Genome-Wide Identification and Expression Analysis of Potential Antiviral Tripartite Motif Proteins (TRIMs) in Grass Carp (Ctenopharyngodon idella)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Identification of TRIMs in the Grass Carp Genome
2.2. Gene Structure Analysis and Subcellular Localization Prediction of CiTRIMs
2.3. Domain/Motif Architecture and the Dendrogram of CiTRIMs
2.4. Chromosomal Localization and Collinearity Analysis
2.5. Expression Analysis of CiTRIMs in Uninfected Grass Carp Tissues
2.6. Expression Analysis of CiTRIMs in Spleen Tissue during GCRV Infection
2.7. Expression Analysis for CiTRIMs in Kidney Cell Line during GCRV Infection
2.8. The Verification of Differentially Expressed CiTRIMs by qPCR
3. Results
3.1. Genome-Wide Identification of CiTRIMs
3.2. Dendrogram and Structural Features of CiTRIMs
3.3. Chromosomal Location of CiTRIMs
3.4. Gene Collinearities of CiTRIMs with TRIMs from Zebrafish and Humans
3.5. Tissue Expression Patterns of CiTRIMs
3.6. Expression Patterns of Potential Antiviral CiTRIMs in Grass Carp Spleen Tissue during GCRV Infection
3.7. Expression Patterns of Potential Antiviral CiTRIMs in CIK during GCRV Infection
3.8. The Verification of Differentially Expressed CiTRIMs during GCRV Infection
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andrew, J.S.; Katherine, L.B.B.; Michael, N.B.; Paul, S. Freemont Does This Have a Familiar RING? Trends Biochem. Sci. 1996, 21, 208–214. [Google Scholar] [CrossRef]
- Nisole, S.; Stoye, J.P.; Saïb, A. TRIM Family Proteins: Retroviral Restriction and Antiviral Defence. Nat. Rev. Microbiol. 2005, 3, 799–808. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Li, H.; Huang, J.; Shi, T.; Meng, Z.; Chen, Q.; Deng, J. Genome-Wide Analysis of BBX Gene Family in Tartary Buckwheat (Fagopyrum Tataricum). PeerJ 2021, 9, e11939. [Google Scholar] [CrossRef] [PubMed]
- Sardiello, M.; Cairo, S.; Fontanella, B.; Ballabio, A.; Meroni, G. Genomic Analysis of the TRIM Family Reveals Two Groups of Genes with Distinct Evolutionary Properties. BMC Evol. Biol. 2008, 8, 225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshigai, E.; Kawamura, S.; Kuhara, S.; Tashiro, K. Trim36/Haprin Plays a Critical Role in the Arrangement of Somites during Xenopus Embryogenesis. Biochem. Biophys. Res. Commun. 2009, 378, 428–432. [Google Scholar] [CrossRef]
- Wei, Y.; Zhou, H.; Wang, A.; Sun, L.; Wang, M.; Jia, R.; Zhu, D.; Liu, M.; Yang, Q.; Wu, Y.; et al. TRIM25 Identification in the Chinese Goose: Gene Structure, Tissue Expression Profiles, and Antiviral Immune Responses In Vivo and In Vitro. BioMed Res. Int. 2016, 2016, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Hu, S.; Duan, W.; Ding, T.; Zhao, Z. The Distinct Evolutionary Properties of the Tripartite Motif-Containing Protein 39 in the Chinese Softshell Turtle Based on Its Structural and Functional Characterization. Dev. Comp. Immunol. 2019, 99, 103407. [Google Scholar] [CrossRef]
