Microbiome Markers of Pancreatic Cancer Based on Bacteria-Derived Extracellular Vesicles Acquired from Blood Samples: A Retrospective Propensity Score Matching Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
2.1. Microbiome Composition Comparisons
2.2. Biomarker Selection
2.3. Development of PC Prediction Model
2.4. In Vitro Experiments to Determine the Biological Functions of Bacteria-Derived EVs
2.5. Sensitivity Analysis According to Various Matching Conditions
3. Discussion
4. Materials and Methods
4.1. Blood Sample Preparation and DNA Extraction
4.2. Microbiomic Sequencing
4.3. Taxonomic Assignment and Profiling
4.4. Propensity Score Matching and Statistical Analysis
4.5. Marker Selection and Prediction Model Development for PC
4.6. Additional In Vitro Experiments Using Corynebacterium glutamicum Strain
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
| |||||||
---|---|---|---|---|---|---|---|
Number of Variables | Model | Train Set | Cross-Validation (CV) Set | ||||
Sensitivity | Specificity | AUC | Sensitivity | Specificity | AUC | ||
0 | class~age + sex | 0.311 | 0.846 | 0.598 | 0.206 | 0.846 | 0.531 |
1 | class~age + sex + p16 | 0.944 | 0.846 | 0.953 | 0.839 | 0.846 | 0.886 |
2 | class~age + sex + p16 + p6 | 1.000 | 0.846 | 0.966 | 1.000 | 0.846 | 0.962 |
3 | class~age + sex + p16 + p6 + p2 | 1.000 | 0.846 | 1.000 | 0.783 | 0.885 | 0.863 |
4 | class~age + sex + p16 + p6 + p2 + p11 | 1.000 | 0.846 | 1.000 | 0.833 | 0.885 | 0.897 |
5 | class~age + sex + p16 + p6 + p2 + p11 + p19 | 1.000 | 0.846 | 1.000 | 0.733 | 0.846 | 0.855 |
6 | class~age + sex + p16 + p6 + p2 + p11 + p19 + p18 | 1.000 | 0.846 | 1.000 | 0.400 | 0.923 | 0.844 |
7 | class~age + sex + p16 + p20 + p6 + p2 + p11 + p19 + p18 | 1.000 | 0.846 | 1.000 | 0.400 | 0.923 | 0.867 |
8 | class~age + sex + p16 + p20 + p6 + p2 + p13 + p11 + p19 + p18 | 1.000 | 0.846 | 1.000 | 0.578 | 0.846 | 0.833 |
9 | class~age + sex + p16 + p20 + p6 + p2 + p13 + p11 + p15 + p19 + p18 | 1.000 | 0.846 | 1.000 | 0.200 | 0.923 | 0.797 |
10 | class~age + sex + p16 + p20 + p6 + p9 + p2 + p13 + p11 + p15 + p19 + p18 | 1.000 | 0.846 | 1.000 | 0.222 | 0.923 | 0.616 |
11 | class~age + sex + p16 + p20 + p6 + p9 + p22 + p2 + p13 + p11 + p15 + p19 + p18 | 1.000 | 0.846 | 1.000 | 0.100 | 0.923 | 0.658 |
12 | class~age + sex + p16 + p20 + p6 + p9 + p22 + p10 + p2 + p13 + p11 + p15 + p19 + p18 | 1.000 | 0.846 | 1.000 | 0.389 | 0.923 | 0.684 |
13 | class~age + sex + p16 + p20 + p6 + p9 + p22 + p10 + p2 + p14 + p13 + p11 + p15 + p19 + p18 | 1.000 | 0.846 | 1.000 | 0.000 | 1.000 | 0.654 |
| |||||||
Number of Variables | Model | Train Set | Cross-Validation (CV) Set | ||||
Sensitivity | Specificity | AUC | Sensitivity | Specificity | AUC | ||
0 | class~age + sex | 0.3111 | 0.8462 | 0.5976 | 0.2056 | 0.8462 | 0.5314 |
1 | class~age + sex + g150 | 0.9444 | 0.8462 | 0.9615 | 0.9444 | 0.8462 | 0.9299 |
2 | class~age + sex + g150 + g64 | 1.0000 | 0.8462 | 1.0000 | 0.9500 | 0.9231 | 0.9515 |
3 | class~age + sex + g150 + g64 + g22 | 1.0000 | 0.8462 | 1.0000 | 1.0000 | 0.9231 | 0.9957 |
4 | class~age + sex + g15 + g150 + g64+g22 | 1.0000 | 0.8462 | 1.0000 | 0.9444 | 0.9231 | 0.9594 |
