Effects of High Intensity Exercise on Oxidative Stress and Antioxidant Status in Untrained Humans: A Systematic Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Data Sources and Searches
2.2. Inclusion Criteria
2.2.1. Type of Study
2.2.2. Type of Participants
2.2.3. Type of Protocols
2.2.4. Type of Outcomes
2.3. Identification of Eligible Studies
2.4. Quality Assessment
2.5. Level of Evidence
2.6. Data Extraction
3. Results
3.1. Search Results
3.2. Methodological Quality Assessment
3.3. Type of Studies
3.4. Participants of Selected Studies
3.5. Oxidative Stress Markers
3.6. Exercise Modes
3.7. Levels of Evidence
3.7.1. Acute Effect of Oxidative Stress and Antioxidant Status after HIE
3.7.2. Time of Measurement Effects of Oxidative Stress and Antioxidant Status after HIE
4. Discussion
4.1. HIE Induces Oxidative Stress
4.2. HIE-Induced Oxidative Stress Is Transient
4.3. The Antioxidant Capacity Is also Activated after HIE
4.4. Regular Exercise Enhanced the Antioxidant Defense Mechanisms
4.5. HIE-Induced Oxidative Stress Is Related to Individual Characteristics
5. Limitations and Strengthens
6. Practical Applications
- High-intensity exercise-induced oxidative stress is acute and recoverable, and in young healthy untrained humans, oxidative stress after a single bout of high intensity exercise will not be elevated to dangerous levels.
- Higher physical fitness level is associated with shorter time to recovery from the exercises induced oxidative stress.
- Higher intensity is related to higher exercise-induced oxidative stress, and 70% VO2max with sufficient recovery is a better exercise mode for untrained humans to initiate high-intensity exercise.
- Establishing a standardized high-intensity exercise protocol in order to specifically investigate oxidative responses post exercise will help provide a better knowledge in this area.
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Reporting | |
---|---|
1. Is the hypothesis/aim/objective of the study clearly described? | Yes 1/No 0 |
2. Are the interventions of interest clearly described? Treatments and placebo (where relevant) that are to be compared should be clearly described. | Yes 1/No 0 |
3. Are the characteristics of the subjects included in the study clearly described? | Yes 1/No 0 |
4. Are the main findings of the study clearly described? Simple outcome data (including denominators and numerators) should be reported for all major findings so that the reader can check the major analyses and conclusions. | Yes 1/No 0 |
5. Have all important adverse events that may be a consequence of the intervention been reported? | Yes 1/No 0 |
Internal validity—bias | |
6. Was an attempt made to blind those measuring the main outcomes of the intervention? | Yes 1/No 0/unable to determine 0 |
7. Were the statistical tests used to assess the main outcomes appropriate? | Yes 1/No 0/unable to determine 0 |
Internal validity—confounding (selection bias) | |
8. Were study subjects in different intervention groups (trials and cohort studies) or were the cases and controls (case-control studies) recruited over the same period of time? | Yes 1/No 0/unable to determine 0 |
9. Were study subjects randomized to intervention groups? | Yes 1/No 0/unable to determine 0 |
Power | |
10. Did the study have sufficient power to detect an important effect where the probability value for a difference being due to chance is less than 5%? | Yes 1/No 0/unable to determine 0 |
Methodological quality assessment questions modified from Downs and Black (1998). |
References
- Harman, D. Aging: A Theory Based on Free Radical and Radiation Chemistry. J. Gerontol. 1956, 11, 298–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forsberg, L.; de Faire, U.; Morgenstern, R. Oxidative Stress, Human Genetic Variation, and Disease. Arch. Biochem. Biophys. 2001, 389, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Gutteridge, J.M.; Mumby, S.; Koizumi, M.; Taniguchi, N. “Free” Iron in Neonatal Plasma Activates Aconitase: Evidence for Biologically Reactive Iron. Biochem. Biophys. Res. Commun. 1996, 229, 806–809. [Google Scholar] [CrossRef]
- Halliwell, B. Free radicals, proteins and DNA: Oxidative damage versus redox regulation. Biochem. Soc. Trans. 1996, 24, 1023–1027. [Google Scholar] [CrossRef]
- Cooper, C.E.; Vollaard, N.B.; Choueiri, T.; Wilson, M.T. Exercise, free radicals and oxidative stress. Biochem. Soc. Trans. 2002, 30, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.K.; Mandal, A.; Chanda, D.; Chakraborti, S. Oxidant, antioxidant and physical exercise. Mol. Cell. Biochem. 2003, 253, 307–312. [Google Scholar] [CrossRef]
- Koska, J.; Blazícek, P.; Marko, M.; Grna, J.D.; Kvetnanský, R.; Vigas, M. Insulin, catecholamines, glucose and antioxidant enzymes in oxidative damage during different loads in healthy humans. Physiol. Res. 2000, 49, 95–100. [Google Scholar]
- Cooke, M.S.; Evans, M.D.; Dizdaroglu, M.; Lunec, J. Oxidative DNA damage: Mechanisms, mutation, and disease. FASEB J. 2003, 17, 1195–1214. [Google Scholar] [CrossRef] [Green Version]
