Effect of 12 Weeks Core Training on Core Muscle Performance in Rhythmic Gymnastics
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Procedures
2.4. Intervention
2.5. Data Analysis
3. Results
3.1. Body Composition and Densitometry
3.2. Isometric Tests in Isokinetic Dynamometer and Electromyography Analysis
3.3. Endurance Test and Electromyography Analysis
4. Discussion
5. Conclusions
6. Practical Applications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gram, M.C.D.; Kari, B. High level rhythmic gymnasts and urinary incontinence: Prevalence, risk factors, and influence on performance. Scand. J. Med. Sci. Sports 2020, 30, 159–165. [Google Scholar] [CrossRef]
- Frutuoso, A.S.; Diefenthaeler, F.; Vaz, M.A.; de la Rocha Freitas, C. Lower Limb Asymmetries in Rhythmic Gymnastics Athletes. Int. J. Sports Phys. Ther. 2016, 11, 34–43. [Google Scholar]
- Bobo-Arce, M.; Méndez-Rial, B. Determinants of competitive performance in rhythmic gymnastics. A review. J. Hum. Sport Exerc. 2013, 8, 711–727. [Google Scholar] [CrossRef] [Green Version]
- Rutkauskaitė, R.; Skarbalius, A. Interaction of Training and Performance of 13–14-Year-Old Athletes in Rhythmic Gymnastics. Balt. J. Sport Health Sci. 2011, 3, 29–36. [Google Scholar] [CrossRef]
- Schärer, C.; Tacchelli, L.; Göpfert, B.; Gross, M.; Lüthy, F.; Taube, W.; Hübner, K. Specific eccentric–isokinetic cluster training improves static strength elements on rings for elite gymnasts. Int. J. Environ. Res. Public Health 2019, 16, 4571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sands, W.; Mikesky, A.; Edwards, J. Physical abilities field tests US Gymnastics FederationWomen’s National Teams. In USGF Sport Science Congress Proceedings; 1991; pp. 39–47. Available online: https://www.researchgate.net/profile/William-Sands/publication/252931619_Physical_abilities_field_tests_US_Gymnastics_Federation_Women’s_National_Teams/links/54fb91580cf2c3f524204a00/Physical-abilities-field-tests-US-Gymnastics-Federation-Womens-National-Teams.pdf (accessed on 13 May 2021).
- Sands, W.; McNeal, J.; Jemnic, M.; Delonga, T. Should Female Gymnasts Lift Weights? Sportscience 2000, 4, 1–6. [Google Scholar]
- Ghezelbash, F.; El Ouaaid, Z.; Shirazi-Adl, A.; Plamondon, A.; Arjmand, N. Trunk musculoskeletal response in maximum voluntary exertions: A combined measurement-modeling investigation. J. Biomech. 2018, 70, 124–133. [Google Scholar] [CrossRef]
- Bdo Amaral Benfica, P.; Aguiar, L.T.; de Brito, S.A.F.; Bernardino, L.H.N.; Teixeira-Salmela, L.F.; de Morais Faria, C.D.C. Reference values for muscle strength: A systematic review with a descriptive meta-analysis. Braz. J. Phys. Ther. 2018, 22, 355–369. [Google Scholar] [CrossRef]
- McGill, S.M.; Childs, A.; Liebenson, C. Endurance times for low back stabilization exercises: Clinical targets for testing and training from a normal database. Arch. Phys. Med. Rehabil. 1999, 80, 941–944. [Google Scholar] [CrossRef]
- Lynn, S.K.; Watkins, C.M.; Wong, M.A.; Balfany, K.; Feeney, D.F. Validity and reliability of surface electromyography measurements from a wearable athlete performance system. J. Sport Sci. Med. 2018, 17, 205–215. [Google Scholar]
- Deering, R.E.; Senefeld, J.W.; Pashibin, T.; Neumann, D.A.; Hunter, S.K. Muscle function and fatigability of trunk flexors in males and females. Biol. Sex Differ. 2017, 8, 12. [Google Scholar] [CrossRef] [Green Version]
- Zapolska, J.; Witczak, K.; Mańczuk, A.; Ostrowska, L. Assessment of nutrition, supplementation and body composition parameters on the example of professional volleyball players. Rocz. Państwowego Zakładu Hig. 2014, 65, 235–242. [Google Scholar]