5 | class~age + sex + g15 + g150 + g64 + g225 + g22 | 1.0000 | 0.8462 | 1.0000 | 0.9444 | 0.9231 | 0.9594 |
6 | class~age + sex + g210 + g23 + g150 + g64 + g225 + g22 | 1.0000 | 0.8462 | 1.0000 | 1.0000 | 0.9231 | 0.9829 |
7 | class~age + sex + g49 + g15 + g210 + g150 + g64 + g225 + g22 | 1.0000 | 0.8462 | 1.0000 | 1.0000 | 0.9231 | 1.0000 |
8 | class~age + sex + g19 + g49 + g15 + g210 + g150 + g64 + g225 + g22 | 1.0000 | 0.8462 | 1.0000 | 0.8444 | 0.8846 | 0.9034 |
9 | class~age + sex + g19 + g49 + g15 + g210 + g23 + g150 + g64 + g225 + g22 | 1.0000 | 0.8462 | 1.0000 | 0.7944 | 0.8462 | 0.8613 |
10 | class~age + sex + g19 + g49 + g15 + g210 + g23 + g150 + g59 + g64 + g225 + g22 | 1.0000 | 0.8462 | 1.0000 | 0.3500 | 0.9231 | 0.8338 |
References
- Rahib, L.; Smith, B.D.; Aizenberg, R.; Rosenzweig, A.B.; Fleshman, J.M.; Matrisian, L.M. Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014, 74, 2913–2921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riall, T.S.; Lillemoe, K.D. Underutilization of surgical resection in patients with localized pancreatic cancer. Ann. Surg. 2007, 246, 181–182. [Google Scholar] [CrossRef]
- Barteneva, N.S.; Baiken, Y.; Fasler-Kan, E.; Alibek, K.; Wang, S.; Maltsev, N.; Ponomarev, E.D.; Sautbayeva, Z.; Kauanova, S.; Moore, A.; et al. Extracellular vesicles in gastrointestinal cancer in conjunction with microbiota: On the border of Kingdoms. Biochim. Biophys. Acta Rev. Cancer 2017, 1868, 372–393. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yang, F.; Lu, H.; Wang, B.; Chen, Y.; Lei, D.; Wang, Y.; Zhu, B.; Li, L. Characterization of fecal microbial communities in patients with liver cirrhosis. Hepatology 2011, 54, 562–572. [Google Scholar] [CrossRef]
- Cho, E.J.; Leem, S.; Kim, S.A.; Yang, J.; Lee, Y.B.; Kim, S.S.; Cheong, J.Y.; Cho, S.W.; Kim, J.W.; Kim, S.M.; et al. Circulating Microbiota-Based Metagenomic Signature for Detection of Hepatocellular Carcinoma. Sci. Rep. 2019, 9, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Klipfell, E.; Bennett, B.J.; Koeth, R.; Levison, B.S.; Dugar, B.; Feldstein, A.E.; Britt, E.B.; Fu, X.; Chung, Y.M.; et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011, 472, 57–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.; Liao, M.; Yao, Z.; Liang, W.; Li, Q.; Liu, J.; Yang, H.; Ji, Y.; Wei, W.; Tan, A.; et al. Breast cancer in postmenopausal women is associated with an altered gut metagenome. Microbiome 2018, 6, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, A.M.; Manghi, P.; Asnicar, F.; Pasolli, E.; Armanini, F.; Zolfo, M.; Beghini, F.; Manara, S.; Karcher, N.; Pozzi, C.; et al. Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation. Nat. Med. 2019, 25, 667–678. [Google Scholar] [CrossRef] [Green Version]
- Yu, G.; Murphy, G.; Michel, A.; Weinstein, S.J.; Männistö, S.; Albanes, D.; Pawlita, M.; Stolzenberg-Solomon, R.Z. Seropositivity to Helicobacter pylori and risk of pancreatic cancer. Cancer Epidemiol. Biomark. Prev. 2013, 22, 2416–2419. [Google Scholar] [CrossRef] [Green Version]