- Kruk, J.; Aboul-Enein, H.Y.; Kładna, A.; Bowser, J.E. Oxidative stress in biological systems and its relation with pathophysiological functions: The effect of physical activity on cellular redox homeostasis. Free Radic. Res. 2019, 53, 497–521. [Google Scholar] [CrossRef]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; DELLA-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Oxidative stress, aging, and diseases. Clin. Interv. Aging 2018, 13, 757–772. [Google Scholar] [CrossRef] [Green Version]
- Valko, M.; Rhodes, C.J.; Moncol, J.; Izakovic, M.; Mazur, M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 2006, 160, 1–40. [Google Scholar] [CrossRef]
- Ruzicic, R.D.; Jakovljevic, V.; Djordjevic, D. Oxidative Stress in Training, Overtraining and Detraining: From Experimental to Applied Research. Serbian J. Exp. Clin. Res. 2016, 17, 343–348. [Google Scholar] [CrossRef] [Green Version]
- Davies, K.J.; Quintanilha, A.T.; Brooks, G.A.; Packer, L. Free radicals and tissue damage produced by exercise. Biochem. Biophys. Res. Commun. 1982, 107, 1198–1205. [Google Scholar] [CrossRef]
- Alessio, H.M. Exercise-induced oxidative stress. Med. Sci. Sports Exerc. 1993, 25, 218–224. [Google Scholar] [CrossRef]
- Radak, Z.; Sasvári, M.; Nyakas, C.; Taylor, A.W.; Ohno, H.; Nakamoto, H.; Goto, S. Regular Training Modulates the Accumulation of Reactive Carbonyl Derivatives in Mitochondrial and Cytosolic Fractions of Rat Skeletal Muscle. Arch. Biochem. Biophys. 2000, 383, 114–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radak, Z.; Naito, H.; Kaneko, T.; Tahara, S.; Nakamoto, H.; Takahashi, R.; Cardozo-Pelaez, F.; Goto, S. Exercise training decreases DNA damage and increases DNA repair and resistance against oxidative stress of proteins in aged rat skeletal muscle. Pflügers Arch. 2002, 445, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Radak, Z.; Chung, H.Y.; Koltai, E.; Taylor, A.W.; Goto, S. Exercise, oxidative stress and hormesis. Ageing Res. Rev. 2008, 7, 34–42. [Google Scholar] [CrossRef]
- Oguma, Y.; Sesso, H.D.; Paffenbarger, R.S., Jr.; Lee, I.-M. Physical activity and all cause mortality in women: A review of the evidence. Br. J. Sports Med. 2002, 36, 162–172. [Google Scholar] [CrossRef]
- Crespo, C.J.; Palmieri, M.R.; Perdomo, R.P.; McGee, D.L.; Smit, E.; Sempos, C.T.; Min, I.; Sorlie, P.D. The Relationship of Physical Activity and Body Weight with All-Cause Mortality Results from The Puerto Rico Heart Health Program. Ann. Epidemiol. 2002, 12, 543–552. [Google Scholar] [CrossRef]
- Blair, S.N.; Cheng, Y.; Holder, J.S. Is physical activity or physical fitness more important in defining health benefits? Med. Sci. Sports Exerc. 2001, 33, S379–S399. [Google Scholar] [CrossRef] [PubMed]
- Jackson, M.J.; Edwards, R.H.; Symons, M.C. Electron spin resonance studies of intact mammalian skeletal muscle. Biochim. Biophys. Acta Bioenergy 1985, 847, 185–190. [Google Scholar] [CrossRef]
- Alessio, H.M.; Goldfarb, A.H.; Cutler, R.G. MDA content increases in fast- and slow-twitch skeletal muscle with intensity of exercise in a rat. Am. J. Physiol. Physiol. 1988, 255, C874–C877. [Google Scholar] [CrossRef] [PubMed]
- Castrogiovanni, P.; Imbesi, R. Oxidative stress and skeletal muscle in exercise. Ital. J. Anat. Embryol. 2012, 117, 107–117. [Google Scholar] [PubMed]
- Duthie, G.G.; Robertson, J.D.; Maughan, R.J.; Morrice, P.C. Blood antioxidant status and erythrocyte lipid peroxidation following distance running. Arch. Biochem. Biophys. 1990, 282, 78–83. [Google Scholar] [CrossRef]
- Reid, M.B.; Haack, K.E.; Franchek, K.M.; Valberg, P.A.; Kobzik, L.; West, M.S. Reactive oxygen in skeletal muscle. I. Intracellular oxidant kinetics and fatigue in vitro. J. Appl. Physiol. 1992, 73, 1797–1804. [Google Scholar] [CrossRef]
- Kanter, M. Free radicals, exercise and antioxidant supplementation. Proc. Nutr. Soc. 1998, 57, 9–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, L.L.; Radak, Z.; Goto, S. Hormesis and Exercise: How the Cell Copes with Oxidative Stress. Am. J. Pharmacol. Toxicol. 2008, 3, 44–58. [Google Scholar] [CrossRef]
- Radak, Z.; Taylor, A.W.; Ohno, H.; Goto, S. Adaptation to exercise-induced oxidative stress: From muscle to brain. Exerc. Immunol. Rev. 2001, 7, 90–107. [Google Scholar]
- Gibala, M.J. High-intensity interval training: A time-efficient strategy for health promotion? Curr. Sports Med. Rep. 2007, 6, 211–213. [Google Scholar] [CrossRef]
- Hood, M.S.; Little, J.P.; Tarnopolsky, M.A.; Myslik, F.; Gibala, M.J. Low-Volume Interval Training Improves Muscle Oxidative Capacity in Sedentary Adults. Med. Sci. Sports Exerc. 2011, 43, 1849–1856. [Google Scholar] [CrossRef]
- Burgomaster, K.A.; Howarth, K.R.; Phillips, S.M.; Rakobowchuck, M.; MacDonald, M.J.; McGee, S.L.; Gibala, M.J. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J. Physiol. 2008, 586, 151–160. [Google Scholar] [CrossRef]
- Gibala, M.J.; McGee, S.L. Metabolic Adaptations to Short-term High-Intensity Interval Training A Little Pain for a Lot of Gain? Exerc. Sport Sci. Rev. 2008, 36, 58–63. [Google Scholar] [CrossRef]
- Downs, S.H.; Black, N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J. Epidemiol. Community Health 1998, 52, 377–384. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, J.R.; Castro-Piñero, J.; Artero, E.G.; Ortega, F.B.; Sjostrom, M.; Suni, J.; Castillo, M.J. Predictive validity of health-related fitness in youth: A systematic review. Br. J. Sports Med. 2009, 43, 909–923. [Google Scholar] [CrossRef]
