
4. Discussion
4.1. Kinematics
4.2. Kinetics
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khaiyat, O.A.; Norris, J. Electromyographic activity of selected trunk, core, and thigh muscles in commonly used exercises for ACL rehabilitation. J. Phys. Ther. Sci. 2018, 30, 642–648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Cava, A.; Morán-Navarro, R.; Sánchez-Medina, L.; González-Badillo, J.J.; Pallarés, J.G. Velocity-and power-load relationships in the half, parallel and full back squat. J. Sports Sci. 2019, 37, 1088–1096. [Google Scholar] [CrossRef]
- Escamilla, R.F.; Fleisig, G.S.; Zheng, N.; Barrentine, S.W.; Wilk, K.E.; Andrews, J.R. Biomechanics of the knee during closed kinetic chain and open kinetic chain exercises. Med. Sci. Sports Exerc. 1998, 30, 556–569. [Google Scholar] [CrossRef] [PubMed]
- O’Reilly, M.A.; Whelan, D.F.; Ward, T.E.; Delahunt, E.; Caulfield, B.M. Technology in Strength and Conditioning: Assessing Bodyweight Squat Technique with Wearable Sensors. J. Strength Cond. Res. 2017, 31, 2303–2312. [Google Scholar] [CrossRef] [PubMed]
- Escamilla, R.F. Knee biomechanics of the dynamic squat exercise. Med. Sci. Sports Exerc. 2001, 33, 127–141. [Google Scholar] [CrossRef]
- Cotter, J.A.; Chaudhari, A.M.; Jamison, S.T.; Devor, S.T. Knee joint kinetics in relation to commonly prescribed squat loads and depths. J. Strength Cond. Res. Natl. Strength Cond. Assoc. 2013, 27, 1765. [Google Scholar] [CrossRef] [Green Version]
- Schoenfeld, B.J. Squatting Kinematics and Kinetics and Their Application to Exercise Performance. J. Strength Cond. Res. 2010, 24, 3497–3506. [Google Scholar] [CrossRef] [Green Version]
- Kellis, E.; Arambatzi, F.; Papadopoulos, C. Effects of load on ground reaction force and lower limb kinematics during concentric squats. J. Sports Sci. 2005, 23, 1045–1055. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, H.; Wirth, K.; Klusemann, M. Analysis of the Load on the Knee Joint and Vertebral Column with Changes in Squatting Depth and Weight Load. Sports Med. 2013, 43, 993–1008. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Most, E.; DeFrate, L.; Suggs, J.; Gill, T.; Rubash, H. Effect of the posterior cruciate ligament on posterior stability of the knee in high flexion. J. Biomech. 2004, 37, 779–783. [Google Scholar] [CrossRef]
- Agarwal, B.; Deursen, R.; Mullerpatan, R. Influence of habitual deep squatting on kinematics of lower extremity, pelvis and trunk. Int. J. Health Rehabil. Sci. 2018, 7, 12–22. [Google Scholar] [CrossRef]
- Wallace, D.A.; Salem, G.J.; Salinas, R.; Powers, C.M. Patellofemoral Joint Kinetics While Squatting with and without an External Load. J. Orthop. Sports Phys. Ther. 2002, 32, 141–148. [Google Scholar] [CrossRef] [Green Version]
- Santos Catelli, D. Femoroacetabular Impingement Syndrome and Total Hip Arthroplasty: Joint Biomechanics before and after Surgery; Université d’Ottawa/University of Ottawa: Ottawa, ON, USA, 2019. [Google Scholar]
- Thiebaud, R.S.; Funk, M.D.; Abe, T. Home-based resistance training for older adults: A systematic review. Geriatr. Gerontol. Int. 2014, 14, 750–757. [Google Scholar] [CrossRef] [PubMed]