- Ahn, J.; Segers, S.; Hayes, R.B. Periodontal disease, Porphyromonas gingivalis serum antibody levels and orodigestive cancer mortality. Carcinogenesis 2012, 33, 1055–1058. [Google Scholar] [CrossRef] [Green Version]
- Farrell, J.J.; Zhang, L.; Zhou, H.; Chia, D.; Elashoff, D.; Akin, D.; Paster, B.J.; Joshipura, K.; Wong, D.T. Variations of oral microbiota are associated with pancreatic diseases including pancreatic cancer. Gut 2012, 61, 582–588. [Google Scholar] [CrossRef] [PubMed]
- Charbonneau, M.R.; Blanton, L.V.; DiGiulio, D.B.; Relman, D.A.; Lebrilla, C.B.; Mills, D.A.; Gordon, J.I. A microbial perspective of human developmental biology. Nature 2016, 535, 48–55. [Google Scholar] [CrossRef] [Green Version]
- Kang, C.S.; Ban, M.; Choi, E.J.; Moon, H.G.; Jeon, J.S.; Kim, D.K.; Park, S.K.; Jeon, S.G.; Roh, T.Y.; Myung, S.J.; et al. Extracellular vesicles derived from gut microbiota, especially Akkermansia muciniphila, protect the progression of dextran sulfate sodium-induced colitis. PLoS ONE 2013, 8, e76520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoo, J.Y.; Rho, M.; You, Y.A.; Kwon, E.J.; Kim, M.H.; Kym, S.; Jee, Y.K.; Kim, Y.K.; Kim, Y.J. 16S rRNA gene-based metagenomic analysis reveals differences in bacteria-derived extracellular vesicles in the urine of pregnant and non-pregnant women. Exp. Mol. Med. 2016, 48, e208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andaloussi, S.E.L.; Mäger, I.; Breakefield, X.O.; Wood, M.J. Extracellular vesicles: Biology and emerging therapeutic opportunities. Nat. Rev. Drug Discov. 2013, 12, 347–357. [Google Scholar] [CrossRef]
- Kim, S.I.; Kang, N.; Leem, S.; Yang, J.; Jo, H.; Lee, M.; Kim, H.S.; Dhanasekaran, D.N.; Kim, Y.K.; Park, T.; et al. Metagenomic Analysis of Serum Microbe-Derived Extracellular Vesicles and Diagnostic Models to Differentiate Ovarian Cancer and Benign Ovarian Tumor. Cancers 2020, 12, 1309. [Google Scholar] [CrossRef]
- Michaud, D.S.; Izard, J.; Wilhelm-Benartzi, C.S.; You, D.H.; Grote, V.A.; Tjønneland, A.; Dahm, C.C.; Overvad, K.; Jenab, M.; Fedirko, V.; et al. Plasma antibodies to oral bacteria and risk of pancreatic cancer in a large European prospective cohort study. Gut 2013, 62, 1764–1770. [Google Scholar] [CrossRef] [PubMed]
- Bracci, P.M. Oral Health and the Oral Microbiome in Pancreatic Cancer: An Overview of Epidemiological Studies. Cancer J. 2017, 23, 310–314. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Alekseyenko, A.V.; Wu, J.; Peters, B.A.; Jacobs, E.J.; Gapstur, S.M.; Purdue, M.P.; Abnet, C.C.; Stolzenberg-Solomon, R.; Miller, G.; et al. Human oral microbiome and prospective risk for pancreatic cancer: A population-based nested case-control study. Gut 2018, 67, 120–127. [Google Scholar] [CrossRef] [Green Version]
- Wei, M.Y.; Shi, S.; Liang, C.; Meng, Q.C.; Hua, J.; Zhang, Y.Y.; Liu, J.; Zhang, B.; Xu, J.; Yu, X.J.; et al. The microbiota and microbiome in pancreatic cancer: More influential than expected. Mol. Cancer 2019, 18, 1–15. [Google Scholar] [CrossRef]
- Flemer, B.; Warren, R.D.; Barrett, M.P.; Cisek, K.; Das, A.; Jeffery, I.B.; Hurley, E.; O’Riordain, M.; Shanahan, F.; O’Toole, P.W. The oral microbiota in colorectal cancer is distinctive and predictive. Gut 2018, 67, 1454–1463. [Google Scholar] [CrossRef] [Green Version]