- Bouzid, M.A.; Hammouda, O.; Matran, R.; Robin, S.; Fabre, C. Changes in Oxidative Stress Markers and Biological Markers of Muscle Injury with Aging at Rest and in Response to an Exhaustive Exercise. PLoS ONE 2014, 9, e90420. [Google Scholar] [CrossRef]
- Falone, S.; Mirabilio, A.; Pennelli, A.; Cacchio, M.; Di Baldassarre, A.; Gallina, S.; Passerini, A.; Amicarelli, F. Differential impact of acute bout of exercise on redox- and oxidative damage-related profiles between untrained subjects and amateur runners. Physiol. Res. 2010, 59, 953–961. [Google Scholar] [CrossRef]
- Seifi-Skishahr, F.; Siahkohian, M.; Nakhostin-Roohi, B. Influence of aerobic exercise at high and moderate intensities on lipid peroxidation in untrained men. J. Sports Med. Phys. Fit. 2008, 48, 515–521. [Google Scholar]
- Kyparos, A.; Salonikidis, K.; Nikolaidis, M.G.; Kouretas, D. Short duration exhaustive aerobic exercise induces oxidative stress: A novel play-oriented volitional fatigue test. J. Sports Med. Phys. Fit. 2007, 47, 483–490. [Google Scholar]
- Berzosa, C.; Cebrián, I.; Fuentes-Broto, L.; Gómez-Trullén, E.; Piedrafita, E.; Martínez-Ballarín, E.; López-Pingarrón, L.; Reiter, R.J.; García, J.J. Acute Exercise Increases Plasma Total Antioxidant Status and Antioxidant Enzyme Activities in Untrained Men. J. Biomed. Biotechnol. 2011, 2011, 540458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Djordjevic, D.Z.; Cubrilo, D.G.; Barudzic, N.S.; Vuletic, M.S.; Zivkovic, V.I.; Nesic, M.; Radovanovic, D.; Djuric, D.M.; Jakovljevic, V.L. Comparison of blood pro/antioxidant levels before and after acute exercise in athletes and non-athletes. Gen. Physiol. Biophys. 2012, 31, 211–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finkler, M.; Hochman, A.; Pinchuk, I.; Lichtenberg, D. In Healthy Young Men, a Short Exhaustive Exercise Alters the Oxidative Stress Only Slightly, Independent of the Actual Fitness. Oxidative Med. Cell. Longev. 2016, 2016, 9107210. [Google Scholar] [CrossRef] [Green Version]
- Jammes, Y.; Steinberg, J.G.; Brégeon, F.; Delliaux, S. The oxidative stress in response to routine incremental cycling exercise in healthy sedentary subjects. Respir. Physiol. Neurobiol. 2004, 144, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, H.; Oh-Ishi, S.; Ookawara, T.; Kizaki, T.; Toshinai, K.; Ha, S.; Haga, S.; Ji, L.L.; Ohno, H. Strenuous endurance training in humans reduces oxidative stress following exhausting exercise. Eur. J. Appl. Physiol. 2001, 84, 1–6. [Google Scholar] [CrossRef]
- Parker, L.; McGuckin, T.A.; Leicht, A.S. Influence of exercise intensity on systemic oxidative stress and antioxidant capacity. Clin. Physiol. Funct. Imaging 2014, 34, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, J.G.; Ba, A.; Brégeon, F.; Delliaux, S.; Jammes, Y. Cytokine and Oxidative Responses to Maximal Cycling Exercise in Sedentary Subjects. Med. Sci. Sports Exerc. 2007, 39, 964–968. [Google Scholar] [CrossRef]
- Ammar, A.; Trabelsi, K.; Boukhris, O.; Glenn, J.M.; Bott, N.; Masmoudi, L.; Hakim, A.; Chtourou, H.; Driss, T.; Hoekelmann, A.; et al. Effects of Aerobic-, Anaerobic- and Combined-Based Exercises on Plasma Oxidative Stress Biomarkers in Healthy Untrained Young Adults. Int. J. Environ. Res. Public Health 2020, 17, 2601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, J.S.; Bailey, D.M.; Hullin, D.; Young, I.; Davies, B. Metabolic implications of resistive force selection for oxidative stress and markers of muscle damage during 30 s of high-intensity exercise. Eur. J. Appl. Physiol. 2004, 92, 321–327. [Google Scholar] [CrossRef]
- Groussard, C.; Rannou-Bekono, F.; Machefer, G.; Chevanne, M.; Vincent, S.; Sergent, O.; Cillard, J.; Gratas-Delamarche, A. Changes in blood lipid peroxidation markers and antioxidants after a single sprint anaerobic exercise. Eur. J. Appl. Physiol. 2003, 89, 14–20. [Google Scholar] [CrossRef]
- Wiecek, M.; Szymura, J.; Maciejczyk, M.; Kantorowicz, M.; Szygula, Z. Anaerobic Exercise-Induced Activation of Antioxidant Enzymes in the Blood of Women and Men. Front. Physiol. 2018, 9, 9. [Google Scholar] [CrossRef]
- Bogdanis, G.C.; Stavrinou, P.; Fatouros, I.G.; Philippou, A.; Chatzinikolaou, A.; Draganidis, D.; Ermidis, G.; Maridaki, M. Short-term high-intensity interval exercise training attenuates oxidative stress responses and improves antioxidant status in healthy humans. Food Chem. Toxicol. 2013, 61, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Fisher, G.; Schwartz, D.D.; Quindry, J.; Barberio, M.D.; Foster, E.B.; Jones, K.W.; Pascoe, D.D. Lymphocyte enzymatic antioxidant responses to oxidative stress following high-intensity interval exercise. J. Appl. Physiol. 2011, 110, 730–737. [Google Scholar] [CrossRef] [Green Version]
- Maleki, B.H.; Tartibian, B.; Chehrazi, M. The effects of three different exercise modalities on markers of male reproduction in healthy subjects: A randomized controlled trial. Reproduction 2017, 153, 157–174. [Google Scholar] [CrossRef] [Green Version]
