Animal Models in Human Adenovirus Research
Abstract
:Simple Summary
Abstract
1. Introduction
2. Main Text
2.1. Adenovirus Disease in Humans and the Importance of Animal Models in Adenovirus Research
2.2. First Experimental HAdV Infections of Animals
2.3. Syrian Hamsters
2.4. Cotton Rats
2.5. New Zealand Rabbits
2.6. Rats
2.7. Mice
2.8. Non-Human Primates
2.9. Pigs
2.10. Guinea Pigs
3. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Colby, L.A.; Quenee, L.E.; Zitzow, L.A. Considerations for Infectious Disease Research Studies Using Animals. Comp. Med. 2017, 67, 222–231. [Google Scholar] [PubMed]
- Prabhakar, S. Translational research challenges: Finding the right animal models. J. Investig. Med. 2012, 60, 1141–1146. [Google Scholar] [CrossRef] [PubMed]
- Mergenthaler, P.; Meisel, A. Animal Models: Value and Translational Potency. In Principles of Translational Science in Medicine, 2nd ed.; Wehling, M., Ed.; Academic Press: Cambridge, MA, USA, 2015; pp. 83–90. [Google Scholar] [CrossRef]
- Ruiz, S.I.; Zumbrun, E.E.; Nalca, A. Animal Models of Human Viral Diseases. In Animal Models for the Study of Human Disease, 2nd ed.; Conn, P.M., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 853–901. [Google Scholar] [CrossRef]
- Tessier, T.M.; Dodge, M.J.; MacNeil, K.M.; Evans, A.M.; Prusinkiewicz, M.A.; Mymryk, J.S. Almost famous: Human adenoviruses (and what they have taught us about cancer). Tumour Virus Res. 2021, 12, 200225. [Google Scholar] [CrossRef] [PubMed]
- Mendonca, S.A.; Lorincz, R.; Boucher, P.; Curiel, D.T. Adenoviral vector vaccine platforms in the SARS-CoV-2 pandemic. NPJ Vaccines 2021, 6, 97. [Google Scholar] [CrossRef] [PubMed]
- Vrba, S.M.; Kirk, N.M.; Brisse, M.E.; Liang, Y.; Ly, H. Development and Applications of Viral Vectored Vaccines to Combat Zoonotic and Emerging Public Health Threats. Vaccines 2020, 8, 680. [Google Scholar] [CrossRef] [PubMed]
- Wold, W.S.; Toth, K. Adenovirus vectors for gene therapy, vaccination and cancer gene therapy. Curr. Gene Ther. 2013, 13, 421–433. [Google Scholar] [CrossRef] [PubMed]
- Crystal, R.G. Adenovirus: The first effective in vivo gene delivery vector. Hum. Gene Ther. 2014, 25, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.S.; Bishop, E.S.; Zhang, R.; Yu, X.; Farina, E.M.; Yan, S.; Zhao, C.; Zheng, Z.; Shu, Y.; Wu, X.; et al. Adenovirus-Mediated Gene Delivery: Potential Applications for Gene and Cell-Based Therapies in the New Era of Personalized Medicine. Genes Dis. 2017, 4, 43–63. [Google Scholar] [CrossRef]
- Goswami, R.; Subramanian, G.; Silayeva, L.; Newkirk, I.; Doctor, D.; Chawla, K.; Chattopadhyay, S.; Chandra, D.; Chilukuri, N.; Betapudi, V. Gene Therapy Leaves a Vicious Cycle. Front. Oncol. 2019, 9, 297. [Google Scholar] [CrossRef] [PubMed]
- McKenna, M.K.; Rosewell-Shaw, A.; Suzuki, M. Modeling the Efficacy of Oncolytic Adenoviruses In Vitro and In Vivo: Current and Future Perspectives. Cancers 2020, 12, 619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seto, D.; Chodosh, J.; Brister, J.R.; Jones, M.S. Members of the Adenovirus Research Community, Using the whole-genome sequence to characterize and name human adenoviruses. J. Virol. 2011, 85, 5701–5702. [Google Scholar] [CrossRef] [Green Version]
- Mennechet, F.J.D.; Paris, O.; Ouoba, A.R.; Salazar Arenas, S.; Sirima, S.B.; Takoudjou Dzomo, G.R.; Diarra, A.; Traore, I.T.; Kania, D.; Eichholz, K.; et al. A review of 65 years of human adenovirus seroprevalence. Expert Rev. Vaccines 2019, 18, 597–613. [Google Scholar] [CrossRef] [PubMed]
- Harrach, B.; Benkő, M. Adenoviruses (Adenoviridae). In Encyclopedia of Virology, 4th ed.; Bamford, D., Zuckerman, M., Eds.; Academic Press: Amsterdam, The Netherlands, 2021; Volume 2, pp. 3–16. [Google Scholar] [CrossRef]
- Dodge, M.J.; MacNeil, K.M.; Tessier, T.M.; Weinberg, J.B.; Mymryk, J.S. Emerging antiviral therapeutics for human adenovirus infection: Recent developments and novel strategies. Antivir. Res. 2021, 188, 105034. [Google Scholar] [CrossRef] [PubMed]
- Lion, T. Adenovirus infections in immunocompetent and immunocompromised patients. Clin. Microbiol. Rev. 2014, 27, 441–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasarica, M.; Dhurandhar, N.V. Infectobesity: Obesity of Infectious Origin. In Advances in Food and Nutrition Research; Taylor, S.L., Ed.; Academic Press: Cambridge, MA, USA, 2007; Volume 52, pp. 61–102. [Google Scholar] [CrossRef]
- Ponterio, E.; Gnessi, L. Adenovirus 36 and Obesity: An Overview. Viruses 2015, 7, 3719–3740. [Google Scholar] [CrossRef] [Green Version]
- Barre-Sinoussi, F.; Montagutelli, X. Animal models are essential to biological research: Issues and perspectives. Future Sci. OA 2015, 1, FSO63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rowe, W.P.; Huebner, R.J.; Hartley, J.W.; Ward, T.G.; Parrott, R.H. Studies of the Adenoidal-Pharyngeal-Conjunctival (APC) Group of Viruses. Am. J. Epidemiol. 1955, 61, 197–218. [Google Scholar] [CrossRef]
- Pereira, H.G.; Kelly, B. Latent infection of rabbits by adenovirus type 5. Nature 1957, 180, 615–616. [Google Scholar] [CrossRef] [PubMed]
- Sinha, S.K.; Fleming, L.W.; Scholes, S. Current considerations in public health of the role of animals in relation to human viral diseases. J. Am. Vet. Med. Assoc. 1960, 136, 481–485. [Google Scholar]