- Tezal, M.; Sullivan, M.A.; Hyland, A.; Marshall, J.R.; Stoler, D.; Reid, M.E.; Loree, T.R.; Rigual, N.R.; Merzianu, M.; Hauck, L. Chronic periodontitis and the incidence of head and neck squamous cell carcinoma. Cancer Epidemiol. Biomark. Prev. 2009, 18, 2406–2412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zambirinis, C.P.; Levie, E.; Nguy, S.; Avanzi, A.; Barilla, R.; Xu, Y.; Seifert, L.; Daley, D.; Greco, S.H.; Deutsch, M.; et al. TLR9 ligation in pancreatic stellate cells promotes tumorigenesis. J. Exp. Med. 2015, 212, 2077–2094. [Google Scholar] [CrossRef] [PubMed]
- Xiao, M.J.; Wang, Y.M.; Gao, Y. Association between Helicobacter pylori Infection and Pancreatic Cancer Development: A Meta-Analysis. PLoS ONE. 2013, 8, e75559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Risch, H.A. Pancreatic cancer: Helicobacter pylori colonization, N-nitrosamine exposures, and ABO blood group. Mol. Carcinog. 2012, 51, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Lindkvist, B.; Johansen, D.; Borgström, A.; Manjer, J. A prospective study of Helicobacter pylori in relation to the risk for pancreatic cancer. BMC Cancer 2008, 8, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.W.; Bai, X.; Zhang, Q.; Wen, L.; Su, W.; Fu, Q.; Sun, X.; Lou, Y.; Yang, J.; Zhang, J.; et al. The hepatitis B virus X protein promotes pancreatic cancer through modulation of the PI3K/AKT signaling pathway. Cancer Lett. 2016, 380, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Gao, H.; Chen, H.; Wang, J.; Chen, M.; Li, G.; Wang, L.; Gu, J.; Tu, H. Identification and impact of hepatitis B virus DNA and antigens in pancreatic cancer tissues and adjacent non-cancerous tissues. Cancer Lett. 2013, 335, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.M.; Li, D.; El-Deeb, A.S.; Wolff, R.A.; Bondy, M.L.; Davila, M.; Abbruzzese, J.L. Association between hepatitis B virus and pancreatic cancer. J. Clin. Oncol. 2008, 26, 4557–4562. [Google Scholar] [CrossRef] [PubMed]
- Kulp, A.; Kuehn, M.J. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Ann. Rev. Microbiol. 2010, 64, 163–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, L.; Wolf, J.M.; Prados-Rosales, R.; Casadevall, A. Through the wall: Extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. Nat. Rev. Microbiol. 2015, 13, 620–630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, S.C.; Kim, S.R.; Yoon, Y.J.; Park, K.S.; Kim, J.H.; Lee, J.; Kim, O.Y.; Choi, E.J.; Kim, D.K.; Choi, D.S. In vivo kinetic biodistribution of nano-sized outer membrane vesicles derived from bacteria. Small 2015, 11, 456–461. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Lee, H.K.; Min, S.K.; Lee, W.H. 16S rDNA microbiome composition pattern analysis as a diagnostic biomarker for biliary tract cancer. World J. Surg. Oncol. 2020, 18, 19. [Google Scholar] [CrossRef] [Green Version]