- Jamurtas, A.Z.; Fatouros, I.G.; Deli, C.K.; Georgakouli, K.; Poulios, A.; Draganidis, D.; Papanikolaou, K.; Tsimeas, P.; Chatzinikolaou, A.; Avloniti, A.; et al. The Effects of Acute Low-Volume HIIT and Aerobic Exercise on Leukocyte Count and Redox Status. J. Sports Sci. Med. 2018, 17, 501–508. [Google Scholar]
- Parker, L.; Trewin, A.J.; Levinger, I.; Shaw, C.S.; Stepto, N.K. Exercise-intensity dependent alterations in plasma redox status do not reflect skeletal muscle redox-sensitive protein signaling. J. Sci. Med. Sport 2018, 21, 416–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wadley, A.J.; Chen, Y.-W.; Lip, G.Y.; Fisher, J.P.; Aldred, S. Low volume–high intensity interval exercise elicits antioxidant and anti-inflammatory effects in humans. J. Sports Sci. 2016, 34, 1–9. [Google Scholar] [CrossRef]
- Kröpfl, J.M.; Beltrami, F.G.; Rehm, M.; Gruber, H.-J.; Stelzer, I.; Spengler, C.M. Acute exercise-induced glycocalyx shedding does not differ between exercise modalities, but is associated with total antioxidative capacity. J. Sci. Med. Sport 2021, 24, 689–695. [Google Scholar] [CrossRef]
- Fogarty, M.C.; Hughes, C.M.; Burke, G.; Brown, J.C.; Trinick, T.R.; Duly, E.; Bailey, D.M.; Davison, G.W. Exercise-induced lipid peroxidation: Implications for deoxyribonucleic acid damage and systemic free radical generation. Environ. Mol. Mutagen. 2011, 52, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Tryfidou, D.V.; McClean, C.; Nikolaidis, M.G.; Davison, G.W. DNA Damage Following Acute Aerobic Exercise: A Systematic Review and Meta-analysis. Sports Med. 2020, 50, 103–127. [Google Scholar] [CrossRef] [Green Version]
- Cipryan, L. IL-6, Antioxidant Capacity and Muscle Damage Markers Following High-Intensity Interval Training Protocols. J. Hum. Kinet. 2017, 56, 139–148. [Google Scholar] [CrossRef]
- Cipryan, L. The effect of fitness level on cardiac autonomic regulation, IL-6, total antioxidant capacity, and muscle damage responses to a single bout of high-intensity interval training. J. Sport Health Sci. 2018, 7, 363–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, J.E.; Bosch, J.A.; Drayson, M.T.; Aldred, S. Assessment of oxidative stress in lymphocytes with exercise. J. Appl. Physiol. 2011, 111, 206–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farney, T.M.; Mccarthy, C.G.; Canale, R.E.; Schilling, B.K.; Whitehead, P.N.; Bloomer, R.J. Absence of Blood Oxidative Stress in Trained Men after Strenuous Exercise. Med. Sci. Sports Exerc. 2012, 44, 1855–1863. [Google Scholar] [CrossRef] [PubMed]
- El Abed, K.; Rebai, H.; Bloomer, R.J.; Trabelsi, K.; Masmoudi, L.; Zbidi, A.; Sahnoun, Z.; Hakim, A.; Tabka, Z. Antioxidant Status and Oxidative Stress at Rest and in Response to Acute Exercise in Judokas and Sedentary Men. J. Strength Cond. Res. 2011, 25, 2400–2409. [Google Scholar] [CrossRef]
- Otocka-Kmiecik, A.; Lewandowski, M.; Stolarek, R.; Szkudlarek, U.; Nowak, D.; Orlowska-Majdak, M. Effect of single bout of maximal excercise on plasma antioxidant status and paraoxonase activity in young sportsmen. Redox Rep. 2010, 15, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Otocka-Kmiecik, A.; Lewandowski, M.; Szkudlarek, U.; Nowak, D.; Orlowska-Majdak, M. Aerobic Training Modulates the Effects of Exercise-Induced Oxidative Stress on PON1 Activity: A Preliminary Study. Sci. World J. 2014, 2014, 230271. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, K.; Nakaji, S.; Yamada, M.; Liu, Q.; Kurakake, S.; Okamura, N.; Kumae, T.; Umeda, T.; Sugawara, K. Impact of a Competitive Marathon Race on Systemic Cytokine and Neutrophil Responses. Med. Sci. Sports Exerc. 2003, 35, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Chaki, B.; Pal, S.; Chattopadhyay, S.; Bandyopadhyay, A. High-intensity exercise-induced oxidative stress in sedentary pre-pubertal & post-pubertal boys: A comparative study. Indian J. Med. Res. 2019, 150, 167–174. [Google Scholar] [CrossRef]
- Sureda, A.; Tauler, P.; Aguiló, A.; Cases, N.; Fuentespina, E.; Córdova, A.; Tur, J.A.; Pons, A. Relation between oxidative stress markers and antioxidant endogenous defences during exhaustive exercise. Free Radic. Res. 2005, 39, 1317–1324. [Google Scholar] [CrossRef]
- Margaritis, I.; Tessier, F.; Richard, M.-J.; Marconnet, P. No Evidence of Oxidative Stress after a Triathlon Race in Highly Trained Competitors. Int. J. Sports Med. 1997, 18, 186–190. [Google Scholar] [CrossRef]
- Rokitzki, L.; Logemann, E.; Sagredos, A.N.; Murphy, M.; Wetzel-Roth, W.; Keul, J. Lipid peroxidation and antioxidative vitamins under extreme endurance stress. Acta Physiol. Scand. 1994, 151, 149–158. [Google Scholar] [CrossRef]
- Leaf, D.A.; Kleinman, M.T.; Hamilton, M.; Barstow, T.J. The effect of exercise intensity on lipid peroxidation. Med. Sci. Sports Exerc. 1997, 29, 1036–1039. [Google Scholar] [CrossRef] [PubMed]
- Ugras, A.F. Effect of high intensity interval training on elite athletes’ antioxidant status. Sci. Sports 2013, 28, 253–259. [Google Scholar] [CrossRef]
- Asami, S.; Hirano, T.; Yamaguchi, R.; Itoh, H.; Kasai, H. Reduction of 8-hydroxyguanine in human leukocyte DNA by physical exercise. Free Radic. Res. 1998, 29, 581–584. [Google Scholar] [CrossRef]