- Betts, A.O.; Jennings, A.R.; Lamont, P.H.; Page, Z. Inoculation of pigs with adenoviruses of man. Nature 1962, 193, 45–46. [Google Scholar] [CrossRef] [PubMed]
- Jennings, A.R.; Betts, A.O. Human adenoviruses in pigs. Ann. N.Y. Acad. Sci. 1962, 101, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Huebner, R.J.; Rowe, W.P.; Lane, W.T. Oncogenic effects in hamsters of human adenovirus types 12 and 18. Proc. Natl. Acad. Sci. USA 1962, 48, 2051–2058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, H.G.; Allison, A.C.; Niven, J.S.F. Fatal Infection of New-Born Hamsters by an Adenovirus of Human Origin. Nature 1962, 196, 244–245. [Google Scholar] [CrossRef]
- Trentin, J.J.; Yabe, Y.; Taylor, G. The quest for human cancer viruses: A new approach to an old problem reveals cancer induction in hamsters by human adenovirus. Science 1962, 137, 835–841. [Google Scholar] [CrossRef] [PubMed]
- Yabe, Y.; Trentin, J.J.; Taylor, G. Cancer induction in hamsters by human type 12 adenovirus. Effect of age and of virus dose. Proc. Soc. Exp. Biol. Med. 1962, 111, 343–344. [Google Scholar] [CrossRef]
- Girardi, A.J.; Hilleman, M.R.; Zwickey, R.E. Tests in Hamsters for Oncogenic Quality of Ordinary Viruses Including Adenovirus Type 7. Proc. Soc. Exp. Biol. Med. 1964, 115, 1141–1150. [Google Scholar] [CrossRef] [PubMed]
- Pope, J.H.; Rowe, W.P. Immunofluorescent Studies of Adenovirus 12 Tumors and of Cells Transformed or Infected by Adenoviruses. J. Exp. Med. 1964, 120, 577–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabson, A.S.; Kirschstein, R.L.; Paul, F.J. Tumors Produced by Adenovirus 12 in Mastomys and Mice. JNCI J. National Cancer Inst. 1964, 32, 77–87. [Google Scholar] [CrossRef]
- Yabe, Y.; Samper, L.; Bryan, E.; Taylor, G.; Trentin, J.J. Oncogenic Effect of Human Adenovirus Type 12, in Mice. Science 1964, 143, 46–47. [Google Scholar] [CrossRef] [PubMed]
- Huebner, R.J.; Casey, M.J.; Chanock, R.M.; Schell, K. Tumors induced in hamsters by a strain of adenovirus type 3: Sharing of tumor antigens and “neoantigens” with those produced by adenovirus type 7 tumors. Proc. Natl. Acad. Sci. USA 1965, 54, 381–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, M.S.; Pereira, H.G.; Clarke, S.K.R. Human Adenovirus Type 31 a New Serotype with Oncogenic Properties. Lancet 1965, 285, 21–23. [Google Scholar] [CrossRef]
- Reddick, R.A.; Lefkowitz, S.S. In vitro immune responses of rabbits with persistent adenovirus type 5 infection. J. Immunol. 1969, 103, 687–694. [Google Scholar]
- Pacini, D.L.; Dubovi, E.J.; Clyde, W.A., Jr. A new animal model for human respiratory tract disease due to adenovirus. J. Infect. Dis. 1984, 150, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Gordon, Y.J.; Romanowski, E.; Araullo-Cruz, T. An ocular model of adenovirus type 5 infection in the NZ rabbit. Investig. Ophthalmol. Vis. Sci. 1992, 33, 574–580. [Google Scholar]
- Toth, K.; Lee, S.R.; Ying, B.; Spencer, J.F.; Tollefson, A.E.; Sagartz, J.E.; Kong, I.K.; Wang, Z.; Wold, W.S. STAT2 Knockout Syrian Hamsters Support Enhanced Replication and Pathogenicity of Human Adenovirus, Revealing an Important Role of Type I Interferon Response in Viral Control. PLoS Pathog. 2015, 11, e1005084. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, E.; Ip, W.H.; Kolbe, V.; Hartmann, K.; Pilnitz-Stolze, G.; Tekin, N.; Gomez-Medina, S.; Munoz-Fontela, C.; Krasemann, S.; Dobner, T. Humanized Mice Reproduce Acute and Persistent Human Adenovirus Infection. J. Infect. Dis. 2017, 215, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhou, Z.; Liu, W.; Fan, Y.; Luo, Y.; Li, K.; Zheng, Z.; Tian, X.; Zhou, R. Chinese tree shrew: A permissive model for in vitro and in vivo replication of human adenovirus species B. Emerg. Microbes Infect. 2021, 10, 424–438. [Google Scholar] [CrossRef] [PubMed]
- Miao, J.; Chard, L.S.; Wang, Z.; Wang, Y. Syrian Hamster as an Animal Model for the Study on Infectious Diseases. Front. Immunol. 2019, 10, 2329. [Google Scholar] [CrossRef] [Green Version]
- Wold, W.S.; Toth, K. Syrian Hamster as an Animal Model to Study Oncolytic Adenoviruses and to Evaluate the Efficacy of Antiviral Compounds. In Advances in Cancer Research; Curiel, D.T., Fisher, P.B., Eds.; Academic Press: Cambridge, MA, USA, 2012; Volume 115, pp. 69–92. [Google Scholar] [CrossRef]
- Huebner, R.J.; Chanock, R.M.; Rubin, B.A.; Casey, M.J. Induction by Adenovirus Type 7 of Tumors in Hamsters Having the Antigenic Characteristics of Sv40 Virus. Proc. Natl. Acad. Sci. USA 1964, 52, 1333–1340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McAllister, R.M.; Goodheart, C.R.; Mirabal, V.Q.; Huebner, R.J. Human adenoviruses: Tumor production in hamsters by type 12 and 18 grown from single plaques. Proc. Soc. Exp. Biol. Med. 1966, 122, 455–458. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, T.; Mukai, N. Cell origin of human adenovirus type 12-induced subcutaneous tumor in Syrian hamsters. Acta Neuropathol. 1979, 45, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Doerfler, W. Abortive infection and malignant transformation by adenoviruses: Integration of viral DNA and control of viral gene expression by specific patterns of DNA methylation. Adv. Virus Res. 1991, 39, 89–128. [Google Scholar] [CrossRef]