- Half, E.; Keren, N.; Reshef, L.; Dorfman, T.; Lachter, I.; Kluger, Y.; Reshef, N.; Knobler, H.; Maor, Y.; Stein, A.; et al. Fecal microbiome signatures of pancreatic cancer patients. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Inan, M.S.; Rasoulpour, R.J.; Yin, L.; Hubbard, A.K.; Rosenberg, D.W.; Giardina, C. The luminal short-chain fatty acid butyrate modulates NF-kappaB activity in a human colonic epithelial cell line. Gastroenterology 2000, 118, 724–734. [Google Scholar] [CrossRef]
- Saus, E.; Iraola-Guzmán, S.; Willis, J.R.; Brunet-Vega, A.; Gabaldón, T. Microbiome and colorectal cancer: Roles in carcinogenesis and clinical potential. Mol. Aspects Med. 2019, 69, 93–106. [Google Scholar] [CrossRef]
- Routy, B.; Le Chatelier, E.; Derosa, L.; Duong, C.P.M.; Alou, M.T.; Daillère, R.; Fluckiger, A.; Messaoudene, M.; Rauber, C.; Roberti, M.P.; et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 2018, 359, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.A.; Aljarbou, A.N.; Aldebasi, Y.H.; Alorainy, M.S.; Rahmani, A.H.; Younus, H.; Khan, A. Liposomal formulation of glycosphingolipids from Sphingomonas paucimobilis induces antitumour immunity in mice. J. Drug Target. 2018, 26, 709–719. [Google Scholar] [CrossRef]
- Nossa, C.W.; Oberdorf, W.E.; Yang, L.; Aas, J.A.; Paster, B.J.; Desantis, T.Z.; Brodie, E.L.; Malamud, D.; Poles, M.A.; Pei, Z. Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome. World J. Gastroenterol. 2010, 16, 4135–4144. [Google Scholar] [CrossRef]
- Li, W.; Godzik, A. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006, 22, 1658–1659. [Google Scholar] [CrossRef] [Green Version]
- Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asshauer, K.P.; Wemheuer, B.; Daniel, R.; Meinicke, P. Tax4Fun: Predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics 2015, 31, 2882–2884. [Google Scholar] [CrossRef] [PubMed]
- Rosenbaum, P.R.; Rubin, D.B. The Central Role of the Propensity Score in Observational Studies for Causal Effects. Biometrika 1983, 70, 41–55. [Google Scholar] [CrossRef]
- Matthew, C.W.; Amy, T.D.; Polly, A.N.; Ronald, G.; Mari, P. Using propensity scores to reduce case-control selection bias. Epidemiology 2012, 23, 772. [Google Scholar]
- Paul, W.; Lucas, S.; Mark, L.; Kim, T.; Ben, M.; Stephen, J.R. A matched case control study with propensity score balancing examining the protective effect of paracetamol against parentally reported apnoea in infants. Resuscitation 2012, 83, 440–446. [Google Scholar]
- Romain, P.; Matthieu, R.; Sylvie, C. Evaluation of the propensity score methods for estimating marginal odds ratios in case of small sample size. BMC Med. Res. Methodol. 2012, 12, 1–10. [Google Scholar]
- Juan, W.; Cong, Z.; Shuo, X.; Chunjie, X.; Ruiping, W.; Dongqing, Y.; Bin, L.; Liyun, S.; Ruimin, T.; Yuhao, T.; et al. Fecal Microbiome Alteration May Be a Potential Marker for Gastric Cancer. Dis. Markers 2020, 2020, 3461315. [Google Scholar]
- Cosma-Grigorov, A.; Meixner, H.; Mrochen, A.; Wirtz, S.; Winkler, J.; Marxreiter, F. Changes in Gastrointestinal Microbiome Composition in PD: A Pivotal Role of Covariates. Front. Neurol. 2020, 11, 1041. [Google Scholar] [CrossRef]
- Althauser, R.P.; Rubin, D. Computerized Construction of a Matched Sample. Am. J. Sociol. 1970, 76, 325–346. [Google Scholar] [CrossRef]