- Hirata, Y.; Katagiri, K.; Nagaoka, K.; Morishita, T.; Kudoh, Y.; Hatta, T.; Naguro, I.; Kano, K.; Udagawa, T.; Natsume, T.; et al. TRIM48 Promotes ASK1 Activation and Cell Death through Ubiquitination-Dependent Degradation of the ASK1-Negative Regulator PRMT1. Cell Rep. 2017, 21, 2447–2457. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Hur, S. Substrate Recognition by TRIM and TRIM-like Proteins in Innate Immunity. Semin. Cell Dev. Biol. 2020, 11, 76–85. [Google Scholar] [CrossRef]
- Boudinot, P.; van der Aa, L.M.; Jouneau, L.; Du Pasquier, L.; Pontarotti, P.; Briolat, V.; Benmansour, A.; Levraud, J.-P. Origin and Evolution of TRIM Proteins: New Insights from the Complete TRIM Repertoire of Zebrafish and Pufferfish. PLoS ONE 2011, 6, e22022. [Google Scholar] [CrossRef]
- Goyani, S.; Roy, M.; Singh, R. TRIM-NHL as RNA Binding Ubiquitin E3 Ligase (RBUL): Implication in Development and Disease Pathogenesis. Biochim. Et Biophys. Acta (BBA)-Mol. Basis Dis. 2021, 1867, 7. [Google Scholar] [CrossRef]
- Hatakeyama, S. TRIM Family Proteins: Roles in Autophagy, Immunity, and Carcinogenesis. Trends Biochem. Sci. 2017, 42, 297–311. [Google Scholar] [CrossRef]
- Jin, Z.; Zhu, Z. The Role of TRIM Proteins in PRR Signaling Pathways and Immune-Related Diseases. Int. Immunopharmacol. 2021, 98, 107813. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, C.; Wang, X.; Hu, W.; Feng, Z. Tumor Suppressor P53 Cross-Talks with TRIM Family Proteins. Genes Dis. 2021, 8, 463–474. [Google Scholar] [CrossRef]
- Ozato, K.; Shin, D.; Chang, T.; Morse, H.C. TRIM Family Proteins and Their Emerging Roles in Innate Immunity. Nat. Rev. Immunol. 2008, 8, 849–860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koepke, L.; Gack, M.U.; Sparrer, K.M. The Antiviral Activities of TRIM Proteins. Curr. Opin. Microbiol. 2021, 59, 50–57. [Google Scholar] [CrossRef]
- Giraldo, M.; Hage, A.; van Tol, S.; Rajsbaum, R. TRIM Proteins in Host Defense and Viral Pathogenesis. Curr. Clin. Microbiol. Rep. 2020, 1–14. [Google Scholar] [CrossRef]
- Jia, X.; Zhao, C.; Zhao, W. Emerging Roles of MHC Class I Region-Encoded E3 Ubiquitin Ligases in Innate Immunity. Front. Immunol. 2021, 12, 687102. [Google Scholar] [CrossRef] [PubMed]
- Stremlau, M.; Owens, C.M.; Perron, M.J.; Kiessling, M.; Autissier, P.; Sodroski, J. The Cytoplasmic Body Component TRIM5a Restricts HIV-1 Infection in Old World Monkeys. Nature 2004, 427, 6. [Google Scholar] [CrossRef]
- Mu, T.; Zhao, X.; Zhu, Y.; Fan, H.; Tang, H. The E3 Ubiquitin Ligase TRIM21 Promotes HBV DNA Polymerase Degradation. Viruses 2020, 12, 346. [Google Scholar] [CrossRef] [Green Version]
- Yergeau, D.A.; Cornell, C.N.; Parker, S.K.; Zhou, Y.; Detrich, H.W. Bloodthirsty, an RBCC/TRIM Gene Required for Erythropoiesis in Zebrafish. Dev. Biol. 2005, 283, 97–112. [Google Scholar] [CrossRef] [PubMed]
- van der Aa, L.M.; Levraud, J.; Yahmi, M.; Lauret, E.; Briolat, V.; Herbomel, P.; Benmansour, A.; Boudinot, P. A large new subset of TRIM genes highly diversified by duplication and positive selection in teleost fish. BMC Biol. 2009, 7, 7. [Google Scholar] [CrossRef] [Green Version]