- Doerfler, W. A new concept in (adenoviral) oncogenesis: Integration of foreign DNA and its consequences. Biochim. Biophys. Acta (BBA)-Rev. Cancer 1996, 1288, F79–F99. [Google Scholar] [CrossRef]
- Hearing, P. Adenovirus Transformation. In DNA Tumor Viruses; Springer: New York, NY, USA, 2009; pp. 145–162. [Google Scholar] [CrossRef]
- Doerfler, W. Human Adenovirus Type 12. In Adenovirus Methods and Protocols, 2nd ed.; Wold, W.S., Tollefson, A.E., Eds.; Humana Press: Totowa, NJ, USA, 2007; pp. 197–211. [Google Scholar] [CrossRef]
- Kang, Y.S.; Hahn, S. Spontaneous Morphological Transformation in Adenovirus Type 12 Induced Tumor Cells of Armenian and Chinese Hamsters. Korean J. Zool. 1974, 17, 51–56. [Google Scholar]
- Hjorth, R.N.; Bonde, G.M.; Pierzchala, W.A.; Vernon, S.K.; Wiener, F.P.; Levner, M.H.; Lubeck, M.D.; Hung, P.P. A new hamster model for adenoviral vaccination. Arch. Virol. 1988, 100, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Lichtenstein, D.L.; Spencer, J.F.; Doronin, K.; Patra, D.; Meyer, J.M.; Shashkova, E.V.; Kuppuswamy, M.; Dhar, D.; Thomas, M.A.; Tollefson, A.E.; et al. An acute toxicology study with INGN 007, an oncolytic adenovirus vector, in mice and permissive Syrian hamsters; comparisons with wild-type Ad5 and a replication-defective adenovirus vector. Cancer Gene Ther. 2009, 16, 644–654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ying, B.; Toth, K.; Spencer, J.F.; Meyer, J.; Tollefson, A.E.; Patra, D.; Dhar, D.; Shashkova, E.V.; Kuppuswamy, M.; Doronin, K.; et al. INGN 007, an oncolytic adenovirus vector, replicates in Syrian hamsters but not mice: Comparison of biodistribution studies. Cancer Gene Ther. 2009, 16, 625–637. [Google Scholar] [CrossRef] [PubMed]
- Tollefson, A.E.; Spencer, J.F.; Ying, B.; Buller, R.M.; Wold, W.S.; Toth, K. Cidofovir and brincidofovir reduce the pathology caused by systemic infection with human type 5 adenovirus in immunosuppressed Syrian hamsters, while ribavirin is largely ineffective in this model. Antivir. Res. 2014, 112, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Tollefson, A.E.; Ying, B.; Spencer, J.F.; Sagartz, J.E.; Wold, W.S.M.; Toth, K. Pathology in Permissive Syrian Hamsters after Infection with Species C Human Adenovirus (HAdV-C) Is the Result of Virus Replication: HAdV-C6 Replicates More and Causes More Pathology than HAdV-C5. J. Virol. 2017, 91, e00284-17. [Google Scholar] [CrossRef] [Green Version]
- Ying, B.; Spencer, J.F.; Tollefson, A.E.; Wold, W.S.M.; Toth, K. Male Syrian hamsters are more susceptible to intravenous infection with species C human adenoviruses than are females. Virology 2018, 514, 66–78. [Google Scholar] [CrossRef]
- Dhakal, S.; Ruiz-Bedoya, C.A.; Zhou, R.; Creisher, P.S.; Villano, J.S.; Littlefield, K.; Ruelas Castillo, J.; Marinho, P.; Jedlicka, A.E.; Ordonez, A.A.; et al. Sex Differences in Lung Imaging and SARS-CoV-2 Antibody Responses in a COVID-19 Golden Syrian Hamster Model. mBio 2021, 12, e0097421. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Zhu, H.; Zhou, M.; Ma, J.; Chen, R.; Chen, Y.; Chen, L.; Wu, K.; Cai, M.; Hong, J.; et al. Gender associates with both susceptibility to infection and pathogenesis of SARS-CoV-2 in Syrian hamster. Signal Transduct. Target. Ther. 2021, 6, 136. [Google Scholar] [CrossRef] [PubMed]
- Radke, J.R.; Yong, S.L.; Cook, J.L. Low-Level Expression of the E1B 20-Kilodalton Protein by Adenovirus 14p1 Enhances Viral Immunopathogenesis. J. Virol. 2016, 90, 497–505. [Google Scholar] [CrossRef] [Green Version]
- Radke, J.R.; Covert, H.J.; Bauer, F.; Ananthanarayanan, V.; Cook, J.L. Adenovirus 14p1 Immunopathogenesis during Lung Infection in the Syrian Hamster. Viruses 2020, 12, 595. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Li, W.; Lee, S.R.; Meng, Q.; Shi, B.; Bunch, T.D.; White, K.L.; Kong, I.K.; Wang, Z. Efficient gene targeting in golden Syrian hamsters by the CRISPR/Cas9 system. PLoS ONE 2014, 9, e109755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, M.A.; Spencer, J.F.; Toth, K.; Sagartz, J.E.; Phillips, N.J.; Wold, W.S. Immunosuppression enhances oncolytic adenovirus replication and antitumor efficacy in the Syrian hamster model. Mol. Ther. 2008, 16, 1665–1673. [Google Scholar] [CrossRef] [PubMed]
- Dhar, D.; Spencer, J.F.; Toth, K.; Wold, W.S. Effect of preexisting immunity on oncolytic adenovirus vector INGN 007 antitumor efficacy in immunocompetent and immunosuppressed Syrian hamsters. J. Virol. 2009, 83, 2130–2139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonabend, A.M.; Ulasov, I.V.; Han, Y.; Rolle, C.E.; Nandi, S.; Cao, D.; Tyler, M.A.; Lesniak, M.S. Biodistribution of an oncolytic adenovirus after intracranial injection in permissive animals: A comparative study of Syrian hamsters and cotton rats. Cancer Gene Ther. 2009, 16, 362–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diaconu, I.; Cerullo, V.; Escutenaire, S.; Kanerva, A.; Bauerschmitz, G.J.; Hernandez-Alcoceba, R.; Pesonen, S.; Hemminki, A. Human adenovirus replication in immunocompetent Syrian hamsters can be attenuated with chlorpromazine or cidofovir. J. Gene Med. 2010, 12, 435–445. [Google Scholar] [CrossRef]