- Aitchison, J.; Barceló-Vidal, C.; Martín-Fernández, J.A.; Pawlowsky-Glahn, V. Logratio analysis and compositional distance. Math. Geol. 2000, 32, 271–275. [Google Scholar] [CrossRef]
- Bray, J.R.; Curtis, J.T. An Ordination of the Upland Forest Communities of Southern Wisconsin. Ecol. Monogrs. 1957, 27, 325–349. [Google Scholar] [CrossRef]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Contr. 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Green, D.M.; Swets, J.A. Signal Detection Theory and Psychophysics, 1st ed.; John Wiley: Oxford, UK, 1966; p. 455. [Google Scholar]
(A) Age and sex of entire patients before and after PSM | |||||||||
Before PSM (n = 198) | After PSM (n = 90) | ||||||||
Pancreatic Cancer (n = 82) | Controls (n = 116) | p-Value * | Pancreatic Cancer (n = 38) | Controls (n = 52) | p-Value * | ||||
Sex | Male | 55 (67.1%) | 19 (16.4%) | 1.131 × 10−12 | 17 (44.7%) | 17 (32.7%) | 0.35 | ||
Female | 27 (32.9%) | 97 (83.6%) | 21 (55.3%) | 35 (67.3%) | |||||
Age (mean ± SD) | 63.07 ± 9.83 | 49.28 ± 12.45 | 1.4 × 10−12 | 57.24 ± 8.38 | 57.63 ± 10.50 | 0.51 | |||
(B) Clinicopathologic characteristics of patients with pancreatic cancer after PSM | |||||||||
Pancreatic Cancer (n = 38) | |||||||||
Age, Mean ± SD | 57.2 ± 8.4 | ||||||||
Sex, M:F | 17:21 | ||||||||
CEA > 5 | 5 (13.2%) | ||||||||
CA 19-9 > 37 | 30 (78.9%) | ||||||||
Neoadjuvant chemotherapy | 7 (18.4%) | ||||||||
Neoadjuvant radiotherapy | 5 (13.2%) | ||||||||
Operation | R0 | 26 (68.4%) | |||||||
R1 | 6 (15.8%) | ||||||||
R2 | 6 (15.8%) | ||||||||
Size, mean ± SD | 3.9 ± 1.7 | ||||||||
Histology | Adenocarcinoma | 36 (94.7%) | |||||||
Others | 2 (5.3%) | ||||||||
Stage (AJCC stage, 7th) | I | 1 (2.63%) | |||||||
II | 26 (68.4%) | ||||||||
III | 5 (13.2%) | ||||||||
IV | 6 (15.8%) |
(A) Phylum (L2) level | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Phylum | CLR_Perm | DESeq2_LRT | DESeq2_Wald | edgeR | Wilcoxon | ZIBSeq | ZIG_Gaussian | ZIG_log_Normal | ANCOM | Freq | Sig. |
Verrucomicrobia | 0.0000 | 0.0000 | 0.0000 | 0.0010 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | Verrucomicrobia | case | 9 |
Deferribacteres | 0.0000 | 0.0000 | 0.0000 | 0.2083 | 0.0019 | 0.5871 | 0.0000 | 0.0343 | Deferribacteres | case | 7 |
Actinobacteria | 0.0000 | 0.0016 | 0.0011 | 0.0512 | 0.0204 | 0.0001 | 0.0057 | 0.5981 | Actinobacteria | control | 7 |
Bacteroidetes | 0.0588 | 0.0210 | 0.0222 | 0.8176 | 0.0317 | 0.0021 | 0.0087 | 0.8280 | Bacteroidetes | case | 6 |
SR1 (Absconditabacteria) | 0.7637 | 0.0000 | 0.0000 | 0.8176 | 0.4562 | 0.9999 | 0.0379 | 0.7192 | - | control | 3 |
Spirochaetae | 0.1657 | 0.0022 | 0.0018 | 1.0000 | 0.5852 | 0.9999 | 0.0000 | 0.7192 | - | control | 3 |
Proteobacteria | 0.0525 | 0.0032 | 0.0023 | 0.2005 | 0.1705 | 0.0013 | 0.0872 | 0.7192 | - | control | 3 |
Planctomycetes | 0.2538 | 0.0026 | 0.0021 | 1.0000 | 0.5852 | 0.9999 | 0.0000 | 0.7192 | - | control | 3 |
FBP | 0.1628 | 0.0019 | 0.0015 | 1.0000 | 0.5852 | 0.9999 | 0.0000 | 0.7192 | - | control | 3 |
Cyanobacteria | 0.2538 | 0.0001 | 0.0000 | 0.1059 | 0.4562 | 0.5871 | 0.0010 | 0.5981 | - | control | 3 |
Chloroflexi | 0.2682 | 0.0002 | 0.0001 | 1.0000 | 0.9513 | 0.0763 | 0.0000 | 0.7192 | - | control | 3 |