- Sun, N.; Jiang, L.; Ye, M.; Wang, Y.; Wang, G.; Wan, X.; Zhao, Y.; Wen, X.; Liang, L.; Ma, S.; et al. TRIM35 Mediates Protection against Influenza Infection by Activating TRAF3 and Degrading Viral PB2. Protein Cell 2020, 11, 12. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, M.; Watanabe, M.; Nakamaru, Y.; Takagi, D.; Takahashi, H.; Fukuda, S.; Hatakeyama, S. TRIM39 Negatively Regulates the NFκB-Mediated Signaling Pathway through Stabilization of Cactin. Celluarl. Mol. Life Sci. 2016, 73, 1085–1101. [Google Scholar] [CrossRef] [Green Version]
- Furnes, C.; Robertsen, B. Molecular cloning and characterization of bloodthirsty from Atlantic cod (Gadus morhua). Fish Shellfish. Immunol. 2010, 29, 903–909. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhao, H.; Chen, Y.; Luo, H.; Yang, P.; Yao, B. A Zebrafish (Danio Rerio) Bloodthirsty Member 20 with E3 Ubiquitin Ligase Activity Involved in Immune Response against Bacterial Infection. Biochem. Biophys. Res. Commun. 2015, 457, 83–89. [Google Scholar] [CrossRef]
- Langevin, C.; Boudinot, P. FTR83, a Member of the Large Fish-Specific FinTRIM Family, Triggers IFN Pathway and Counters Viral Infection. Front. Immunol. 2017, 8, 16. [Google Scholar] [CrossRef] [Green Version]
- Wentzel, A.S.; Petit, J.; van Veen, W.G.; Fink, I.R.; Scheer, M.H.; Piazzon, M.C.; Forlenza, M.; Spaink, H.P.; Wiegertjes, G.F. Transcriptome Sequencing Supports a Conservation of Macrophage Polarization in Fish. Sci. Rep. 2020, 10, 13470. [Google Scholar] [CrossRef]
- Savino, A.; Provero, P.; Poli, V. Differential Co-Expression Analyses Allow the Identification of Critical Signalling Pathways Altered during Tumour Transformation and Progression. Int. J. Mol. Sci. 2020, 21, 9461. [Google Scholar] [CrossRef]
- Cruz, A.; Arrais, J.P.; Machado, P. Interactive and Coordinated Visualization Approaches for Biological Data Analysis. Brief. Bioinform. 2019, 20, 1513–1523. [Google Scholar] [CrossRef]
- Hossain, S.M.M.; Khatun, L.; Ray, S.; Mukhopadhyay, A. Identification of Key Immune Regulatory Genes in HIV-1 Progression. Gene 2021, 792, 145735. [Google Scholar] [CrossRef]
- Wei, J.; Zhang, H.; Li, X.; Li, Q.; Ma, Z.; Bai, J.; Qiao, Z.; Feng, R. Transcriptional Profiling of Host Cell Responses to Encephalomyocarditis Virus (EMCV). Virol. J. 2017, 14, 45. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Xin, G.; Zhao, L.-M.; Huang, L.-X.; Qin, Y.-X.; Su, Y.-Q.; Zheng, W.-Q.; Wu, B.; Lin, N.; Yan, Q.-P.; et al. Novel Insights into Host-Pathogen Interactions of Large Yellow Croakers (Larimichthys Crocea) and Pathogenic Bacterium Pseudomonas Plecoglossicida Using Time-Resolved Dual RNA-Seq of Infected Spleens. Zool. Res. 2020, 41, 314–327. [Google Scholar] [CrossRef]
- Verrier, E.R.; Genet, C.; Laloë, D.; Jaffrezic, F.; Rau, A.; Esquerre, D.; Dechamp, N.; Ciobotaru, C.; Hervet, C.; Krieg, F.; et al. Genetic and Transcriptomic Analyses Provide New Insights on the Early Antiviral Response to VHSV in Resistant and Susceptible Rainbow Trout. BMC Genom. 2018, 19, 482. [Google Scholar] [CrossRef] [Green Version]
- China National Knowledge Infrastructure. Available online: https://data.cnki.net/Trade/yearbook/single/N2021020168?z=Z009 (accessed on 1 August 2021).