- Dhar, D.; Toth, K.; Wold, W.S. Syrian hamster tumor model to study oncolytic Ad5-based vectors. Methods Mol. Biol. 2012, 797, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Ying, B.; Tollefson, A.E.; Spencer, J.F.; Balakrishnan, L.; Dewhurst, S.; Capella, C.; Buller, R.M.; Toth, K.; Wold, W.S. Ganciclovir inhibits human adenovirus replication and pathogenicity in permissive immunosuppressed Syrian hamsters. Antimicrob. Agents Chemother. 2014, 58, 7171–7181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaar, K.; Geisler, A.; Kraus, M.; Pinkert, S.; Pryshliak, M.; Spencer, J.F.; Tollefson, A.E.; Ying, B.; Kurreck, J.; Wold, W.S.; et al. Anti-adenoviral Artificial MicroRNAs Expressed from AAV9 Vectors Inhibit Human Adenovirus Infection in Immunosuppressed Syrian Hamsters. Mol. Ther. Nucleic Acids 2017, 8, 300–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toth, K.; Spencer, J.F.; Ying, B.; Tollefson, A.E.; Wold, W.S.M. HAdV-C6 Is a More Relevant Challenge Virus than HAdV-C5 for Testing Antiviral Drugs with the Immunosuppressed Syrian Hamster Model. Viruses 2017, 9, 147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toth, K.; Tollefson, A.E.; Spencer, J.F.; Ying, B.; Wold, W.S.M. Combination therapy with brincidofovir and valganciclovir against species C adenovirus infection in the immunosuppressed Syrian hamster model allows for substantial reduction of dose for both compounds. Antivir. Res. 2017, 146, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Toth, K.; Spencer, J.F.; Ying, B.; Tollefson, A.E.; Hartline, C.B.; Richard, E.T.; Fan, J.; Lyu, J.; Kashemirov, B.A.; Harteg, C.; et al. USC-087 protects Syrian hamsters against lethal challenge with human species C adenoviruses. Antivir. Res. 2018, 153, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Wold, W.S.M.; Tollefson, A.E.; Ying, B.; Spencer, J.F.; Toth, K. Drug development against human adenoviruses and its advancement by Syrian hamster models. FEMS Microbiol. Rev. 2019, 43, 380–388. [Google Scholar] [CrossRef] [PubMed]
- Blanco, J.C.; Pletneva, L.; Boukhvalova, M.; Richardson, J.Y.; Harris, K.A.; Prince, G.A. The cotton rat: An underutilized animal model for human infectious diseases can now be exploited using specific reagents to cytokines, chemokines, and interferons. J. Interferon Cytokine Res. 2004, 24, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Green, M.G.; Huey, D.; Niewiesk, S. The cotton rat (Sigmodon hispidus) as an animal model for respiratory tract infections with human pathogens. Lab. Anim. 2013, 42, 170–176. [Google Scholar] [CrossRef]
- Prince, G.A.; Porter, D.D.; Jenson, A.B.; Horswood, R.L.; Chanock, R.M.; Ginsberg, H.S. Pathogenesis of adenovirus type 5 pneumonia in cotton rats (Sigmodon hispidus). J. Virol. 1993, 67, 101–111. [Google Scholar] [CrossRef] [Green Version]
- Duncan, S.J.; Gordon, F.C.; Gregory, D.W.; McPhie, J.L.; Postlethwaite, R.; White, R.; Willcox, H.N. Infection of mouse liver by human adenovirus type 5. J. Gen. Virol. 1978, 40, 45–61. [Google Scholar] [CrossRef] [PubMed]
- Tsai, J.C.; Garlinghouse, G.; McDonnell, P.J.; Trousdale, M.D. An experimental animal model of adenovirus-induced ocular disease. The cotton rat. Arch. Ophthalmol. 1992, 110, 1167–1170. [Google Scholar] [CrossRef] [PubMed]
- Trousdale, M.D.; Goldschmidt, P.L.; Nobrega, R. Activity of ganciclovir against human adenovirus type-5 infection in cell culture and cotton rat eyes. Cornea 1994, 13, 435–439. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, H.; Mori, S.; Suzuki, O.; Iida, T.; Shigeta, S.; Abe, M.; Ohno, S.; Aoki, K.; Suzutani, T. The cotton rat model for adenovirus ocular infection: Antiviral activity of cidofovir. Antivir. Res. 2004, 61, 63–66. [Google Scholar] [CrossRef]
- Lund, O.E.; Stefani, F.H. Corneal histology after epidemic keratoconjunctivitis. Arch. Ophthalmol. 1978, 96, 2085–2088. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, G.; Yawata, N.; Aoki, K.; Kitaichi, N. Challenges in management of epidemic keratoconjunctivitis with emerging recombinant human adenoviruses. J. Clin. Virol. 2019, 112, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Toth, K.; Spencer, J.F.; Tollefson, A.E.; Kuppuswamy, M.; Doronin, K.; Lichtenstein, D.L.; Wold, W.S.M. Immune-Competent Cotton Rat Animal Model for Evaluation of Oncolytic Adenoviruses. Mol. Ther. 2004, 9, S390. [Google Scholar] [CrossRef]
- Toth, K.; Spencer, J.F.; Tollefson, A.E.; Kuppuswamy, M.; Doronin, K.; Lichtenstein, D.L.; La Regina, M.C.; Prince, G.A.; Wold, W.S. Cotton rat tumor model for the evaluation of oncolytic adenoviruses. Hum. Gene Ther. 2005, 16, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Steel, J.C.; Morrison, B.J.; Mannan, P.; Abu-Asab, M.S.; Wildner, O.; Miles, B.K.; Yim, K.C.; Ramanan, V.; Prince, G.A.; Morris, J.C. Immunocompetent syngeneic cotton rat tumor models for the assessment of replication-competent oncolytic adenovirus. Virology 2007, 369, 131–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knowles, M.K.; Roberts, D.; Craig, S.; Sheen, M.; Nadin-Davis, S.A.; Wandeler, A.I. In vitro and in vivo genetic stability studies of a human adenovirus type 5 recombinant rabies glycoprotein vaccine (ONRAB). Vaccine 2009, 27, 2662–2668. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Knouse, J.A.; Hernon, K.M. Rabbit Models for Studying Human Infectious Diseases. Comp. Med. 2015, 65, 499–507. [Google Scholar]
