Nociceptin Increases Antioxidant Expression in the Kidney, Liver and Brain of Diabetic Rats
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Oxidative Stress
1.2. Nociceptin, Oxidative Stress and Diabetes Mellitus
2. Materials and Methods
2.1. Experimental Animals
2.2. Diabetes Mellitus Induction
2.3. Experimental Groups
2.4. In Vivo Treatment of Rats with Nociceptin
2.5. Tissue Collection, Fixation and Paraffin Embedding
2.6. Immunofluorescence Study of Endogenous Antioxidants
2.7. Immunolocalization of Neural Nitric Oxide Synthase and cFOS Protein
2.8. Primary and Secondary Antibodies
2.9. Measurements of Catalase Activity
2.10. Densitometric Analysis of Immunofluorescence
2.11. Statistical Analysis
3. Results
3.1. Nociceptin and Endogenous Antioxidants in Kidney
3.2. Nociceptin and Endogenous Antioxidants in Liver
3.3. Nociceptin and Endogenous Antioxidants in the Cerebral Cortex
3.4. Nociceptin and Endogenous Antioxidants in Cornu Ammonis 3 (CA3) Region of Hippocampus
3.5. Neuronal Nitric Oxide Synthase (nNOS) and cFOS in CA3 Region of Hippocampus
4. Discussion
4.1. Nociceptin and Endogenous Antioxidants in Kidney
4.2. Nociceptin and Endogenous Antioxidants in Liver
4.3. Nociceptin and Endogenous Antioxidants in the Cerebral Cortex
4.4. Nociceptin and Endogenous Antioxidants in the CA3 Region of the Hippocampus
4.5. Neuronal Nitric Oxide Synthase (nNOS) and cFOS in CA3 Region of Hippocampus
5. Conclusions
Relevance of the Study and Future Prospectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Go, Y.M.; Jones, D.P. Redox control systems in the nucleus: Mechanisms and functions. Antioxid Redox Signal. 2010, 13, 489–509. [Google Scholar] [CrossRef] [Green Version]
- Navarro-Yepes, J.; Zavala-Flores, L.; Anandhan, A.; Wang, F.; Skotak, M.; Chandra, N. Antioxidant gene therapy against neuronal cell death. Pharmacol. Ther. 2014, 142, 206–230. [Google Scholar] [CrossRef] [Green Version]
- Sato, H.; Shibata, H.; Shimizu, T.; Shibata, S.; Toriumi, H.; Ebine, T. Differential cellular localization of antioxidant enzymes in the trigeminal ganglion. Neuroscience 2013, 248, 345–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010, 4, 118–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pospíšil, P.; Prasad, A.; Rác, M. Mechanism of the Formation of Electronically Excited Species by Oxidative Metabolic Processes: Role of Reactive Oxygen Species. Biomolecules 2019, 9, 258. [Google Scholar] [CrossRef] [Green Version]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxidative Med. Cell. Longev. 2017, 8416763. [Google Scholar] [CrossRef] [PubMed]
- Guéraud, F.; Atalay, M.; Bresgen, N.; Cipak, A.; Eckl, P.M.; Huc, L.; Jouanin, I.; Siems, W.; Uchida, K. Chemistry and biochemistry of lipid peroxidation products. Free Radic. Res. 2010, 44, 1098–1124. [Google Scholar] [CrossRef]
- Curi, R.; Levada-Pires, A.C.; Silva, E.; Poma, S.O.; Zambonatto, R.F.; Domenech, P.; Almeida, M.M.; Gritte, R.B.; Souza-Siqueira, T.; Gorjão, R.; et al. The Critical Role of Cell Metabolism for Essential Neutrophil Functions. Cellular physiology and biochemistry. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 2020, 54, 629–647. [Google Scholar] [CrossRef]
- Richards, L.A.; Schonhoff, C.M. Nitric oxide and sex differences in dendritic branching and arborization. J. Neurosci. Res. 2021, 99, 1390–1400. [Google Scholar] [CrossRef]