- Zawadka, M.; Smolka, J.; Skublewska-Paszkowska, M.; Lukasik, E.; Bys, A.; Zielinski, G.; Gawda, P. Sex-dependent differences in single-leg squat kinematics and their relationship to squat depth in physically active individuals. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Lephart, S.M.; Ferris, C.M.; Riemann, B.L.; Myers, J.B.; Fu, F.H. Gender Differences in Strength and Lower Extremity Kinematics During Landing. Clin. Orthop. Relat. Res. 2002, 401, 162–169. [Google Scholar] [CrossRef]
- Mehls, K.; Grubbs, B.; Jin, Y.; Coons, J. Electromyography Comparison of Sex Differences During the Back Squat. J. Strength Cond. Res. 2020. [Google Scholar] [CrossRef] [PubMed]
- Escamilla, R.F.; Fleisig, G.S.; Zheng, N.; Lander, J.E.; Barrentine, S.W.; Andrews, J.R.; Bergemann, B.W.; Moorman III, C.T. Effects of technique variations on knee biomechanics during the squat and leg press. Med. Sci. Sports Exerc. 2001, 33, 1552–1566. [Google Scholar] [CrossRef]
- Damsgaard, M.; Rasmussen, J.; Christensen, S.T.; Surma, E.; de Zee, M. Analysis of musculoskeletal systems in the AnyBody Modeling System. Simul. Model. Pr. Theory 2006, 14, 1100–1111. [Google Scholar] [CrossRef]
- McBride, J.M.; Kirby, T.J.; Haines, T.L.; Skinner, J. Relationship between Relative Net Vertical Impulse and Jump Height in Jump Squats Performed to Various Squat Depths and With Various Loads. Int. J. Sports Physiol. Perform. 2010, 5, 484–496. [Google Scholar] [CrossRef] [Green Version]
- Flores, V.; Becker, J.; Burkhardt, E.; Cotter, J. Knee Kinetics During Squats of Varying Loads and Depths in Recreationally Trained Women. J. Strength Cond. Res. 2020, 34, 1945–1952. [Google Scholar] [CrossRef]
- Bryanton, M.A.; Kennedy, M.D.; Carey, J.P.; Chiu, L.Z. Effect of Squat Depth and Barbell Load on Relative Muscular Effort in Squatting. J. Strength Cond. Res. 2012, 26, 2820–2828. [Google Scholar] [CrossRef] [PubMed]
- Salem, G.J.; Powers, C.M. Patellofemoral joint kinetics during squatting in collegiate women athletes. Clin. Biomech. 2001, 16, 424–430. [Google Scholar] [CrossRef]
- Shirey, M.; Hurlbutt, M.; Johansen, N.; King, G.W.; Wilkinson, S.G.; Hoover, D.L. The influence of core musculature engagement on hip and knee kinematics in women during a single leg squat. Int. J. Sports Phys. Ther. 2012, 7, 1–12. [Google Scholar]
- Catelli, D.S.; Wesseling, M.; Jonkers, I.; Lamontagne, M. A musculoskeletal model customized for squatting task. Comput. Methods Biomech. Biomed. Eng. 2018, 22, 21–24. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Mei, Q.; Peng, H.-T.; Li, J.; Wei, C.; Gu, Y. A Comparative Study on Loadings of the Lower Extremity during Deep Squat in Asian and Caucasian Individuals via OpenSim Musculoskeletal Modelling. BioMed Res. Int. 2020, 2020, 1–10. [Google Scholar] [CrossRef]
- Butler, A.B.; Caruntu, D.I.; Freeman, R.A. Knee Joint Biomechanics for Various Ambulatory Exercises Using Inverse Dynamics in OpenSim. In Proceedings of the ASME 2017 International Mechanical Engineering Congress and Exposition. Volume 3: Biomedical and Biotechnology Engineering, Tampa, FL, USA, 3–9 November 2017; ASME: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Pizzolato, C.; Reggiani, M.; Modenese, L.; Lloyd, D.G. Real-time inverse kinematics and inverse dynamics for lower limb applications using OpenSim. Comput. Methods Biomech. Biomed. Eng. 2016, 20, 436–445. [Google Scholar] [CrossRef]