- Esteves, P.J.; Abrantes, J.; Baldauf, H.M.; BenMohamed, L.; Chen, Y.; Christensen, N.; Gonzalez-Gallego, J.; Giacani, L.; Hu, J.; Kaplan, G.; et al. The wide utility of rabbits as models of human diseases. Exp. Mol. Med. 2018, 50, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Gordon, Y.J.; Romanowski, E.G.; Araullo-Cruz, T. Topical HPMPC inhibits adenovirus type 5 in the New Zealand rabbit ocular replication model. Investig. Ophthalmol. Vis. Sci. 1994, 35, 4135–4143. [Google Scholar]
- De Oliveira, C.B.; Stevenson, D.; LaBree, L.; McDonnell, P.J.; Trousdale, M.D. Evaluation of Cidofovir (HPMPC, GS-504) against adenovirus type 5 infection in vitro and in a New Zealand rabbit ocular model. Antivir. Res. 1996, 31, 165–172. [Google Scholar] [CrossRef]
- Romanowski, E.G.; Gordon, Y.J.; Araullo-Cruz, T.; Yates, K.A.; Kinchington, P.R. The antiviral resistance and replication of cidofovir-resistant adenovirus variants in the New Zealand White rabbit ocular model. Investig. Ophthalmol. Vis. Sci. 2001, 42, 1812–1815. [Google Scholar]
- Romanowski, E.G.; Yates, K.A.; Gordon, Y.J. Antiviral prophylaxis with twice daily topical cidofovir protects against challenge in the adenovirus type 5/New Zealand rabbit ocular model. Antivir. Res. 2001, 52, 275–280. [Google Scholar] [CrossRef]
- Epstein, S.P.; Pashinsky, Y.Y.; Gershon, D.; Winicov, I.; Srivilasa, C.; Kristic, K.J.; Asbell, P.A. Efficacy of topical cobalt chelate CTC-96 against adenovirus in a cell culture model and against adenovirus keratoconjunctivitis in a rabbit model. BMC Ophthalmol. 2006, 6, 22. [Google Scholar] [CrossRef] [Green Version]
- Romanowski, E.G.; Yates, K.A.; Teuchner, B.; Nagl, M.; Irschick, E.U.; Gordon, Y.J. N-chlorotaurine is an effective antiviral agent against adenovirus in vitro and in the Ad5/NZW rabbit ocular model. Investig. Ophthalmol. Vis. Sci. 2006, 47, 2021–2026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clement, C.; Capriotti, J.A.; Kumar, M.; Hobden, J.A.; Foster, T.P.; Bhattacharjee, P.S.; Thompson, H.W.; Mahmud, R.; Liang, B.; Hill, J.M. Clinical and antiviral efficacy of an ophthalmic formulation of dexamethasone povidone-iodine in a rabbit model of adenoviral keratoconjunctivitis. Investig. Ophthalmol. Vis. Sci. 2011, 52, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Szpirer, C. Rat models of human diseases and related phenotypes: A systematic inventory of the causative genes. J. Biomed. Sci. 2020, 27, 84. [Google Scholar] [CrossRef]
- Wilson, J.M.; Makidon, P.E.; Bergin, I.L. Rat Models of Infectious Disease. In The Laboratory Rat, 3rd ed.; Suckow, M.A., Hankenson, F.C., Wilson, R.P., Foley, P.L., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 1107–1134. [Google Scholar] [CrossRef]
- Huebner, R.J.; Rowe, W.P.; Turner, H.C.; Lane, W.T. Specific Adenovirus Complement-Fixing Antigens in Virus-Free Hamster and Rat Tumors. Proc. Natl. Acad. Sci. USA 1963, 50, 379–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobayashi, S.; Mukai, N. Retinoblastoma-like tumors induced by human adenovirus type 12 in rats. Cancer Res. 1974, 34, 1646–1651. [Google Scholar] [PubMed]
- Mukai, N.; Murao, T. Retinal tumor induction by ocular inoculation of human adenovirus in 3-day-old rats. J. Neuropathol. Exp. Neurol. 1975, 34, 28–35. [Google Scholar] [CrossRef]
- Jonsson, N.; Ankerst, J. Studies on adenovirus type 9-induced mammary fibroadenomas in rats and their malignant transformation. Cancer 1977, 39, 2513–2519. [Google Scholar] [CrossRef]
- Javier, R.; Raska, K., Jr.; Macdonald, G.J.; Shenk, T. Human adenovirus type 9-induced rat mammary tumors. J. Virol. 1991, 65, 3192–3202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ankerst, J.; Jonsson, N.; Kjellen, L.; Norrby, E.; Sjogren, H.O. Induction of mammary fibroadenomas in rats by adenovirus type 9. Int. J. Cancer 1974, 13, 286–290. [Google Scholar] [CrossRef] [PubMed]
- Ankerst, J.; Jonsson, N. Adenovirus type 9-induced tumorigenesis in the rat mammary gland related to sex hormonal state. J. Natl. Cancer Inst. 1989, 81, 294–298. [Google Scholar] [CrossRef] [PubMed]
- Javier, R.; Raska, K., Jr.; Shenk, T. Requirement for the adenovirus type 9 E4 region in production of mammary tumors. Science 1992, 257, 1267–1271. [Google Scholar] [CrossRef] [PubMed]
- Javier, R.T. Adenovirus type 9 E4 open reading frame 1 encodes a transforming protein required for the production of mammary tumors in rats. J. Virol. 1994, 68, 3917–3924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, D.L.; Shin, S.; Jiang, B.H.; Vogel, H.; Ross, M.A.; Kaplitt, M.; Shenk, T.E.; Javier, R.T. Early region 1 transforming functions are dispensable for mammary tumorigenesis by human adenovirus type 9. J. Virol. 1999, 73, 3071–3079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicol, C.G.; Graham, D.; Miller, W.H.; White, S.J.; Smith, T.A.; Nicklin, S.A.; Stevenson, S.C.; Baker, A.H. Effect of adenovirus serotype 5 fiber and penton modifications on in vivo tropism in rats. Mol. Ther. 2004, 10, 344–354. [Google Scholar] [CrossRef] [PubMed]