- Zeng, W.; Wang, Q.; Wang, Y.; Zhao, C.; Li, Y.; Shi, C.; Wu, S.; Song, X.; Huang, Q.; Li, S. Immunogenicity of a Cell Culture-Derived Inactivated Vaccine against a Common Virulent Isolate of Grass Carp Reovirus. Fish Shellfish Immunol. 2016, 54, 473–480. [Google Scholar] [CrossRef] [PubMed]
- Rao, Y.; Su, J. Insights into the Antiviral Immunity against Grass Carp (Ctenopharyngodon idella) Reovirus (GCRV) in Grass Carp. J. Immunol. Res. 2015, 2015, 670437. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Xiao, T.; Jin, S.; Wang, J.; Wang, J.; Luo, H.; Li, R.; Sun, T.; Zou, J.; Li, Y. Characterization and Immune Function of the Interferon-β Promoter Stimulator-1 in the Barbel Chub, Squaliobarbus Curriculus. Dev. Comp. Immunol. 2020, 104, 103571. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, Y.; Zhang, Y.; Ning, Z.; Li, Y.; Zhao, Q.; Lu, H.; Huang, R.; Xia, X.; Feng, Q.; et al. The Draft Genome of the Grass Carp (Ctenopharyngodon Idellus) Provides Insights into Its Evolution and Vegetarian Adaptation. Nat. Genet. 2015, 47, 625–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.L.; Tosatto, S.C.E.; Paladin, L.; Raj, S.; Richardson, L.J.; et al. Pfam: The Protein Families Database in 2021. Nucleic Acids Res. 2021, 49, D412–D419. [Google Scholar] [CrossRef]
- Letunic, I.; Khedkar, S.; Bork, P. SMART: Recent Updates, New Developments and Status in 2020. Nucleic Acids Res. 2021, 49, D458–D460. [Google Scholar] [CrossRef] [PubMed]
- Duvaud, S.; Gabella, C.; Lisacek, F.; Stockinger, H.; Ioannidis, V.; Durinx, C. Expasy, the Swiss Bioinformatics Resource Portal, as Designed by Its Users. Nucleic Acids Res. 2021, 49, W216–W227. [Google Scholar] [CrossRef]
- Chou, K.; Shen, H. Cell-PLoc 2.0: An Improved Package of Web-Servers for Predicting Subcellular Localization of Proteins in Various Organisms. Nat. Protoc. 2008, 3, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME SUITE: Tools for Motif Discovery and Searching. Nucleic Acids Res. 2009, 37, W202–W208. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, B.; Gao, S.; Lercher, M.J.; Hu, S.; Chen, W.-H. Evolview v3: A Webserver for Visualization, Annotation, and Management of Phylogenetic Trees. Nucleic Acids Res. 2019, 47, W270–W275. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Liu, F.; Zhu, Z.; Fu, J.; Feng, J.; Li, J.; Yue, G. A Consensus Linkage Map of the Grass Carp (Ctenopharyngodon Idella) Based on Microsatellites and SNPs. BMC Genom. 2010, 11, 135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chao, J.; Kong, Y.; Wang, Q.; Sun, Y.; Gong, D.; Lv, J.; Liu, G. MapGene2Chrom, a Tool to Draw Gene Physical Map Based on Perl and SVG Languages. Yi Chuan 2015, 37, 91–97. [Google Scholar] [CrossRef]