- Shing, C.M.; Peake, J.M.; Ahern, S.M.; Strobel, N.A.; Wilson, G.; Jenkins, D.G.; Coombes, J.S. The effect of consecutive days of exercise on markers of oxidative stress. Appl. Physiol. Nutr. Metab. 2007, 32, 677–685. [Google Scholar] [CrossRef] [PubMed]
- Boisseau, N.; Delamarche, P. Metabolic and Hormonal Responses to Exercise in Children and Adolescents. Sports Med. 2000, 30, 405–422. [Google Scholar] [CrossRef]
Reference | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | Q9 | Q10 | Total |
---|---|---|---|---|---|---|---|---|---|---|---|
Ammar et al., 2020 [35] | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 80% |
Baker et al., 2004 [36] | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 80% |
Berzosa er al., 2011 [37] | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 80% |
Bogdanis et al., 2013 [38] | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 60% |
Bouzid et al., 2014 [39] | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 70% |
Djordjevic et al., 2012 [40] | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 70% |
Falone et al., 2010 [41] | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 70% |
Finkler et al., 2016 [42] | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 60% |
Fisher et al., 2011 [43] | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 60% |
Groussard et al., 2003 [44] | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 60% |
Hajizadeh et al., 2017 [45] | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 80% |
Jammes et al., 2004 [46] | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 60% |
Jamurtas et al., 2018 [47] | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 80% |
Kyparos et al., 2007 [48] | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 70% |
Miyazaki et al., 2001 [49] | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 70% |
Parker et al., 2014 [50] | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 60% |
Parker et al., 2018 [51] | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 80% |
Seifi-Skishahr et al., 2008 [52] | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 60% |
Steinberg et al., 2007 [53] | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 60% |
Wadley et al., 2016 [54] | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 80% |
Wiecek et al., 2018 [55] | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 60% |
Reporting | Internal validity—bias | Internal validity—confounding | Power | Average | |||||||
TOTAL/21 | 21 | 21 | 21 | 21 | 0 | 0 | 21 | 11 | 8 | 21 | 69% |
Reference | Exercise Testing | Training | ||||||
---|---|---|---|---|---|---|---|---|
Modality | Type of Protocol | No. of Bouts | Duration of Bouts | Duration of Protocol | W/R Ratio | Intensity (W/R) | Duration, Frequency, (No. of Bouts) × (Duration of Bout/Intensity)/Duration of Recovery | |
Ammar et al., 2020 [35] (anerobic) | Cycling | Maximal | 1 | 30 s | 30 s | All-out | ||
Ammar et al., 2020 [35] (combined) | Cycling | Combined (maximal and moderate intensity continuous) | 1 | 30 s + 30 min | 30 s + 30 min | All-out + 60% MAP | ||
Baker et al., 2004 [36] (TBM) | Cycling | Maximal | 1 | 30 s | 30 s | All-out | ||
Baker et al., 2004 [36] (FFM) | Cycling | Maximal | 1 | 30 s | 30 s | All-out | ||
Berzosa er al., 2011 [37] (incremental) | Cycling | Incremental | 1 | Incremental intensity to exhaustion | ||||
Berzosa er al., 2011 [37] (100% VO2max) | Cycling | Maximal | 1 | 100% VO2max to exhaustion | ||||
Berzosa er al., 2011 [37] (70% VO2max) | Cycling | High-intensity continuous | 1 | 30 min | 30 min | 70% VO2max | ||
Bogdanis et al., 2013 [38] (pre-training) | Cycling | Sprint interval | 4 | 30 s | 14 min | 1/8 | All-out/Active recovery | 3 weeks, 3 sessions/week, (4–6) × (30 s/all-out)/4 min |
Bogdanis et al., 2013 [38] (post-training) | Cycling | Sprint interval | 4 | 30 s | 14 min | 1/8 | All-out/Active recovery | |
Bouzid et al., 2014 [39] (young) | Treadmill | Incremental | 1 | Incremental intensity to exhaustion | ||||
Bouzid et al., 2014 [39] (old) | Treadmill | Incremental | 1 | Incremental intensity to exhaustion | ||||
Djordjevic et al., 2012 [40] (athletes) | Cycling | Incremental | 1 | Incremental intensity to exhaustion | ||||
Djordjevic et al., 2012 [40] (non-athletes) | Cycling | Incremental | 1 | Incremental intensity to exhaustion | ||||
Falone et al., 2010 [41] (amateur runner) | Treadmill | Incremental | 1 | Incremental intensity to exhaustion | ||||
Falone et al., 2010 [41] (untrained) | Treadmill | Incremental | 1 | Incremental intensity to exhaustion | ||||
Finkler et al., 2016 [42] | Cycling | Incremental | 1 | Incremental intensity to exhaustion | ||||
Fisher et al., 2011 [43] (first) | Cycling | High-intensity interval | 4 | 30 s | 14 min | 1/8 | 90% Max-AP/15% Max-AP | |
Fisher et al., 2011 [43] (second) | Cycling | High-intensity interval | 4 | 30 s | 14 min | 1/8 | 90% Max-AP/15% Max-AP | |
Fisher et al., 2011 [43] (third) | Cycling | High-intensity interval | 4 | 30 s | 14 min | 1/8 | 90% Max-AP/15% Max-AP | |
Groussard et al., 2003 [44] | Cycling | Maximal | 1 | 30 s | 30 s | All-out | ||