- Postlethwaite, R. Liver Damage Induced in Mice by Human Adenovirus Type 5. Scott. Med. J. 1973, 18, 131. [Google Scholar] [CrossRef]
- Jogler, C.; Hoffmann, D.; Theegarten, D.; Grunwald, T.; Uberla, K.; Wildner, O. Replication properties of human adenovirus in vivo and in cultures of primary cells from different animal species. J. Virol. 2006, 80, 3549–3558. [Google Scholar] [CrossRef] [Green Version]
- Gaggar, A.; Shayakhmetov, D.M.; Lieber, A. CD46 is a cellular receptor for group B adenoviruses. Nat. Med. 2003, 9, 1408–1412. [Google Scholar] [CrossRef] [PubMed]
- Persson, B.D.; John, L.; Rafie, K.; Strebl, M.; Frangsmyr, L.; Ballmann, M.Z.; Mindler, K.; Havenga, M.; Lemckert, A.; Stehle, T.; et al. Human species D adenovirus hexon capsid protein mediates cell entry through a direct interaction with CD46. Proc. Natl. Acad. Sci. USA 2021, 118, e2020732118. [Google Scholar] [CrossRef] [PubMed]
- Hemsath, J.R.; Liaci, A.M.; Rubin, J.D.; Parrett, B.J.; Lu, S.-C.; Nguyen, T.V.; Turner, M.A.; Chen, C.Y.; Cupelli, K.; Reddy, V.S.; et al. Ex Vivo and In Vivo CD46 Receptor Utilization by Species D Human Adenovirus Serotype 26 (HAdV26). J. Virol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Ginsberg, H.S.; Moldawer, L.L.; Sehgal, P.B.; Redington, M.; Kilian, P.L.; Chanock, R.M.; Prince, G.A. A mouse model for investigating the molecular pathogenesis of adenovirus pneumonia. Proc. Natl. Acad. Sci. USA 1991, 88, 1651–1655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oualikene, W.; Gonin, P.; Eloit, M. Short and long term dissemination of deletion mutants of adenovirus in permissive (cotton rat) and non-permissive (mouse) species. J. Gen. Virol. 1994, 75 Pt 10, 2765–2768. [Google Scholar] [CrossRef]
- Billerbeck, E.; Horwitz, J.A.; Labitt, R.N.; Donovan, B.M.; Vega, K.; Budell, W.C.; Koo, G.C.; Rice, C.M.; Ploss, A. Characterization of human antiviral adaptive immune responses during hepatotropic virus infection in HLA-transgenic human immune system mice. J. Immunol. 2013, 191, 1753–1764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.; Robinson, C.M.; Rajaiya, J.; Dehghan, S.; Seto, D.; Jones, M.S.; Dyer, D.W.; Chodosh, J. Analysis of human adenovirus type 19 associated with epidemic keratoconjunctivitis and its reclassification as adenovirus type 64. Investig. Ophthalmol. Vis. Sci. 2012, 53, 2804–2811. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Zhou, X.; Rajaiya, J.; Chodosh, J. Ultrastructure of adenovirus keratitis. Investig. Ophthalmol. Vis. Sci. 2015, 56, 472–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mentel, R.; Wegner, U. Evaluation of the efficacy of 2′,3′-dideoxycytidine against adenovirus infection in a mouse pneumonia model. Antivir. Res. 2000, 47, 79–87. [Google Scholar] [CrossRef]
- Paielli, D.L.; Wing, M.S.; Rogulski, K.R.; Gilbert, J.D.; Kolozsvary, A.; Kim, J.H.; Hughes, J.; Schnell, M.; Thompson, T.; Freytag, S.O. Evaluation of the biodistribution, persistence, toxicity, and potential of germ-line transmission of a replication-competent human adenovirus following intraprostatic administration in the mouse. Mol. Ther. 2000, 1, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Fueyo, J.; Gomez-Manzano, C.; Alemany, R.; Lee, P.S.; McDonnell, T.J.; Mitlianga, P.; Shi, Y.X.; Levin, V.A.; Yung, W.K.; Kyritsis, A.P. A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene 2000, 19, 2–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tallone, T.; Malin, S.; Samuelsson, A.; Wilbertz, J.; Miyahara, M.; Okamoto, K.; Poellinger, L.; Philipson, L.; Pettersson, S. A mouse model for adenovirus gene delivery. Proc. Natl. Acad. Sci. USA 2001, 98, 7910–7915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, A.M.; Archibald, K.M.; Tookman, L.A.; Pool, A.; Dudek, K.; Jones, C.; Williams, S.L.; Pirlo, K.J.; Willis, A.E.; Lockley, M.; et al. Failure of translation of human adenovirus mRNA in murine cancer cells can be partially overcome by L4-100K expression in vitro and in vivo. Mol. Ther. 2012, 20, 1676–1688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassan, F.; Lossie, S.L.; Kasik, E.P.; Channon, A.M.; Ni, S.; Kennedy, M.A. A mouse model study of toxicity and biodistribution of a replication defective adenovirus serotype 5 virus with its genome engineered to contain a decoy hyper binding site to sequester and suppress oncogenic HMGA1 as a new cancer treatment therapy. PLoS ONE 2018, 13, e0192882. [Google Scholar] [CrossRef] [PubMed]
- Doszpoly, A.; de la Cuesta, F.; Lopez-Gordo, E.; Benezech, C.; Nicklin, S.A.; Baker, A.H. Human Adenovirus Serotype 5 Is Sensitive to IgM-Independent Neutralization In Vitro and In Vivo. Viruses 2019, 11, 616. [Google Scholar] [CrossRef] [Green Version]
- Bates, E.A.; Counsell, J.R.; Alizert, S.; Baker, A.T.; Suff, N.; Boyle, A.; Bradshaw, A.C.; Waddington, S.N.; Nicklin, S.A.; Baker, A.H.; et al. In Vitro and In Vivo Evaluation of Human Adenovirus Type 49 as a Vector for Therapeutic Applications. Viruses 2021, 13, 1483. [Google Scholar] [CrossRef]