- Howe, K.L.; Achuthan, P.; Allen, J.; Allen, J.; Alvarez-Jarreta, J.; Amode, M.R.; Armean, I.M.; Azov, A.G.; Bennett, R.; Bhai, J.; et al. Ensembl 2021. Nucleic Acids Res. 2021, 49, D884–D891. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, H.; DeBarry, J.D.; Tan, X.; Li, J.; Wang, X.; Lee, T.; Jin, H.; Marler, B.; Guo, H.; et al. MCScanX: A Toolkit for Detection and Evolutionary Analysis of Gene Synteny and Collinearity. Nucleic Acids Res. 2012, 40, e49. [Google Scholar] [CrossRef] [Green Version]
- Cantalapiedra, C.P.; Hernández-Plaza, A.; Letunic, I.; Bork, P.; Huerta-Cepas, J. EggNOG-Mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale. BioRxiv 2021. [Google Scholar] [CrossRef]
- He, L.; Zhang, A.; Pei, Y.; Chu, P.; Li, Y.; Huang, R.; Liao, L.; Zhu, Z.; Wang, Y. Differences in Responses of Grass Carp to Different Types of Grass Carp Reovirus (GCRV) and the Mechanism of Hemorrhage Revealed by Transcriptome Sequencing. BMC Genom. 2017, 18, 452. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A Fast Spliced Aligner with Low Memory Requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef] [Green Version]
- Liao, Y.; Smyth, G.K.; Shi, W. FeatureCounts: An Efficient General Purpose Program for Assigning Sequence Reads to Genomic Features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langfelder, P.; Horvath, S. WGCNA: An R Package for Weighted Correlation Network Analysis. BMC Bioinform. 2008, 9, 559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourgon, R.; Gentleman, R.; Huber, W. Independent filtering increases detection power for high-throughput experiments. Proc. Natl. Acad. Sci. USA 2010, 107, 9546–9551. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape Provides a Biologist-Oriented Resource for the Analysis of Systems-Level Datasets. Nat. Commun. 2019, 10, 1523. [Google Scholar] [CrossRef]
- Chu, P.; He, L.; Huang, R.; Liao, L.; Li, Y.; Zhu, Z.; Hu, W.; Wang, Y. Autophagy Inhibits Grass Carp Reovirus (GCRV) Replication and Protects Ctenopharyngodon Idella Kidney (CIK) Cells from Excessive Inflammatory Responses after GCRV Infection. Biomolecules 2020, 10, 1296. [Google Scholar] [CrossRef]
- Ernst, J.; Bar-Joseph, Z. STEM: A Tool for the Analysis of Short Time Series Gene Expression Data. BMC Bioinform. 2006, 7, 191. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Cai, X.; Wu, J.; Cong, Q.; Chen, X.; Li, T.; Du, F.; Ren, J.; Wu, Y.-T.; Grishin, N.V.; et al. Phosphorylation of Innate Immune Adaptor Proteins MAVS, STING, and TRIF Induces IRF3 Activation. Science 2015, 347, aaa2630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, L.; Liu, H.; Li, X.; Fang, Q. The VP2 Protein of Grass Carp Reovirus (GCRV) Expressed in a Baculovirus Exhibits RNA Polymerase Activity. Virol. Sin. 2014, 29, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Tocchini, C.; Ciosk, R. TRIM-NHL Proteins in Development and Disease. Semin. Cell Dev. Biol. 2015, 47–48, 52–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaillon, O.; Aury, J.; Brunet, F.; Petit, J.; Stange-Thomann, N.; Mauceli, E.; Bouneau, L.; Fischer, C.; Ozouf-Costaz, C.; Bernot, A.; et al. Genome Duplication in the Teleost Fish Tetraodon Nigroviridis Reveals the Early Vertebrate Proto-Karyotype. Nature 2004, 431, 946–957. [Google Scholar] [CrossRef] [Green Version]