Hajizadeh et al., 2017 [45] (HICE) | Treadmill | High-intensity continuous | 4 | 10 min | 49 min | 10/3 | 70–75% VO2max/50–60% VO2max for the first 12 weeks; 75–85% VO2max/50–60% VO2max for the final 12 weeks | 24 weeks, 3 sessions/week, 4 × [10 min/(70–75%) − (75–85%)VO2max]/3 min |
Hajizadeh et al., 2017 [45] (HIIE) | Treadmill | High-intensity interval | 10 | 1 min | 19 min | 1/1 | 75–85% VO2max/45–50% VO2max for the first 12 weeks; 85–95% VO2max/45–50% VO2max for the final 12 weeks | 24 weeks, 3 sessions/week, 10 × [1 min/(75–85%) − (85–95%)VO2max]/1 min |
Jammes et al., 2004 [46] | Cycling | Incremental | 1 | Incremental intensity to VO2max | ||||
Jamurtas et al., 2018 [47] (HIIE) | Cycling | Sprint interval | 4 | 30 s | 14 min | 1/8 | All-out | |
Jamurtas et al., 2018 [47] (HICE) | Cycling | High-intensity continuous | 1 | 30 min | 30 min | 70% VO2max | ||
Kyparos et al., 2007 [48] | Shuttle run | Maximal | 1 | All-out | ||||
Miyazaki et al., 2001 [49] (pre-training) | Cycling | Incremental | 1 | Incremental intensity to exhaustion | 12 weeks, 5 sessions/week, 1 × (60 min/80% VO2max) | |||
Miyazaki et al., 2001 [49] (post-training) | Cycling | Incremental | 1 | Incremental intensity to exhaustion | ||||
Parker et al., 2014 [50] (70% VO2max) | Cycling | High-intensity interval | 1 | 5 min | 5 min | 5/12 | 70% VO2max/passive seated rest | |
Parker et al., 2014 [50] (85% VO2max) | Cycling | High-intensity interval | 1 | 5 min | 5 min | 5/12 | 85% VO2max/passive seated rest | |
Parker et al., 2014 [50] (100% VO2max) | Cycling | High-intensity interval | 1 | 5 min | 5 min | 5/12 | 100% VO2max/passive seated rest | |
Parker et al., 2018 [51] (HIIE) | Cycling | High-intensity interval | 5 | 4 min | 24 min | 4/1 | 75%Wmax | |
Parker et al., 2018 [51] (SIE) | Cycling | Sprint interval | 4 | 30 s | 15.5 min | 1/9 | All-out | |
Seifi-Skishahr et al., 2008 [52] | Treadmill | High-intensity continuous | 1 | 30 min | 30 min | 75% VO2max | ||
Steinberg et al., 2007 [53] | Cycling | Incremental | 1 | Incremental intensity to exhaustion | ||||
Wadley et al., 2016 [54] (LV-HIIE) | Cycling | High-intensity interval | 10 | 1 min | 19 min | 1/1 | 90% VO2max | |
Wadley et al., 2016 [54] (HICE) | Cycling | High-intensity continuous | 1 | 20 min | 20 min | 80% VO2max | ||
Wiecek et al., 2018 [55] | Cycling | Maximal | 1 | 20 s | 20 s | All-out |
Reference | TP0 (0 min) | TP1 (5 min) | TP2 (10 min) | TP3 (20 min) | TP4 (30 min) | TP5 (1 h) | TP6 (2 h) | TP7 (3 h) | TP8 (24 h) | TP9 (48 h) | TP10 (72 h) | Findings |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ammar et al., 2020 [35] | 0 min | 5 min | 10 min | 20 min | MDA↑ at TP0 in AnEx; MDA↑ at TP2 in CombEx. MDA continued to increase at TP3 in both Ex; GPX, SOD↑ at TP0 in both Ex; AnEx resulted in greater SOD and GPX at TP0 and TP1. SOD peaked at TP0 in the AnEx; GPX peaked was at TP3 in the CombEx; TAC did not change until TP3 in both Ex. | |||||||
Baker et al., 2004 [36] | 0 min | 24 h | MDA↑ at TP0 in the TBM protocol; MDA returned to baseline values at TP8. | |||||||||
Berzosa er al., 2011 [37] | 0 min | GPX, CAT and TAC↑ at TP0 in all three Ex; SOD↑ at TP0 in all-out and high intensity continuous Ex. | ||||||||||
Bogdanis et al., 2013 [38] | 30 min | 24 h | 48 h | TBARS↑ at TP4 and peaked at TP8 in both pre and post training; Post training resulted in lower TRARS at all TPs. GPX↑ and peaked at TP8 in both pre and post training; CAT↑ and peaked at TP4 in both pre and post training; TAC↑ at TP4 and peaked at TP8 only in pre training. Post training resulted in higher GPX, CAT and TAC in all TPs. | ||||||||
Bouzid et al., 2014 [39] | 5 min (MDA) | 20 min (SOD, GPX) | MDA↑ at TP1 in old group; GPX and SOD↑ at TP3 in young group. | |||||||||
Djordjevic et al., 2012 [40] | 0 min | TBARS↓ at TP0 only in non-athletes; CAT↓ at TP0 only in athletes. GSH did not change in both groups. | ||||||||||
Falone et al., 2010 [41] | 0 min | MDA did not change at TP0 in both amateur runner and untrained group; TAC↓ at TP0 only in untrained group. | ||||||||||
Finkler et al., 2016 [42] | 5 min | 1 h | TBARS↑ at TP1 and returned to baseline values at TP5; CAT↑ at TP1 and continued to increase at TP5. GPX did not change until TP5. | |||||||||
Fisher et al., 2011 [43] | 0 min | 3 h | 24 h | TBARS↑ at TP0 in the first and second test and at TP7 in the second test; CAT↑ at TP0 in the first and second test; SOD↑ at TP0 and TP7 in all three tests, and returned to baseline value at TP8; GPX↑ at TP0 in the first and third test, and returned to baseline value at TP7. | ||||||||
Groussard et al., 2003 [44] | 0 min | 5 min | 10 min | 20 min | 40 min | MDA and TBARS↓ at TP3 and TP5; SOD↓ at TP0; GPX did not change until TP5. | ||||||
Hajizadeh et al., 2017 [45] | 24 h | SOD and CAT↑ at TP8 in both HICT and group after 24 weeks’ training; MDA and TAC↑ at TP8 only in HIIE group after 24 weeks’ training. | ||||||||||
Jammes et al., 2004 [46] | 0 min | 5 min | 10 min | 20 min | 30 min | TBARS↑ at TP1 and remained increased until TP4; GSH↓ at TP1 and returned to baseline at TP2. | ||||||
Jamurtas et al., 2018 [47] | 0 min | 24 h | 48 h | 72 h | TBARS and CAT did not change until TP10 in both HIIE and HICE; TAC↑ at TP0 in HICE, and ↑ at TP0 and TP8 in HIIE. | |||||||
Kyparos et al., 2007 [48] | 0 min | TBARS, CAT and TAC↑ at TP0; GSH↓ at TP0. | ||||||||||