Armatimonadetes | 0.1050 | 0.0001 | 0.0000 | 1.0000 | 0.1153 | 0.9999 | 0.0005 | 0.7192 | - | control | 3 |
Acidobacteria | 0.7637 | 0.0009 | 0.0011 | 1.0000 | 0.4562 | 0.9999 | 0.0379 | 0.7192 | - | control | 3 |
(B) Genus (L6) level | |||||||||||
Genus | CLR_Perm | DESeq2_LRT | DESeq2_Wald | edgeR | Wilcoxon | ZIBSeq | ZIG_Gaussian | ZIG_log_Normal | ANCOM | Freq | Sig. |
Stenotrophomonas | 0.0159 | 0.0000 | 0.0000 | 1.0000 | 0.0095 | 0.0028 | 0.0000 | 8.82474E-06 | Significant | control | 8 |
Sphingomonas | 0.0000 | 0.0002 | 0.0000 | 1.0000 | 0.0042 | 0.0020 | 0.0000 | 0.000394665 | Significant | control | 8 |
Ruminococcaceae UCG-014 | 0.0159 | 0.0000 | 0.0000 | 1.0000 | 0.0006 | 0.0000 | 0.0001 | 4.27329E-07 | Significant | case | 8 |
Propionibacterium | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0004 | 0.0251 | 0.0000 | 0.000131155 | Significant | control | 8 |
Lachnospiraceae NK4A136 group | 0.0000 | 0.0032 | 0.0030 | 1.0000 | 0.0043 | 0.0001 | 0.0009 | 0.000453009 | Significant | case | 8 |
Akkermansia | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.278837499 | Significant | case | 7 |
Turicibacter | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0052 | 0.7879 | 0.0109 | 0.043444196 | - | case | 6 |
Ruminiclostridium | 0.0000 | 0.0015 | 0.0011 | 1.0000 | 0.0306 | 0.1365 | 0.0000 | 0.049630223 | - | case | 6 |
Lachnospiraceae UCG-001 | 0.0422 | 0.0000 | 0.0000 | 1.0000 | 0.0361 | 0.9999 | 0.0004 | 0.043444196 | - | case | 6 |
Corynebacterium 1 | 0.0159 | 0.0003 | 0.0000 | 1.0000 | 0.0131 | 0.8506 | 0.0126 | 0.159296954 | Significant | control | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.R.; Han, K.; Han, Y.; Kang, N.; Shin, T.-S.; Park, H.J.; Kim, H.; Kwon, W.; Lee, S.; Kim, Y.-K.; et al. Microbiome Markers of Pancreatic Cancer Based on Bacteria-Derived Extracellular Vesicles Acquired from Blood Samples: A Retrospective Propensity Score Matching Analysis. Biology 2021, 10, 219. https://doi.org/10.3390/biology10030219
Kim JR, Han K, Han Y, Kang N, Shin T-S, Park HJ, Kim H, Kwon W, Lee S, Kim Y-K, et al. Microbiome Markers of Pancreatic Cancer Based on Bacteria-Derived Extracellular Vesicles Acquired from Blood Samples: A Retrospective Propensity Score Matching Analysis. Biology. 2021; 10(3):219. https://doi.org/10.3390/biology10030219
Chicago/Turabian StyleKim, Jae Ri, Kyulhee Han, Youngmin Han, Nayeon Kang, Tae-Seop Shin, Hyeon Ju Park, Hongbeom Kim, Wooil Kwon, Seungyeoun Lee, Yoon-Keun Kim, and et al. 2021. "Microbiome Markers of Pancreatic Cancer Based on Bacteria-Derived Extracellular Vesicles Acquired from Blood Samples: A Retrospective Propensity Score Matching Analysis" Biology 10, no. 3: 219. https://doi.org/10.3390/biology10030219
APA StyleKim, J. R., Han, K., Han, Y., Kang, N., Shin, T. -S., Park, H. J., Kim, H., Kwon, W., Lee, S., Kim, Y. -K., Park, T., & Jang, J. -Y. (2021). Microbiome Markers of Pancreatic Cancer Based on Bacteria-Derived Extracellular Vesicles Acquired from Blood Samples: A Retrospective Propensity Score Matching Analysis. Biology, 10(3), 219. https://doi.org/10.3390/biology10030219