- Courteix, D.; Rieth, N.; Thomas, T.; Van Praagh, E.; Benhamou, C.L.; Collomp, K.; Lespessailles, E.; Jaffré, C. Preserved bone health in adolescent elite rhythmic gymnasts despite hypoleptinemia. Horm. Res. 2007, 68, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Barbado, D.; Lopez-Valenciano, A.; Juan-Recio, C.; Montero-Carretero, C.; Van Dieën, J.H.; Vera-Garcia, F.J. Trunk stability, trunk strength and sport performance level in judo. PLoS ONE 2016, 11, e0156267. [Google Scholar] [CrossRef]
- Ahmed, S.; Saraswat, A.; Esht, V. Correlation of core stability with balance, agility and upper limb power in badminton players: A cross-sectional study. Sport Sci. Health 2021. [Google Scholar] [CrossRef]
- Kibler, W.; Press, J.; Sciascia, A. The role of core stability in athletic function. Sports Med. 2006, 36, 189–198. [Google Scholar] [CrossRef]
- Granacher, U.; Gollhofer, A.; Hortobágyi, T.; Kressig, R.W.; Muehlbauer, T. The importance of trunk muscle strength for balance, functional performance, and fall prevention in seniors: A systematic review. Sports Med. 2013, 43, 627–641. [Google Scholar] [CrossRef]
- Carrasco-Poyatos, M.; Ramos-Campo, D.J.; Rubio-Arias, J.A. Pilates versus resistance training on trunk strength and balance adaptations in older women: A randomized controlled trial. PeerJ 2019, 2019, e7948. [Google Scholar] [CrossRef] [PubMed]
- Waldhelm, A.; Li, L. Endurance tests are the most reliable core stability related measurements. J. Sport Health Sci. 2012, 1, 121–128. [Google Scholar] [CrossRef] [Green Version]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- Rubio-Arias, J.A.; Ramos-Campo, D.J.; Esteban, P.; Martínez, F.; Jiménez, J.F. Effect of 6-weeks WBVT on the behaviour of the lower limb muscle fibres during vertical jumping. J. Sports Sci. 2018, 36, 398–406. [Google Scholar] [CrossRef]
- Mcgill, S. Core training: Evidence translating to better performance and injury prevention. Strength and Conditioning Journal. Strength Cond. J. 2010, 32, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. Statistical Power Analysis for the Behavioral Science, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Gomez Campos, R.; Hespanhol, J.E.; Portella, D.; Vargas Vitoria, R.; De Arruda, M.; Cossio-Bolanos, M.A. Predicción de la maduración somática a partir de variables antropométricas: Validación y propuesta de ecuaciones para escolares de Brasil. Nutr. Clin. Diet. Hosp. 2012, 32, 7–17. [Google Scholar]
- Moore, S.A.; McKay, H.A.; Macdonald, H.; Nettlefold, L.; Baxter-Jones, A.D.G.; Cameron, N.; Brasher, P.M.A. Enhancing a somatic maturity prediction model. Med. Sci. Sports Exerc. 2015, 47, 1755–1764. [Google Scholar] [CrossRef] [PubMed]
- Skrypnik, D.; Bogdański, P.; Mądry, E.; Karolkiewicz, J.; Ratajczak, M.; Kryściak, J.; Pupek-Musialik, D.; Walkowiak, J. Effects of Endurance and Endurance Strength Training on Body Composition and Physical Capacity in Women with Abdominal Obesity. Obes. Facts 2015, 8, 175–187. [Google Scholar] [CrossRef]
- Piacentini, M.F.; Ioannon, G.; Comotto, S.; Spedicato, A.; Vernillo, G.; La Torre, A. Concurrent strenth and endurance training effects on running economy in master endurance runners. J. Strength Cond. Res. 2013, 27, 2295–2303. [Google Scholar] [CrossRef]
- Võsoberg, K.; Tillmann, V.; Tamm, A.L.; Maasalu, K.; Jürimäe, J. Bone mineralization in rhythmic gymnasts entering puberty: Associations with jumping performance and body composition variables. J. Sports Sci. Med. 2017, 16, 99–104. [Google Scholar]
- Gruodyté, R.; Jurimae, J.; Saar, M.; Maasalu, K.; Jurimae, T. Relationships between areal bone mineral density and jumping height in pubertal girls with different physical activity patterns. J. Sports Med. Phys. Fit. 2009, 49, 474. [Google Scholar]