- Adeghate, E.; Parvez, S.H. Nitric oxide and neuronal and pancreatic beta cell death. Toxicology 2000, 153, 143–156. [Google Scholar] [CrossRef]
- al-Ramadi, B.K.; Adeghate, E.; Mustafa, N.; Ponery, A.S.; Fernandez-Cabezudo, M.J. Cytokine expression by attenuated intracellular bacteria regulates the immune response to infection: The Salmonella model. Mol. Immunol. 2002, 38, 931–940. [Google Scholar] [CrossRef]
- Adeghate, E.; Ponery, A.S.; El-Sharkawy, T.; Parvez, H. L-arginine stimulates insulin secretion from the pancreas of normal and diabetic rats. Amino Acids 2001, 2, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Amiri, L.; John, A.; Shafarin, J.; Adeghate, E.; Jayaprakash, P.; Yasin, J.; Howarth, F.C.; Raza, H. Enhanced Glucose Tolerance and Pancreatic Beta Cell Function by Low Dose Aspirin in Hyperglycemic Insulin-Resistant Type 2 Diabetic Goto-Kakizaki (GK) Rats. Cellular physiology and biochemistry. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 2015, 36, 1939–1950. [Google Scholar] [CrossRef] [PubMed]
- Adeghate, E.; al-Ramadi, B.; Saleh, A.M.; Vijayarasathy, C.; Ponery, A.S.; Arafat, K.; Howarth, F.C.; El-Sharkawy, T. Increase in neuronal nitric oxide synthase content of the gastroduodenal tract of diabetic rats. Cell. Mol. Life Sci. CMLS 2003, 60, 1172–1179. [Google Scholar] [CrossRef] [PubMed]
- Morley, L.C.; Debant, M.; Walker, J.J.; Beech, D.J.; Simpson, N. Placental blood flow sensing and regulation in fetal growth restriction. Placenta 2011. [Google Scholar] [CrossRef]
- Pham-Huy, L.A.; He, H.; Pham-Huy, C. Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci. IJBS 2008, 4, 89–96. [Google Scholar] [PubMed]
- Willcox, J.K.; Ash, S.L.; Catignani, G.L. Antioxidants and prevention of chronic disease. Crit. Rev. Food Sci. Nutr. 2004, 44, 275–295. [Google Scholar] [CrossRef]
- Al-Shamsi, M.; Amin, A.; Adeghate, E. Vitamin E ameliorates some biochemical parameters in normal and diabetic rats. Ann. N. Y. Acad. Sci. 2006, 1084, 411–431. [Google Scholar] [CrossRef] [PubMed]
- Al-Shamsi, M.; Amin, A.; Adeghate, E. Effect of vitamin C on liver and kidney functions in normal and diabetic rats. Ann. N. Y. Acad. Sci. 2006, 1084, 371–390. [Google Scholar] [CrossRef]
- Al-Shamsi, M.; Amin, A.; Adeghate, E. Vitamin E decreases the hyperglucagonemia of diabetic rats. Ann. N. Y. Acad. Sci. 2006, 1084, 432–441. [Google Scholar] [CrossRef] [PubMed]
- Fahim, M.A.; Tariq, S.; Adeghate, E. Vitamin E modifies the ultrastructure of testis and epididymis in mice exposed to lead intoxication. Ann. Anat. 2013, 195, 272–277. [Google Scholar] [CrossRef]
- Al Shamsi, M.S.; Amin, A.; Adeghate, E. Beneficial effect of vitamin E on the metabolic parameters of diabetic rats. Mol. Cell. Biochem. 2004, 261, 35–42. [Google Scholar] [CrossRef]
- Sharma, A.K.; Ponery, A.S.; Lawrence, P.A.; Ahmed, I.; Bastaki, S.M.; Dhanasekaran, S.; Sheen, R.S.; Adeghate, E. Effect of alpha-tocopherol supplementation on the ultrastructural abnormalities of peripheral nerves in experimental diabetes. J. Peripher. Nerv. Syst. JPNS 2001, 6, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Lotfy, M.; Adeghate, J.; Kalasz, H.; Singh, J.; Adeghate, E. Chronic Complications of Diabetes Mellitus: A Mini Review. Curr. Diabetes Rev. 2017, 13, 3–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dennis, K.K.; Go, Y.M.; Jones, D.P. Redox Systems Biology of Nutrition and Oxidative Stress. J. Nutr. 2019, 149, 553–565. [Google Scholar] [CrossRef]