Miyazaki et al., 2001 [49] | 0 min | TBARS↑ at TP0 in both pre- and post-training; Post training resulted in lower TBARS at TP0; SOD, GPX and CAT did not change at TP0. | ||||||||||
Parker et al., 2014 [50] | 0 min | OS did not change in all three tests; TAC↑ at TP0 in all three test; 100% VO2max test resulted in the highest TAC at TP0. | ||||||||||
Parker et al., 2018 [51] | 0 min | 1 h | 2 h | 3 h | TBARS and SOD↓ at TP0, TP5 and TP6 in both HIIE and SIE; CAT did not change until TP7 in both HIIE and SIE. | |||||||
Seifi-Skishahr et al., 2008 [52] | 0 min | 2 h | 24 h | MDA↑ at TP6. | ||||||||
Steinberg et al., 2007 [53] | 0 min | 5 min | 10 min | 20 min | 30 min | TBARS↑ at TP1 and TP2; GSH↓ at TP2 and TP3. | ||||||
Wadley et al., 2016 [54] | 0 min | 30 min | TAC↑ at TP4 relative to TP0 in both LV-HIIE and HICE. | |||||||||
Wiecek et al., 2018 [55] | 3 min | 15 min | 30 min | 1 h | 24 h | SOD↓ at TP3 relative to TP1; SOD↑ at TP4 and returned to baseline value at TP8; CAT↓ at TP3 relative to TP1; CAT↓ at TP5 and returned to baseline value at TP8; GPX↓ at TP3 and ↑ at TP8. |
Reference | Age (Years Old) | Gender | Weight (kg) | BMI | VO2max (mL/kg/min) | Diet | Lifestyle | Socio-Economic Level | Tobacco | Alcohol |
---|---|---|---|---|---|---|---|---|---|---|
Ammar et al., 2020 [35] | 19.5 ± 1.7 | male | 71.8 ± 2.1 | - | - | no medications and antioxidant dietary supplement | physically inactive | - | - | - |
Baker et al., 2004 [36] | 23 ± 2 | male | 75.3 ± 11 | - | - | no medications and antioxidant dietary supplement | physically active | university student | - | - |
Berzosa et al., 2011 [37] | 23 ± 0.41 | male | 75.25 ± 2.84 | 23.72 ± 0.69 | 43.8 ± 1.58 | no medications and antioxidant dietary supplement | physically active | - | - | - |
Bogdanis et al., 2013 [38] | 24.3 ± 1.4 | male | 77.9 ± 2.9 | - | - | no medications and antioxidant dietary supplement | physically active | - | - | - |
Bouzid et al., 2014 (young) [39] | 20.3 ± 2.8 | 9 males/6 females | 66.1 ± 11.7 | - | 44.2 ± 5.2 | - | sedentary | - | - | - |
Bouzid et al., 2014 (old) [39] | 65.1 ± 3.57 | 7 males/8 females | 71.8 ± 7.6 | 23.2 ± 4.4 | - | - | sedentary | - | - | - |
Djordjevic et al., 2012 (athletes) [40] | 17.3 ± 0.2 | male | 80.9 ± 1.4 | 23.9 ± 0.3 | 44.6 ± 0.9 | no medications and antioxidant dietary supplement | regular training | - | non-smoking | no alcohol 48 h before test |
Djordjevic et al., 2012 (non-athletes) [40] | 17.3 ± 0.3 | male | 81.6 ± 6.1 | 23.6 ± 1.3 | 39.7 ± 1.3 | no medications and antioxidant dietary supplement | no regular physical activity | - | non-smoking | no alcohol 48 h before test |
Falone et al., 2010 (amateur runner) [41] | 42 ± 1 | male | - | 23.5 ± 0.5 | 48.5 ± 0.9 | no medications and antioxidant dietary supplement | regular training | - | - | no alcohol |
Falone et al., 2010 (untrained) [41] | 39 ± 3 | male | - | 26.1 ± 1.1 | 33.3 ± 1.2 | no medications and antioxidant dietary supplement | sedentary | no manual labor | - | no alcohol |
Finkler et al., 2016 [42] | 26.8 | male | 77.9 | 23.4 | 48.9 | no medications and antioxidant dietary supplement | physically active | - | non-smoking | - |
Fisher et al., 2011 [43] | 22 ± 2 | male | 83 ± 13.6 | - | 44.6 ± 8.2 | no medications and antioxidant dietary supplement | no regular physical activity | - | - | - |
Groussard et al., 2003 [44] | 22.2 ± 0.6 | male | 73.4 ± 2.2 | - | - | no medications and antioxidant dietary supplement | physically activity | university student | no tobacco in the last 6 months | no alcohol in the last 1 week |
Hajizadeh et al., 2017 (HICE) [45] | 32.3 ± 7.3 | male | 81.9 ± 7.2 | 26.8 ± 5.9 | 36 ± 4.6 | no medications and antioxidant dietary supplement | physically activity | - | no tobacco in the last 6 months | no alcohol in the last 6 months |
Hajizadeh et al., 2017 (HIIE) [45] | 30.4 ± 8.9 | male | 83.4 ± 6.3 | 27.6 ± 4.8 | 35.9 ± 4.7 | no medications and antioxidant dietary supplement | physically activity | - | no tobacco in the last 6 months | no alcohol in the last 6 months |
Jammes et al., 2004 [46] | 49 ± 3 | 14 males/5 females | 74 ± 3 | - | - | - | Sedentary | - | - | - |
Jamurtas et al., 2018 [47] | 22.4 ± 0.5 | male | 75.3 ± 8.9 | - | 45.3 ± 8.4 | no medications and antioxidant dietary supplement | - | - | non-smoking | no alcohol in the last 72 h |
Kyparos et al., 2007 [48] | 21.9 ± 0.9 | male | 73.9 ± 6.1 | - | - | - | - | college student | - | - |
Miyazaki et al., 2001 (pre-training) [49] | 19.4 ± 0.2 | male | 70.5 ± 2.6 | 23.4 ± 0.6 | 44.9 ± 1.5 | - | no regular physical activity | - | - | - |
Miyazaki et al., 2001 (post-training) [49] | 19.4 ± 0.2 | male | 70.4 ± 2.7 | 23.3 ± 0.7 | 49.7 ± 1.6 | - | no regular physical activity | - | - | - |
Parker et al., 2014 [50] | 22 ± 1 | male | 81.4 ± 2 | 25.4 ± 0.7 | 42.6 ± 2.1 | no medications and antioxidant dietary supplement | Sedentary | - | non-smoking | no alcohol in the last 24 h |
Parker et al., 2018 [51] | 25 ± 2 | 6 male/2 female | 79.4 ± 2.1 | 25 ± 1 | 48.4 ± 4 | no medications and antioxidant dietary supplement | physically activity | - | non-smoking | no alcohol in the last 24 h |