- Shultz, L.D.; Ishikawa, F.; Greiner, D.L. Humanized mice in translational biomedical research. Nat. Rev. Immunol. 2007, 7, 118–130. [Google Scholar] [CrossRef] [PubMed]
- Legrand, N.; Ploss, A.; Balling, R.; Becker, P.D.; Borsotti, C.; Brezillon, N.; Debarry, J.; de Jong, Y.; Deng, H.; Di Santo, J.P.; et al. Humanized mice for modeling human infectious disease: Challenges, progress, and outlook. Cell Host Microbe 2009, 6, 5–9. [Google Scholar] [CrossRef] [Green Version]
- Dash, P.K.; Gorantla, S.; Poluektova, L.; Hasan, M.; Waight, E.; Zhang, C.; Markovic, M.; Edagwa, B.; Machhi, J.; Olson, K.E.; et al. Humanized Mice for Infectious and Neurodegenerative disorders. Retrovirology 2021, 18, 13. [Google Scholar] [CrossRef] [PubMed]
- Estes, J.D.; Wong, S.W.; Brenchley, J.M. Nonhuman primate models of human viral infections. Nat. Rev. Immunol. 2018, 18, 390–404. [Google Scholar] [CrossRef] [PubMed]
- Lubeck, M.D.; Davis, A.R.; Chengalvala, M.; Natuk, R.J.; Morin, J.E.; Molnar-Kimber, K.; Mason, B.B.; Bhat, B.M.; Mizutani, S.; Hung, P.P. Immunogenicity and efficacy testing in chimpanzees of an oral hepatitis B vaccine based on live recombinant adenovirus. Proc. Natl. Acad. Sci. USA 1989, 86, 6763–6767. [Google Scholar] [CrossRef] [Green Version]
- Lubeck, M.D.; Natuk, R.; Myagkikh, M.; Kalyan, N.; Aldrich, K.; Sinangil, F.; Alipanah, S.; Murthy, S.C.; Chanda, P.K.; Nigida, S.M., Jr.; et al. Long-term protection of chimpanzees against high-dose HIV-1 challenge induced by immunization. Nat. Med. 1997, 3, 651–658. [Google Scholar] [CrossRef] [PubMed]
- Lubeck, M.D.; Natuk, R.J.; Chengalvala, M.; Chanda, P.K.; Murthy, K.K.; Murthy, S.; Mizutani, S.; Lee, S.G.; Wade, M.S.; Bhat, B.M.; et al. Immunogenicity of recombinant adenovirus-human immunodeficiency virus vaccines in chimpanzees following intranasal administration. AIDS Res. Hum. Retrovir. 1994, 10, 1443–1449. [Google Scholar] [CrossRef] [PubMed]
- Chengalvala, M.V.; Bhat, B.M.; Bhat, R.A.; Dheer, S.K.; Lubeck, M.D.; Purcell, R.H.; Murthy, K.K. Replication and immunogenicity of Ad7-, Ad4-, and Ad5-hepatitis B virus surface antigen recombinants, with or without a portion of E3 region, in chimpanzees. Vaccine 1997, 15, 335–339. [Google Scholar] [CrossRef]
- Shiver, J.W.; Fu, T.M.; Chen, L.; Casimiro, D.R.; Davies, M.E.; Evans, R.K.; Zhang, Z.Q.; Simon, A.J.; Trigona, W.L.; Dubey, S.A.; et al. Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity. Nature 2002, 415, 331–335. [Google Scholar] [CrossRef]
- Liu, J.; O’Brien, K.L.; Lynch, D.M.; Simmons, N.L.; La Porte, A.; Riggs, A.M.; Abbink, P.; Coffey, R.T.; Grandpre, L.E.; Seaman, M.S.; et al. Immune control of an SIV challenge by a T-cell-based vaccine in rhesus monkeys. Nature 2009, 457, 87–91. [Google Scholar] [CrossRef]
- Mukai, N.; Kalter, S.S.; Cummins, L.B.; Matthews, V.A.; Nishida, T.; Nakajima, T. Retinal tumor induced in the baboon by human adenovirus 12. Science 1980, 210, 1023–1025. [Google Scholar] [CrossRef]
- Li, R.; Zanin, M.; Xia, X.; Yang, Z. The tree shrew as a model for infectious diseases research. J. Thorac. Dis. 2018, 10 (Suppl. 19), S2272–S2279. [Google Scholar] [CrossRef] [PubMed]
- Meurens, F.; Summerfield, A.; Nauwynck, H.; Saif, L.; Gerdts, V. The pig: A model for human infectious diseases. Trends Microbiol. 2012, 20, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Swindle, M.M.; Makin, A.; Herron, A.J.; Clubb, F.J., Jr.; Frazier, K.S. Swine as models in biomedical research and toxicology testing. Vet. Pathol. 2012, 49, 344–356. [Google Scholar] [CrossRef] [PubMed]
- Koodie, L.; Robertson, M.G.; Chandrashekar, M.; Ruth, G.; Dunning, M.; Bianco, R.W.; Davydova, J. Rodents Versus Pig Model for Assessing the Performance of Serotype Chimeric Ad5/3 Oncolytic Adenoviruses. Cancers 2019, 11, 298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padilla-Carlin, D.J.; McMurray, D.N.; Hickey, A.J. The Guinea Pig as a Model of Infectious Diseases. Comp. Med. 2008, 58, 324–340. [Google Scholar] [PubMed]
- Lowen, A.C.; Mubareka, S.; Tumpey, T.M.; Garcia-Sastre, A.; Palese, P. The guinea pig as a transmission model for human influenza viruses. Proc. Natl. Acad. Sci. USA 2006, 103, 9988–9992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, M.; Krause, K.K.; Azouz, F.; Nakano, E.; Nerurkar, V.R. A guinea pig model of Zika virus infection. Virol. J. 2017, 14, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faucon, N.; Chardonnet, Y.; Sohier, R. Persistence of Adenovirus 5 in guinea pigs. Infect. Immun. 1974, 10, 11–15. [Google Scholar] [CrossRef] [Green Version]
- Vitalis, T.Z.; Keicho, N.; Itabashi, S.; Hayashi, S.; Hogg, J.C. A model of latent adenovirus 5 infection in the guinea pig (Cavia porcellus). Am. J. Respir. Cell. Mol. Biol. 1996, 14, 225–231. [Google Scholar] [CrossRef]
- Wu, S.; Kroeker, A.; Wong, G.; He, S.; Hou, L.; Audet, J.; Wei, H.; Zhang, Z.; Fernando, L.; Soule, G.; et al. An Adenovirus Vaccine Expressing Ebola Virus Variant Makona Glycoprotein Is Efficacious in Guinea Pigs and Nonhuman Primates. J. Infect. Dis. 2016, 214 (Suppl. 3), S326–S332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pauly, M.; Akoua-Koffi, C.; Buchwald, N.; Schubert, G.; Weiss, S.; Couacy-Hymann, E.; Anoh, A.E.; Mossoun, A.; Calvignac-Spencer, S.; Leendertz, S.A.; et al. Adenovirus in Rural Cote D’Ivoire: High Diversity and Cross-Species Detection. Ecohealth 2015, 12, 441–452. [Google Scholar] [CrossRef] [Green Version]