- Adeghate, E.; Schattner, P.; Dunn, E. An update on the etiology and epidemiology of diabetes mellitus. Ann. N. Y. Acad. Sci. 2006, 1084, 1–29. [Google Scholar] [CrossRef]
- Elias, R.J.; Kellerby, S.S.; Decker, E.A. Antioxidant activity of proteins and peptides. Crit. Rev. Food Sci. Nutr. 2008, 48, 430–441. [Google Scholar] [CrossRef] [PubMed]
- Tzvetanova, E.; Nenkova, G.; Georgieva, A.; Alexandrova, A.; Girchev, R.; Kirkova, M. Effects of structural analogues of nociceptin(1-13)NH2 on brain antioxidant status in kainic acid-treated rats. Cell Biochem. Funct. 2011, 29, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Buzas, B. Regulation of nociceptin/orphanin FQ gene expression in astrocytes by ceramide. Neuroreport 2002, 13, 1707–1710. [Google Scholar] [CrossRef]
- Kulkarni, M.; Armstead, W.M. Superoxide generation links nociceptin/orphanin FQ (NOC/oFQ) release to impaired N-methyl-D-aspartate cerebrovasodilation after brain injury. Stroke 2000, 31, 1990–1996. [Google Scholar] [CrossRef] [Green Version]
- Polidori, C.; Massi, M.; Guerrini, R.; Grandi, D.; Lupo, D.; Morini, G. Peripheral mechanisms involved in gastric mucosal protection by intracerebroventricular and intraperitoneal nociceptin in rats. Endocrinology 2005, 146, 3861–3867. [Google Scholar] [CrossRef] [Green Version]
- Gyires, K.; Toth, V.E.; Zadori, Z.S. Gastric mucosal protection: From the periphery to the central nervous system. J. Physiol. Pharmacol. 2015, 66, 319–329. [Google Scholar]
- Tariq, S.; Rashed, H.; Nurulain, S.M.; Emerald, B.S.; Koturan, S.; Tekes, K.; Adeghate, E. Distribution of nociceptin in pancreatic islet cells of normal and diabetic rats. Pancreas 2015, 44, 602–607. [Google Scholar] [CrossRef]
- Adeghate, E.; Saeed, Z.; D’Souza, C.; Tariq, S.; Kalász, H.; Tekes, K.; Adeghate, E.A. Effect of nociceptin on insulin release in normal and diabetic rat pancreas. Cell Tissue Res. 2018, 374, 517–529. [Google Scholar] [CrossRef] [PubMed]
- Sindhu, R.K.; Koo, J.R.; Roberts, C.K.; Vaziri, N.D. Dysregulation of hepatic superoxide dismutase, catalase and glutathione peroxidase in diabetes: Response to insulin and antioxidant therapies. Clin. Exp. Hypertens. 2004, 26, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Elabadlah, H.; Hameed, R.; D’Souza, C.; Mohsin, S.; Adeghate, E.A. Exogenous Ghrelin Increases Plasma Insulin Level in Diabetic Rats. Biomolecules 2020, 10, 633. [Google Scholar] [CrossRef]
- Sliepen, S.H.J.; Korioth, J.; Christoph, T.; Tzschentke, T.M.; Diaz-delCastillo, M.; Heegaard, A.M.; Rutten, K. The nociceptin/orphanin FQ receptor system as a target to alleviate cancer-induced bone pain in rats: Model validation and pharmacological evaluation. Br. J. Pharmacol. 2021, 178, 1995–2007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lotfy, M.; Singh, J.; Rashed, H.; Tariq, S.; Zilahi, E.; Adeghate, E. Mechanism of the beneficial and protective effects of exenatide in diabetic rats. J. Endocrinol. 2014, 220, 291–304. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Melesio, M.A.; Alcaraz-Zubeldia, M.; Jiménez-Capdeville, M.E.; Martínez-Lazcano, J.C.; Santoyo-Pérez, M.E.; Quevedo-Corona, L.; Gerónimo-Olvera, C.; Sánchez-Mendoza, A.; Ríos, C.; Pérez-Severiano, F. Nitric oxide donor molsidomine promotes retrieval of object recognition memory in a model of cognitive deficit induced by 192 IgG-saporin. Behav. Brain Res. 2019, 366, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Van Elzakker, M.; Fevurly, R.D.; Breindel, T.; Spencer, R.L. Environmental novelty is associated with a selective increase in c-fos expression in the output elements of the hippocampal formation and the perirhinal cortex. Learn. Mem. 2008, 15, 899–908. [Google Scholar] [CrossRef] [Green Version]