- Jackowski, S.A.; Erlandson, M.C.; Mirwald, R.L.; Faulkner, R.A.; Bailey, D.A.; Kontulainen, S.A.; Cooper, D.M.L.; Baxter-jones, A.D.G. Effect of maturational timing on bone mineral content accrual from childhood to adulthood: Evidence from 15 years of longitudinal data. Bone 2011, 48, 1178–1185. [Google Scholar] [CrossRef]
- Jürimäe, J.; Gruodyte-Raciene, R.; Baxter-Jones, A.D.G. Effects of gymnastics activities on bone accrual during growth: A systematic review. J. Sports Sci. Med. 2018, 17, 245–258. [Google Scholar]
- Weaver, C.M.; Gordon, C.M.; Janz, K.F.; Kalkwarf, H.J.; Lappe, J.M. The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: A systematic review and implementation recommendations. Osteoporos. Int. 2016, 27, 1281–1386. [Google Scholar] [CrossRef] [Green Version]
- Erlandson, M.; Kontulainen, S.A.; Baxter-Jones, A.D.G. Precompetitive and recreational gymnasts have greater bone density, mass, and estimated strength at the distal radius in young childhood. Osteoporos. Int. 2011, 22, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Gruodyte-Raciene, R.; Erlandson, M.C.; Jackowski, S.A.; Baxter-Jones, A.D.G. Structural strength development at the proximal femur in 4- to 10-year-old precompetitive gymnasts: A 4-year longitudinal hip structural analysis study. J. Bone Miner. Res. 2013, 28, 2592–2600. [Google Scholar] [CrossRef] [PubMed]
- Purenović-Ivanović, T.; Popović, R.; Bubanj, S.; Stanković, R. Body composition in high-level female rhythmic gymnasts of different age categories. Sci. Sports 2019, 34, 141–148. [Google Scholar] [CrossRef]
- Swinarew, A.S.; Stachura, A.; Gupta, S. Efectos de Ejercicios Core de 6 Semanas Sobre el Rendimiento de Natación de Nadadores de Nivel Nacional. PLoS ONE 2020, 1, 1–9. [Google Scholar]
- Durall, C.J.; Udermann, B.E.; Johansen, D.R.; Gibson, B.; Reineke, D.M.; Reuteman, P. The effects of preseason trunk muscle training on low-back pain ocurrence in women collegiate gymnasts. J. Strength Cond. Res. 2009, 23, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Amorim, T.P.; Sousa, F.M.; Dos Santos, J.A.R. Influence of Pilates training on muscular strength and flexibility in dancers. Mot. Rev. Educ. Fis. 2011, 17, 660–666. [Google Scholar] [CrossRef] [Green Version]
- Watson, T.; Mcpherson, S.; Edwards, J.; Melcher, I.; Burgess, T. Dance, Balance and Core Muscle Performance Measures Are Improved Following a 9-Week. Int. J. Sports Phys. Ther. 2017, 12, 25–41. [Google Scholar]
- Fragala, M.S.; Cadore, E.L.; Dorgo, S.; Izquierdo, M.; Kraemer, W.J.; Peterson, M.D.; Ryan, E.D. Resistance Training for Older Adults: Position Statement From the National Strength and Conditioning Association. J. Strength Cond. Res. 2019, 33, 2019–2052. [Google Scholar] [CrossRef]
Pre-Training | Core Training 12 Weeks | Post Training |
---|---|---|
Body composition and densitometry analysis | Body composition and densitometry analysis | |
Isometric test with EMG | Isometric test | |
Core endurance test EMG | Core endurance test |
Exercises | Period 1 | Period 2 | Period 3 | |
---|---|---|---|---|
Volume | Volume | Progress | Volume | |
Hollowing | 10 sets | 10 sets | ||
Bracing | 10 sets | 10 sets | ||
Dissociation | 5 sets | 5 sets | ||
Cat-Camel | 10 sets | 10 sets | Supine Bridge | 2 × 5 sets × 20 s (15 s rest) (both legs) |
Quadrupedal | 8 sets of 20 s (15 s rest) | 2 × 7 sets of 20 s (15 s rest) | Quadrupedal Birddog exercise | 2 × 5 sets |
Front Bridge | Front Bridge | 2 × 5 sets (both sides) | ||
Front Bridge destabilisation | 2 × 5 sets × 20 s) (15 s rest) | |||