- Mei, Q.; Gu, Y.; Xiang, L.; Baker, J.S.; Fernandez, J. Foot Pronation Contributes to Altered Lower Extremity Loading After Long Distance Running. Front. Physiol. 2019, 10. [Google Scholar] [CrossRef]
- Rajagopal, A.; Dembia, C.; DeMers, M.; Delp, D.D.; Hicks, J.L.; Delp, S.L. Full-Body Musculoskeletal Model for Muscle-Driven Simulation of Human Gait. IEEE Trans. Biomed. Eng. 2016, 63, 2068–2079. [Google Scholar] [CrossRef] [PubMed]
- Mei, Q.; Yaodong, G.U.; Dong, S.U.N.; Jianshe, L.I.; Justin, F. Progress on Biomechanical Research of Image-Based Subject-Specific OpenSim Lower Extremity Musculoskeletal Model. J. Med Biomech. 2020, 35, 259–264. [Google Scholar]
- McKean, M.R.; Dunn, P.K.; Burkett, B.J. The Lumbar and Sacrum Movement Pattern during the Back Squat Exercise. J. Strength Cond. Res. 2010, 24, 2731–2741. [Google Scholar] [CrossRef]
- Winter, D.A. Biomechanics and Motor Control of Human Movement; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Delp, S.L.; Anderson, F.C.; Arnold, A.S.; Loan, P.; Habib, A.; John, C.T.; Guendelman, E.; Thelen, D.G. OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement. IEEE Trans. Biomed. Eng. 2007, 54, 1940–1950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallo, C.; Thompson, W.; Lewandowski, B.; Humphreys, B.; Funk, J.; Funk, N.; Weaver, A.; Perusek, G.; Sheehan, C.; Mulugeta, L. Computational Modeling Using OpenSim to Simulate a Squat Exercise Motion. In Proceedings of the NASA Human Research Program Investigators’ Workshop: Integrated Pathways to Mars, Galveston, TX, USA, 15–13 January 2015. [Google Scholar]
- Golfeshan, N.; Barnamehei, H.; Torabigoudarzi, M.; Karimidastjerdi, M.; Panahi, A.; Darman, A.; Razaghi, M.; Kharazi, M.; Jafarloo, S.A. Upper body postures effect on neuromuscular activities of the lower limb during a squat: Musculoskeletal modeling. Gait Posture 2020, 81, 107–108. [Google Scholar] [CrossRef]
- Mei, Q.; Liangliang, X.I.A.N.G.; Jianshe, L.I.; Justin, F.; Yaodong, G.U. Analysis of Running Ground Reaction Forces Using the One-Dimensional Statistical Parametric Mapping (SPM1d). J. Med Biomech. 2021, 36, 51–58. [Google Scholar]
- Rhea, M.R.; Kenn, J.G.; Peterson, M.D.; Massey, D.; Simão, R.; Marin, P.J.; Favero, M.; Cardozo, D.; Krein, D. Joint-Angle Specific Strength Adaptations Influence Improvements in Power in Highly Trained Athletes. Hum. Mov. 2016, 17, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Whitting, J.W.; Meir, R.A.; Crowley-McHattan, Z.J.; Holding, R.C. Influence of footwear type on barbell back squat using 50, 70, and 90% of one repetition maximum: A biomechanical analysis. J. Strength Cond. Res. 2016, 30, 1085–1092. [Google Scholar] [CrossRef]
- Swinton, P.A.; Lloyd, R.; Keogh, J.W.; Agouris, I.; Stewart, A.D. A biomechanical comparison of the traditional squat, powerlifting squat, and box squat. J. Strength Cond. Res. 2012, 26, 1805–1816. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, D.; Reiman, M. The role and implementation of eccentric training in athletic rehabilitation: Tendinopathy, hamstring strains, and acl reconstruction. Int. J. Sports Phys. Ther. 2011, 6, 27–44. [Google Scholar]