- Gaetani, G.F.; Ferraris, A.M.; Rolfo, M.; Mangerini, R.; Arena, S.; Kirkman, H.N. Predominant role of catalase in the disposal of hydrogen peroxide within human erythrocytes. Blood 1996, 87, 1595–1599. [Google Scholar] [CrossRef] [Green Version]
- Putnam, C.D.; Arvai, A.S.; Bourne, Y.; Tainer, J.A. Active and inhibited human catalase structures: Ligand and NADPH binding and catalytic mechanism. J. Mol. Biol. 2000, 296, 295–309. [Google Scholar] [CrossRef]
- Johkura, K.; Usuda, N.; Liang, Y.; Nakazawa, A. Immunohistochemical localization of peroxisomal enzymes in developing rat kidney tissues. J. Histochem. Cytochem. 1998, 46, 1161–1173. [Google Scholar] [CrossRef] [Green Version]
- DeJulius, C.R.; Dollinger, B.R.; Kavanaugh, T.E.; Dailing, E.; Yu, F.; Gulati, S.; Miskalis, A.; Zhang, C.; Uddin, J.; Dikalov, S.; et al. Optimizing an Antioxidant TEMPO Copolymer for Reactive Oxygen Species Scavenging and Anti-Inflammatory Effects in vivo. Bioconjugate Chem. 2021, 32, 928–941. [Google Scholar] [CrossRef]
- Fukai, T.; Ushio-Fukai, M. Superoxide dismutases: Role in redox signaling, vascular function, and diseases. Antioxid. Redox Signal. 2011, 15, 1583–1606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayyan, M.; Hashim, M.A.; AlNashef, I.M. Superoxide Ion: Generation and Chemical Implications. Chem. Rev. 2016, 116, 3029–3085. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.M.; Howarth, F.C.; Adeghate, E.; Bidasee, K.; Singh, J.; Waqar, T. Type 1 diabetes mellitus induces structural changes and molecular remodelling in the rat kidney. Mol. Cell. Biochem. 2018, 449, 9–25. [Google Scholar] [CrossRef] [PubMed]
- Deponte, M. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim. Biophys. Acta 2013, 1830, 3217–3266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faiz, M.; Acarin, L.; Peluffo, H.; Villapol, S.; Castellano, B.; González, B. Antioxidant Cu/Zn SOD: Expression in postnatal brain progenitor cells. Neurosci. Lett. 2006, 401, 71–76. [Google Scholar] [CrossRef]
- Mavelli, I.; Rigo, A.; Federico, R.; Ciriolo, M.R.; Rotilio, G. Superoxide dismutase, glutathione peroxidase and catalase in developing rat brain. Biochem. J. 1982, 204, 535–540. [Google Scholar] [CrossRef] [Green Version]
- Baud, O.; Greene, A.E.; Li, J.; Wang, H.; Volpe, J.J.; Rosenberg, P.A. Glutathione peroxidase-catalase cooperativity is required for resistance to hydrogen peroxide by mature rat oligodendrocytes. J. Neurosci. 2004, 24, 1531–1540. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.H.; Chen, H.G.; Wu, P.F.; Yao, Q.; Cheng, H.K.; Yu, W.; Liu, C. Flos Puerariae Extract Ameliorates Cognitive Impairment in Streptozotocin-Induced Diabetic Mice. Evid. Based Complementary Altern. Med. eCAM 2015, 873243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amer, M.E.; Othamn, A.I.; El-Missiry, M.A. Melatonin ameliorates diabetes-induced brain injury in rats. Acta Histochem. 2021, 123, 151677. [Google Scholar] [CrossRef] [PubMed]