- Xu, P.; Zhang, X.; Wang, X.; Li, J.; Liu, G.; Kuang, Y.; Xu, J.; Zheng, X.; Ren, L.; Wang, G.; et al. Genome Sequence and Genetic Diversity of the Common Carp, Cyprinus Carpio. Nat. Genet. 2014, 46, 1212–1219. [Google Scholar] [CrossRef] [Green Version]
- Langevin, C.; Levraud, J.; Boudinot, P. Fish Antiviral Tripartite Motif (TRIM) Proteins. Fish Shellfish Immunol. 2019, 86, 724–733. [Google Scholar] [CrossRef]
- Zhang, X. Phylogenetic Analysis of Fish TRIM Genes and Their Functional Roles in Innate Immune System. Ph.D. Dissertation, Chinese Academy of Agricultural Sciences, Beijing, China, 2015. (In Chinese). [Google Scholar]
- Luo, K.; Li, Y.; Ai, K.; Xia, L.; Zhang, J.; Hu, W.; Gao, W.; Guo, L.; Qi, Z.; Yuan, H.; et al. Bioinformatics and Expression Analysis of FinTRIM Genes in Grass Carp, Ctenopharyngodon idella. Fish Shellfish Immunol. 2017, 66, 217–223. [Google Scholar] [CrossRef]
- Reymond, A. The Tripartite Motif Family Identifies Cell Compartments. EMBO J. 2001, 20, 2140–2151. [Google Scholar] [CrossRef] [Green Version]
- Cainarca, S.; Messali, S.; Ballabio, A.; Meroni, G. Functional Characterization of the Opitz Syndrome Gene Product (Midin): Evidence for Homodimerization and Association with Microtubules throughout the Cell Cycle. Hum. Mol. Genet. 1999, 8, 1387–1396. [Google Scholar] [CrossRef] [Green Version]
- Tsai, W.; Wang, Z.; Yiu, T.T.; Akdemir, K.C.; Xia, W.; Winter, S.; Tsai, C.; Shi, X.; Schwarzer, D.; Plunkett, W.; et al. TRIM24 Links a Non-Canonical Histone Signature to Breast Cancer. Nature 2010, 468, 927–932. [Google Scholar] [CrossRef] [Green Version]
- Sparrer, K.M.J.; Gableske, S.; Zurenski, M.A.; Parker, Z.M.; Full, F.; Baumgart, G.J.; Kato, J.; Pacheco-Rodriguez, G.; Liang, C.; Pornillos, O.; et al. TRIM23 Mediates Virus-Induced Autophagy via Activation of TBK1. Nat. Microbiol. 2017, 2, 1543–1557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, W.; Gu, Z.; Zhang, H.; Hu, H. To TRIM the Immunity: From Innate to Adaptive Immunity. Front. Immunol. 2020, 11, 02157. [Google Scholar] [CrossRef] [PubMed]
- Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; et al. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Curr. Protoc. Bioinform. 2016, 54. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Li, Q.; Mao, A.; Hu, M.; Shu, H. TRIM4 Modulates Type I Interferon Induction and Cellular Antiviral Response by Targeting RIG-I for K63-Linked Ubiquitination. J. Mol. Cell Biol. 2014, 6, 154–163. [Google Scholar] [CrossRef]
Primer Name | Primer Sequence (5′–3′) |
---|---|
CiTRIM2-F | TGGTGCGTCAGATCGACAAA |
CiTRIM2-R | CTGTGGGCGGGAATGTAGTT |