Seifi-Skishahr et al., 2008 [52] | 24.1 ± 3.1 | - | 71.9 ± 9.8 | - | 34.1 ± 2.7 | no medications and antioxidant dietary supplement | Sedentary | - | non-smoking | - |
Steinberg et al., 2007 [53] | 42 ± 4 | 9 males/6 females | 70 ± 3 | 22 ± 2 | 31.7 ± 2.5 | - | Sedentary | - | non-smoking | - |
Wadley et al., 2016 [54] | 22 ± 3 | male | - | 24 ± 3.1 | 42.7 ± 5 | no medications and antioxidant dietary supplement | - | - | non-smoking | no alcohol in the last 48 h |
Wiecek et al., 2018 (female) [55] | 22 ± 0.5 | female | 59.8 ± 2.1 | 21.5 ± 0.6 | - | no medications and antioxidant dietary supplement | physically activity | - | non-smoking | - |
Wiecek et al., 2018 (male) [55] | 21.6 ± 0.4 | male | 77.1 ± 2.7 | 23.7 ± 0.5 | - | no medications and antioxidant dietary supplement | physically activity | - | non-smoking | - |
Reference | Sample Size | Acute Response on Oxidative Stress and Antioxidant Status | |||||||
---|---|---|---|---|---|---|---|---|---|
MDA | TBARS | OS | TAC | CAT | SOD | GPX | GSH | ||
Ammar et al., 2020 [35] (anerobic) | 10 | sig ↑ | - | - | ns ↑ | - | sig ↑ * | sig ↑ * | - |
Ammar et al., 2020 [35] (combined) | 10 | ns ↑ | - | - | ns ↑ | - | sig ↑ * | sig ↑ * | - |
Baker et al., 2004 [36] (TBM) | 18 | sig ↑ * | - | - | - | - | - | - | - |
Baker et al., 2004 [36] (FFM) | 18 | ns ↑ * | - | - | - | - | - | - | - |
Berzosa er al., 2011 [37] (incremental) | 34 | - | - | - | sig ↑ | sig ↑ | ns ↑ | sig ↑ | - |
Berzosa er al., 2011 [37] (all-out) | 34 | - | - | - | sig ↑ | sig ↑ | sig ↑ | sig ↑ | - |
Berzosa er al., 2011 [37] (70% VO2max) | 34 | - | - | - | sig ↑ | sig ↑ | sig ↑ | sig ↑ | - |
Bogdanis et al., 2013 [38] (pre-training) | 8 | - | sig ↑ | - | sig ↑ | sig ↑ | - | ns ↑ | - |
Bogdanis et al., 2013 [38] (post-training) | 8 | - | sig ↑ | - | ns ↑ | sig ↑ | - | ns ↑ | - |
Bouzid et al., 2014 [39] (young) | 15 | ns ↑ * | - | - | - | - | sig ↑ * | sig ↑ | - |
Bouzid et al., 2014 [39] (old) | 15 | sig ↑ * | - | - | - | - | ns ↑ * | ns ↑ | - |
Djordjevic et al., 2012 [40] (athletes) | 58 | - | ns ↑ | - | - | sig ↓ | ns ↓ | - | ns ↑ |
Djordjevic et al., 2012 [40] (non-athletes) | 37 | - | sig ↓ | - | - | ns | ns ↑ | - | ns ↑ |
Falone et al., 2010 [41] (amateur runner) | 33 | ns ↓ * | - | - | ns * | - | - | - | - |
Falone et al., 2010 [41] (untrained) | 25 | ns ↑ * | - | - | sig ↓ * | - | - | - | - |
Finkler et al., 2016 [42] | 32 | - | sig ↑ | - | - | sig ↑ | - | ns ↑ | - |
Fisher et al., 2011 [43] (first) | 8 | sig ↑ | sig ↑ | - | - | sig ↑ | sig ↑ | sig ↑ | - |
Fisher et al., 2011 [43] (second) | 8 | sig ↑ | sig ↑ | - | - | sig ↑ | sig ↑ | ns ↑ | - |
Fisher et al., 2011 [43] (third) | 8 | ns ↑ | ns ↑ | - | - | ns ↑ | sig ↑ | sig ↑ | - |
Groussard et al., 2003 [44] | 8 | ns ↓ | ns ↓ | - | - | - | sig ↓ | ns | - |
Hajizadeh et al., 2017 [45] (HICE) | 62 | - | - | - | - | - | - | - | - |
Hajizadeh et al., 2017 [45] (HIIE) | 65 | - | - | - | - | - | - | - | - |
Jammes et al., 2004 [46] | 19 | - | ns ↑ | - | - | - | - | - | ns ↓ |
Jamurtas et al., 2018 [47] (HIIE) | 12 | - | ns ↑ | - | sig ↑ * | ns ↑ | - | - | - |
Jamurtas et al., 2018 [47] (HICE) | 12 | - | ns ↑ | - | sig ↑ * | ns ↑ | - | - | - |
Kyparos et al., 2007 [48] | 11 | - | sig ↑ | - | sig ↑ | sig ↑ | - | - | sig ↓ |
Miyazaki et al., 2001 [49] (pre-training) | 9 | - | sig ↑ * | - | - | ns | ns ↑ | ns ↑ | - |
Miyazaki et al., 2001 [49] (post-training) | 9 | - | sig ↑ * | - | - | ns | ns ↑ | ns ↓ | - |
Parker et al., 2014 [50] (70% VO2max) | 14 | - | - | ns ↑ | sig ↑ * | - | - | - | - |
Parker et al., 2014 [50] (85% VO2max) | 14 | - | - | ns ↑ | sig ↑ | - | - | - | - |
Parker et al., 2014 [50] (100% VO2max) | 14 | - | - | ns ↑ | sig ↑ * | - | - | - | - |
Parker et al., 2018 [51] (HIIE) | 8 | - | sig ↓ | - | - | ns ↑ | sig ↓ | - | - |
Parker et al., 2018 [51] (SIE) | 8 | - | sig ↓ | - | - | ns ↑ | sig ↓ | - | - |
Seifi-Skishahr et al., 2008 [52] | 10 | ns ↑ | - | - | - | - | - | - | - |
Steinberg et al., 2007 [53] | 15 | ns ↑ | - | - | - | - | - | - | ns ↓ |
Wadley et al., 2016 [54] (LV-HIIE) | 10 | - | - | - | ns ↓ | - | - | - | - |
Wadley et al., 2016 [54] (HICE) | 10 | - | - | - | ns ↓ | - | - | - | - |
Wiecek et al., 2018 [55] | 20 | - | - | - | - | ns ↑ | ns ↑ | ns ↓ | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Wiltshire, H.D.; Baker, J.S.; Wang, Q. Effects of High Intensity Exercise on Oxidative Stress and Antioxidant Status in Untrained Humans: A Systematic Review. Biology 2021, 10, 1272. https://doi.org/10.3390/biology10121272
Lu Y, Wiltshire HD, Baker JS, Wang Q. Effects of High Intensity Exercise on Oxidative Stress and Antioxidant Status in Untrained Humans: A Systematic Review. Biology. 2021; 10(12):1272. https://doi.org/10.3390/biology10121272
Chicago/Turabian StyleLu, Yining, Huw D. Wiltshire, Julien S. Baker, and Qiaojun Wang. 2021. "Effects of High Intensity Exercise on Oxidative Stress and Antioxidant Status in Untrained Humans: A Systematic Review" Biology 10, no. 12: 1272. https://doi.org/10.3390/biology10121272
APA StyleLu, Y., Wiltshire, H. D., Baker, J. S., & Wang, Q. (2021). Effects of High Intensity Exercise on Oxidative Stress and Antioxidant Status in Untrained Humans: A Systematic Review. Biology, 10(12), 1272. https://doi.org/10.3390/biology10121272