- Miller, T.D.; Chong, T.T.; Davies, A.M.A.; Johnson, M.R.; Irani, S.R.; Husain, M.; Ng, T.W.; Jacob, S.; Maddison, P.; Kennard, C.; et al. Human hippocampal CA3 damage disrupts both recent and remote episodic memories. eLife 2020, 9, e41836. [Google Scholar] [CrossRef] [PubMed]
- Tariq, S.; Nurulain, S.M.; Tekes, K.; Adeghate, E. Deciphering intracellular localization and physiological role of nociceptin and nocistatin. Peptides 2013, 43, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Salim, S. Oxidative Stress and the Central Nervous System. J. Pharmacol. Exp. Ther. 2017, 360, 201–205. [Google Scholar] [CrossRef]
- Knowles, R.G.; Moncada, S. Nitric oxide synthases in mammals. Biochem. J. 1994, 298 Pt 2, 249–258. [Google Scholar] [CrossRef]
- Xu, L.; Okuda-Ashitaka, E.; Matsumura, S.; Mabuchi, T.; Okamoto, S.; Sakimura, K.; Mishina, M.; Ito, S. Signal pathways coupled to activation of neuronal nitric oxide synthase in the spinal cord by nociceptin/orphanin FQ. Neuropharmacology 2007, 52, 1318–1325. [Google Scholar] [CrossRef] [PubMed]
- Hiramatsu, M.; Miwa, M.; Hashimoto, K.; Kawai, S.; Nomura, N. Nociceptin/orphanin FQ reverses mecamylamine-induced learning and memory impairment as well as decrease in hippocampal acetylcholine release in the rat. Brain Res. 2008, 1195, 96–103. [Google Scholar] [CrossRef]
# | Antibody | Source | Type | Cat No. | Dilution | Manufacturer |
---|---|---|---|---|---|---|
1 | Anti-Superoxide dismutase | Rabbit | Polyclonal | ab13498 | 1:200 | Cambridge, MA, USA |
2 | Anti-Catalase | Rabbit | Polyclonal | ab16731 | 1:200 | Cambridge, MA, USA |
3 | Anti-Glutathione Reductase | Mouse | Monoclonal | ab16801 | 1:200 | Cambridge, MA, USA |
4 | Neural NOS | Mouse | Monoclonal | ab610308 | 1:500 | BD Transduction Labs San Jose, CA, USA |
5 | cFOS | Mouse | Monoclonal | sc-271243 | 1:100 | Santa Cruz Biotechnology, Dallas, TX, USA |
6 | FITC | Goat | Polyclonal | 111-095-003 | 1:100 | Jackson ImmunoResearch Laboratories, Europe Ltd. (Ely, Cambridgeshire, UK) |
7 | TRITC | Goat | Monoclonal | 111-025-003 | 1:100 | Jackson ImmunoResearch Laboratories, Europe Ltd. (Ely, Cambridgeshire, UK) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adeghate, E.; D’Souza, C.M.; Saeed, Z.; Al Jaberi, S.; Tariq, S.; Kalász, H.; Tekes, K.; Adeghate, E.A. Nociceptin Increases Antioxidant Expression in the Kidney, Liver and Brain of Diabetic Rats. Biology 2021, 10, 621. https://doi.org/10.3390/biology10070621
Adeghate E, D’Souza CM, Saeed Z, Al Jaberi S, Tariq S, Kalász H, Tekes K, Adeghate EA. Nociceptin Increases Antioxidant Expression in the Kidney, Liver and Brain of Diabetic Rats. Biology. 2021; 10(7):621. https://doi.org/10.3390/biology10070621
Chicago/Turabian StyleAdeghate, Ernest, Crystal M. D’Souza, Zulqarnain Saeed, Saeeda Al Jaberi, Saeed Tariq, Huba Kalász, Kornélia Tekes, and Ernest A. Adeghate. 2021. "Nociceptin Increases Antioxidant Expression in the Kidney, Liver and Brain of Diabetic Rats" Biology 10, no. 7: 621. https://doi.org/10.3390/biology10070621
APA StyleAdeghate, E., D’Souza, C. M., Saeed, Z., Al Jaberi, S., Tariq, S., Kalász, H., Tekes, K., & Adeghate, E. A. (2021). Nociceptin Increases Antioxidant Expression in the Kidney, Liver and Brain of Diabetic Rats. Biology, 10(7), 621. https://doi.org/10.3390/biology10070621