CiTRIM35-16-F | TCTGGTTCCTGTCCTCAATGC |
CiTRIM35-16-R | TGTTAGCCACAATGCGGTTG |
CiTRIM-35-50-F | CCTCCAGTCAATCAGGCTCT |
CiTRIM-35-50-F | ATTTCCTTTGTTGCCTCTGCT |
Cibtr40-F | AAAAGACAGCAGTGCAGCAG |
Cibtr40-R | CGATCTCCTTCTCTTTGGCTTG |
CiTRIM46b-F | TAGAAAGCGGCATTGCTCAG |
CiTRIM46-R | ACCACGCAATTCACTCACAC |
CiTRIM5-like-F | ACGCCATTGATGCTCTTGTG |
CiTRIM54-like-R | TTGGCACGTTGAGCATTGTC |
CiTRIM71-F | ACCATCGCATTCAGGTGTTCG |
CiTRIM71-R | TCATTCCATCTGGGGTAACCGCTA |
CiTRIM103-F | CCACCTTCATTGCCCCATCT |
CiTRIM103-R | GCGTCTGGTAAAATTCCCGC |
CiTRIM109-F | AACAGATCCAGTGCTCCGTG |
CiTRIM109-R | CTGCATTCCGGACACAGTCT |
CiTRIM110-F | TGCACAATTTCAGCACCAGC |
CiTRIM110-R | GATGGTGACCCTGCTGTTCA |
CiTRIM112-F | TCCAGAACCACCCGCTTGTGA |
CiTRIM112-R | CCCCTTGTGCGACCCAACCAG |
IRF3-F | ACTTCAGCAGTTTAGCATTCCC |
IRF3-R | GCAGCATCGTTCTTGTTGTCA |
VP2-F | ATCAAGGATCCCATTCCGCCTTCA |
VP2-R | TTAGAGGATCGTGCCATTGAGGGT |
β-actin-F | GCTATGTGGCTCTTGACTTCG |
β-actin-R | GGGCACCTGAACCTCTCATT |
Gene Name | Genome ID | PL (aa) | MW (KDa) | PI | EN | PSL |
---|---|---|---|---|---|---|
CiTRIM1 | CI01000000_14975127_14983931 | 404 | 45.89 | 8.63 | 4 | cytoplasm |
CiTRIM2 | CI01000300_10176172_10189470 | 812 | 89.11 | 6.20 | 12 | cytoplasm |
CiTRIM3 | CI01000304_12076818_12085420 | 784 | 86.13 | 8.11 | 12 | cytoplasm |
CiTRIM3a | CI01000095_00776224_00788366 | 770 | 84.11 | 7.53 | 13 | cytoplasm |
CiTRIM13 | CI01000009_00343750_00344964 | 404 | 45.63 | 5.92 | 1 | cytoplasm, nucleus |
CiTRIM18 | CI01000349_00034813_00052670 | 676 | 75.74 | 6.32 | 9 | cytoplasm, cytoskeleton |
CiTRIM23 | CI01000304_04650911_04659754 | 579 | 64.74 | 6.03 | 11 | cytoplasm, nucleus |
CiTRIM25 | CI01000112_00810157_00821637 | 473 | 53.60 | 8.65 | 5 | cytoplasm |
CiTRIM25-like | CI01000354_01204555_01213381 | 405 | 46.89 | 6.65 | 6 | nucleus |
CiTRIM32 | CI01000059_09706218_09708197 | 659 | 72.50 | 6.58 | 1 | nucleus |
CiTRIM33-like | CI01000027_07545610_07559939 | 1326 | 14.64 | 8.00 | 19 | nucleus |
CiTRIM35-1 | CI01000258_00137907_00154325 | 525 | 59.04 | 8.27 | 8 | nucleus |
CiTRIM35-13 | CI01000113_01547153_01553082 | 387 | 44.07 | 8.25 | 5 | cytoplasm |
CiTRIM35-16 | CI01000158_00190147_00195261 | 401 | 45.70 | 8.51 | 6 | cytoplasm, nucleus |
CiTRIM35-17 | CI01000087_02092947_02096033 | 544 | 61.76 | 6.31 | 6 | cytoplasm |
CiTRIM35-29 | CI01000027_06329025_06333271 | 406 | 46.45 | 8.43 | 6 | cytoplasm, nucleus |
CiTRIM35-30 | CI01000013_11271292_11274155 | 271 | 31.64 | 8.80 | 3 | nucleus |
CiTRIM35-50 | CI01000013_03911586_03916513 | 411 | 47.45 | 8.29 | 6 | cytoplasm, nucleus |
CiTRIM39-like | CI01000196_00233827_00236332 | 541 | 59.59 | 6.39 | 2 | cytoplasm |
CiTRIM45 | CI01000009_10250936_10259244 | 568 | 62.21 | 7.97 | 7 | cytoplasm |
CiTRIM46b | CI01000027_04750483_04762663 | 753 | 83.61 | 7.65 | 11 | cytoplasm, nucleus |
CiTRIM47 | CI01000304_12065676_12071391 | 491 | 56.31 | 5.89 | 8 | cytoplasm, nucleus |