- Bailey, E.S.; Fieldhouse, J.K.; Choi, J.Y.; Gray, G.C. A Mini Review of the Zoonotic Threat Potential of Influenza Viruses, Coronaviruses, Adenoviruses, and Enteroviruses. Front. Public Health 2018, 6, 104. [Google Scholar] [CrossRef]
- Lange, C.E.; Niama, F.R.; Cameron, K.; Olson, S.H.; Aime Nina, R.; Ondzie, A.; Bounga, G.; Smith, B.R.; Pante, J.; Reed, P.; et al. First evidence of a new simian adenovirus clustering with Human mastadenovirus F viruses. Virol. J. 2019, 16, 147. [Google Scholar] [CrossRef]
- Borkenhagen, L.K.; Fieldhouse, J.K.; Seto, D.; Gray, G.C. Are adenoviruses zoonotic? A systematic review of the evidence. Emerg. Microbes Infect. 2019, 8, 1679–1687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medkour, H.; Amona, I.; Akiana, J.; Davoust, B.; Bitam, I.; Levasseur, A.; Tall, M.L.; Diatta, G.; Sokhna, C.; Hernandez-Aguilar, R.A.; et al. Adenovirus Infections in African Humans and Wild Non-Human Primates: Great Diversity and Cross-Species Transmission. Viruses 2020, 12, 657. [Google Scholar] [CrossRef] [PubMed]
- Mollentze, N.; Streicker, D.G. Viral zoonotic risk is homogenous among taxonomic orders of mammalian and avian reservoir hosts. Proc. Natl. Acad. Sci. USA 2020, 117, 9423–9430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mollentze, N.; Babayan, S.A.; Streicker, D.G. Identifying and prioritizing potential human-infecting viruses from their genome sequences. PLoS Biol. 2021, 19, e3001390. [Google Scholar] [CrossRef] [PubMed]
- Medkour, H.; Castaneda, S.; Amona, I.; Fenollar, F.; Andre, C.; Belais, R.; Mungongo, P.; Muyembe-Tamfum, J.J.; Levasseur, A.; Raoult, D.; et al. Potential zoonotic pathogens hosted by endangered bonobos. Sci. Rep. 2021, 11, 6331. [Google Scholar] [CrossRef] [PubMed]
- Kremer, E.J. What is the risk of a deadly adenovirus pandemic? PLoS Pathog. 2021, 17, e1009814. [Google Scholar] [CrossRef] [PubMed]
- Wachtman, L.; Mansfield, K. Viral Diseases of Nonhuman Primates. In Nonhuman Primates in Biomedical Research, 2nd ed.; Abee, C.R., Mansfield, K., Tardif, S., Morris, T., Eds.; Academic Press: Cambridge, MA, USA, 2012; Volume 2, pp. 1–104. [Google Scholar] [CrossRef]
- Lucher, L.A. Abortive Adenovirus Infection and Host Range Determinants. In The Molecular Repertoire of Adenoviruses; Doerfler, W., Böhm, B., Eds.; Springer: Berlin/Heidelberg, Germany, 1995; Volume 199. [Google Scholar] [CrossRef]
- Brough, D.E.; Rice, S.A.; Sell, S.; Klessig, D.F. Restricted changes in the adenovirus DNA-binding protein that lead to extended host range or temperature-sensitive phenotypes. J. Virol. 1985, 55, 206–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Species | HAdV Type(s) + | HAdV Dose (Range) # | Infection Route | Clinical Signs Of A Systemic Disease | Histopathological Lesions | Induction Of Neutralizing Antibodies? | HAdV-Induced Tumors? |
---|---|---|---|---|---|---|---|
Cotton rat (Sigmodon hispidus) | C5, D8, D37 and E4 | 102–1010 | i.m., i.n., i.o. | No * | Lung, airway and eye damage | Yes | No |
Guinea pig (Cavia porcellus) | C5 | 107–8 × 108 | i.c., i.n. | Not reported | Lung and airway damage | Yes | No |
Humanized mouse (Mus musculus) | C2 | 1.4 × 104–1.4 × 108 | i.v. | Lethargy, weight loss | Liver damage | Yes | No |
Mouse (Mus musculus) | A12, C5, D37 and D64 | 105–1.4 × 1011 | i.m., i.n., i.pe., i.pu., i.v., i.o., s.c. | No * | Liver, eye and lung damage | Yes | Yes |
New Zealand rabbit (Oryctolagus cuniculus) | C5 | 5.7 × 105–1.6 × 109 | i.v., i.o. | Eye pathology | Lung and eye damage | Yes | No |
Pig (Sus scrofa) | C5 | 1.6 × 103–1010 | i.v., i.t. | No | Moderate lung damage | Not reported | No |
Rat (rattus norvegicus) | A12, C5 and D9 | 5 × 107–3 × 1011 | i.o. i.pe., s.c. | No | Not reported | Not reported | Yes |
Syrian hamster (Mesocricetus auratus) | A12, A18, B3, B7, B14, C5 and C6 | 1.5 × 1010–2 × 1011 | i.i., i.n., i.pu., i.t., s.c., i.v. | Weight loss with some HAdV types § | Liver, lung and airway damage | Yes | Yes |
Tree shrew (Tupaia belangeri chinensis) | B55 | 5 × 105 | i.n. | Weight loss and body temperature increase | Lung damage | Yes | No |
Model Animal | Strengths | Limitations |
---|---|---|
Cotton rat |
|
|
Guinea pig |
|
|
Humanized mouse |
|
|
Immunosuppressed hamster |
|
|
Mouse |
|
|
New Zealand rabbit |
|
|
Pig |
|
|
Rat |
|
|
STAT2 KO hamster |
|
|
Syrian hamster |
|
|
Tree shrew |
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bertzbach, L.D.; Ip, W.-H.; Dobner, T. Animal Models in Human Adenovirus Research. Biology 2021, 10, 1253. https://doi.org/10.3390/biology10121253
Bertzbach LD, Ip W-H, Dobner T. Animal Models in Human Adenovirus Research. Biology. 2021; 10(12):1253. https://doi.org/10.3390/biology10121253
Chicago/Turabian StyleBertzbach, Luca D., Wing-Hang Ip, and Thomas Dobner. 2021. "Animal Models in Human Adenovirus Research" Biology 10, no. 12: 1253. https://doi.org/10.3390/biology10121253
APA StyleBertzbach, L. D., Ip, W. -H., & Dobner, T. (2021). Animal Models in Human Adenovirus Research. Biology, 10(12), 1253. https://doi.org/10.3390/biology10121253