Front Bridge on swiss ball | 2 × 5 sets × 20 s) (15 s rest) | |||
Side Bridge | Side Bridge | 2 × 5 sets × 20 s (15 s rest) (both sides) | ||
Supine Bridge | Supine Bridge | 2 × 5 sets × 20 s (15 s rest) (both legs) |
Control Group (n = 12) | Training Group (n = 12) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Pre-Training | Post-Training | Mean Differences | p | Pre-Training | Post-Training | Mean Differences | p | Interaction Time × Group (p) | |
FM (kg) | 8.74 ± 3.47 | 8.54 ± 3.51 | 0.20 | 0.165 | 10.41 ± 3.66 | 10.57 ± 3.63 | −0.16 | 0.365 | 0.04 (0.85) |
LM (Kg) | 28.84 ± 8.58 | 28.89 ± 8.00 | −0.43 | 0.793 | 34.71 ± 7.94 | 35.14 ± 7.89 | −0.43 | 0.037 | 1.83 (0.19) |
BM (Kg) | 1.65 ± 0.53 | 1.69 ± 0.54 | −0.04 | 0.003 | 2.04 ± 0.60 | 2.09 ± 0.59 | −0.06 | <0.001 | 0.72 (0.41) |
%FT (%) | 23.10 ± 4.69 | 22.47 ± 4.64 | 0.63 | 0.044 | 22.67 ± 2.73 | 22.71 ± 2.79 | −0.04 | 0.856 | 2.60 (0.12) |
TLM (Kg) | 13.68 ± 4.39 | 13.73 ± 4.18 | −0.05 | 0.669 | 16.79 ± 3.92 | 17.10 ± 4.10 | −0.31 | 0.040 | 2.29 (0.12) |
Control Group (n = 12) | Training Group (n = 12) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Pre-Training | Post-Training | Mean Differences | p | Pre-Training | Post-Training | Mean Differences | p | Interaction Time × Group (p) | ||
Flexion test | PT (N·m) | 26.52 ± 11.26 | 41.78 ± 27.05 | −15.26 | 0.086 | 31.56 ± 12.39 | 53.09 ± 41.36 | −21.53 | 0.019 | 0.27 (0.61) |
EMGrms Front (µV) | 390.92 ± 254.19 | 256.58 ± 135.61 | 134.33 | 0.03 | 386.33 ± 205.00 | 345.92 ± 217.18 | 40.42 | 0.494 | 1.30 (0.27) | |
EMGrms Back (µV) | 45.08 ± 34.27 | 57.17 ± 43.17 | −12.08 | 0.492 | 66.92 ± 35.42 | 86.42 ± 61.21 | −17.29 | 0.272 | 0.09 (0.77) | |
Extension test | PT (N·m) | 31.75 ± 17.28 | 39.44 ± 34.00 | −7.69 | 0.444 | 40.89 ± 19.28 | 63.66 ± 53.36 | −22.77 | 0.049 | 0.95 (0.34) |
EMGrms Front (µV) | 129.58 ± 73.85 | 178.00 ± 155.46 | −48.42 | 0.199 | 207.25 ± 123.68 | 232.42 ± 165.36 | −25.17 | 0.498 | 0.20 (0.66) | |
EMGrms Back (µV) | 128.83 ± 94.92 | 104.42 ± 41.28 | 24.42 | 0.421 | 163.67 ± 106.92 | 98.67 ± 36.61 | 65.00 | 0.04 | 0.93 (0.35) |
Control Group (n = 12) | Training Group (n = 12) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Pre-Training | Post-Training | Mean Differences | p | Pre-Training | Post-Training | Mean Differences | p | Interaction Time × Group (p) | |
Sorensen | 32.57 ± 11.53 | 34.02 ± 22.32 | −1.44 | 0.797 | 37.94 ± 19.86 | 51.00 ± 22.51 | −13.06 | 0.172 | 1.23 (0.28) |
Prone bridge | 31.06 ± 16.57 | 24.74 ± 15.36 | 6.32 | 0.133 | 27.99 ± 13.86 | 39.26 ± 23.38 | −11.27 | 0.04 | 5.92 (0.49) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esteban-García, P.; Jiménez-Díaz, J.F.; Abián-Vicén, J.; Bravo-Sánchez, A.; Rubio-Arias, J.Á. Effect of 12 Weeks Core Training on Core Muscle Performance in Rhythmic Gymnastics. Biology 2021, 10, 1210. https://doi.org/10.3390/biology10111210
Esteban-García P, Jiménez-Díaz JF, Abián-Vicén J, Bravo-Sánchez A, Rubio-Arias JÁ. Effect of 12 Weeks Core Training on Core Muscle Performance in Rhythmic Gymnastics. Biology. 2021; 10(11):1210. https://doi.org/10.3390/biology10111210
Chicago/Turabian StyleEsteban-García, Paula, José Fernando Jiménez-Díaz, Javier Abián-Vicén, Alfredo Bravo-Sánchez, and Jacobo Á. Rubio-Arias. 2021. "Effect of 12 Weeks Core Training on Core Muscle Performance in Rhythmic Gymnastics" Biology 10, no. 11: 1210. https://doi.org/10.3390/biology10111210
APA StyleEsteban-García, P., Jiménez-Díaz, J. F., Abián-Vicén, J., Bravo-Sánchez, A., & Rubio-Arias, J. Á. (2021). Effect of 12 Weeks Core Training on Core Muscle Performance in Rhythmic Gymnastics. Biology, 10(11), 1210. https://doi.org/10.3390/biology10111210