- Markolf, K.L.; Gorek, J.F.; Kabo, J.M.; Shapiro, M.S. Direct measurement of resultant forces in the anterior cruciate ligament. An in vitro study performed with a new experimental technique. J. Bone Jt. Surg. Am. Vol. 1990, 72, 557–567. [Google Scholar] [CrossRef]
- Shoepe, T.; Ramirez, D.; Rovetti, R.; Kohler, D.; Almstedt, H. The Effects of 24 weeks of Resistance Training with Simultaneous Elastic and Free Weight Loading on Muscular Performance of Novice Lifters. J. Hum. Kinet. 2011, 29, 93–106. [Google Scholar] [CrossRef]
- Miletello, W.M.; Beam, J.R.; Cooper, Z.C. A Biomechanical Analysis of the Squat Between Competitive Collegiate, Competitive High School, and Novice Powerlifters. J. Strength Cond. Res. 2009, 23, 1611–1617. [Google Scholar] [CrossRef] [PubMed]
- Butler, R.J.; Plisky, P.J.; Southers, C.; Scoma, C.; Kiesel, K.B. Biomechanical analysis of the different classifications of the Functional Movement Screen deep squat test. Sports Biomech. 2010, 9, 270–279. [Google Scholar] [CrossRef] [PubMed]
- Chandler, T.J.; Wilson, G.D.; Stone, M.H. The effect of the squat exercise on knee stability. Med. Sci. Sports Exerc. 1989, 21, 299–303. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, R.; Goto, F.; Watanabe, H.; Ido, H.; Okayama, N.; Islam, M.M. The Relationship between Functional Fitness and Ability to Ride a Bicycle among Community-Dwelling Older Adult in Japan. Phys. Act. Health 2021, 5, 45–54. [Google Scholar] [CrossRef]
H-SQ | F-SQ | Mean Difference (95%CI) | F | t | p-Value | ||
---|---|---|---|---|---|---|---|
Knee | sagittal | 82.64 ± 8.40 | 126.93 ± 7.50 | −44.29 (−50.06, −38.53) | 0.38 | −15.69 | p < 0.001 |
coronal | 6.52 ± 1.16 | 10.42 ± 2.67 | −3.23 (−6.15, −3.12) | 0.76 | −4.86 | p < 0.001 | |
horizontal | 24.68 ± 4.34 | 42.02 ± 16.50 | −17.34 (−21.49, −13.19) | 4.19 | 0.07 | p < 0.001 | |
Hip | sagittal | 69.47 ± 7.15 | 102.55 ± 7.37 | −33.07 (−38.40, −27.75) | 0.47 | −12.68 | p < 0.001 |
coronal | 13.63 ± 4.52 | 22.85 ± 7.68 | −9.22 (−13.77, −4.67) | 6.79 | −4.14 | p < 0.001 | |
horizontal | 13.88 ± 3.32 | 38.47 ± 11.77 | −24.60 (−30.84, −18.35) | 16.11 | −8.05 | p < 0.001 | |
Ankle | sagittal | 25.78 ± 3.89 | 38.73 ± 2.96 | −12.95 (−15.45, −10.46) | 0.80 | −10.60 | p < 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Adrien, N.; Baker, J.S.; Mei, Q.; Gu, Y. Novice Female Exercisers Exhibited Different Biomechanical Loading Profiles during Full-Squat and Half-Squat Practice. Biology 2021, 10, 1184. https://doi.org/10.3390/biology10111184
Li X, Adrien N, Baker JS, Mei Q, Gu Y. Novice Female Exercisers Exhibited Different Biomechanical Loading Profiles during Full-Squat and Half-Squat Practice. Biology. 2021; 10(11):1184. https://doi.org/10.3390/biology10111184
Chicago/Turabian StyleLi, Xin, Ntwali Adrien, Julien S. Baker, Qichang Mei, and Yaodong Gu. 2021. "Novice Female Exercisers Exhibited Different Biomechanical Loading Profiles during Full-Squat and Half-Squat Practice" Biology 10, no. 11: 1184. https://doi.org/10.3390/biology10111184
APA StyleLi, X., Adrien, N., Baker, J. S., Mei, Q., & Gu, Y. (2021). Novice Female Exercisers Exhibited Different Biomechanical Loading Profiles during Full-Squat and Half-Squat Practice. Biology, 10(11), 1184. https://doi.org/10.3390/biology10111184