CiTRIM54 | CI01000029_01758347_01773935 | 380 | 43.11 | 5.18 | 9 | cytoskeleton |
CiTRIM54-like | CI01000009_08283637_08293491 | 575 | 64.21 | 4.93 | 7 | nucleus |
CiTRIM55a | CI01000098_02956318_02961605 | 419 | 47.23 | 4.95 | 9 | cytoplasm, nucleus |
CiTRIM55b | CI01000018_06417005_06423657 | 379 | 43.18 | 5.06 | 8 | cytoplasm, cytoskeleton, nucleus |
CiTRIM59 | CI01000092_04869145_04870424 | 425 | 47.95 | 6.03 | 1 | cytoplasm |
CiTRIM63 | CI01000024_00581310_00583174 | 371 | 41.93 | 5.34 | 2 | cytoplasm, nucleus |
CiTRIM67 | CI01000051_06837978_06881158 | 713 | 79.43 | 6.58 | 12 | cytoplasm, cytoskeleton |
CiTRIM71 | CI01000016_10600154_10633808 | 934 | 10.27 | 6.61 | 5 | cytoplasm |
CiTRIM101 | CI01000001_04746153_04754209 | 465 | 52.81 | 4.87 | 10 | cytoplasm, nucleus |
CiTRIM103 | CI01000354_01417265_01426361 | 491 | 55.39 | 6.01 | 4 | cytoplasm, nucleus |
CiTRIM109 | CI01000016_05986400_05994821 | 501 | 56.96 | 6.29 | 7 | cytoplasm, nucleus |
CiTRIM110 | CI01000004_15999644_16005705 | 469 | 53.57 | 6.58 | 7 | cytoplasm, extracellular |
CiTRIM111 | CI01000012_13551086_13554035 | 545 | 62.27 | 5.77 | 6 | cytoplasm |
CiTRIM112 | CI01000180_01434810_01440307 | 493 | 54.31 | 5.98 | 4 | nucleus |
CiRNF207 | CI01000001_06965170_06976281 | 633 | 72.34 | 5.96 | 17 | nucleus |
Cibtr1 | CI01000119_00092461_00099753 | 592 | 66.61 | 7.82 | 6 | cytoplasm |
Cibtr11 | CI01000344_01402598_01409449 | 468 | 52.78 | 6.17 | 6 | cytoplasm, nucleus |
Cibtr12 | CI01000354_01450329_01466394 | 645 | 73.13 | 8.73 | 8 | cytoplasm |
Cibtr40 | CI01000344_01289427_01295915 | 520 | 60.11 | 6.65 | 5 | cytoplasm |
Ciftr83-like | CI01000339_06060658_06063401 | 299 | 34.30 | 8.21 | 4 | cytoplasm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, B.; Xiao, T.; Ding, C.; Deng, Y.; Lv, Z.; Su, J. Genome-Wide Identification and Expression Analysis of Potential Antiviral Tripartite Motif Proteins (TRIMs) in Grass Carp (Ctenopharyngodon idella). Biology 2021, 10, 1252. https://doi.org/10.3390/biology10121252
Qin B, Xiao T, Ding C, Deng Y, Lv Z, Su J. Genome-Wide Identification and Expression Analysis of Potential Antiviral Tripartite Motif Proteins (TRIMs) in Grass Carp (Ctenopharyngodon idella). Biology. 2021; 10(12):1252. https://doi.org/10.3390/biology10121252
Chicago/Turabian StyleQin, Beibei, Tiaoyi Xiao, Chunhua Ding, Yadong Deng, Zhao Lv, and Jianming Su. 2021. "Genome-Wide Identification and Expression Analysis of Potential Antiviral Tripartite Motif Proteins (TRIMs) in Grass Carp (Ctenopharyngodon idella)" Biology 10, no. 12: 1252. https://doi.org/10.3390/biology10121252
APA StyleQin, B., Xiao, T., Ding, C., Deng, Y., Lv, Z., & Su, J. (2021). Genome-Wide Identification and Expression Analysis of Potential Antiviral Tripartite Motif Proteins (TRIMs) in Grass Carp (Ctenopharyngodon idella). Biology, 10(12), 1252. https://doi.org/10.3390/biology10121252