Small-Sized Nanophosphorus Has a Positive Impact on the Performance of Fenugreek Plants under Soil-Water Deficit Stress: A Case Study under Field Conditions
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Soil Location, Properties, Meteorological Characteristics, Layout, Treatments, and Nanoparticle Preparations
2.2. Irrigation Treatments and Water Applied
2.3. Field Agro-Management Practices
2.4. Morphological and Yield Characteristics
2.5. Irrigation Water Use Efficiency (iWUE)
2.6. Leaf Integrity
2.7. Leaf Pigments, Free Amino Acids (FAa), Soluble Sugars (Ss), and Proline Measurements
2.8. Leaf and Seed Phosphorus (P) Measurements
2.9. Ascorbate (AsA) and Glutathione (GSH) Measurements
2.10. Antioxidative Activity Measurement
2.11. Measurements of Trigonelline, Total Phenolics (TPhs), and Total Flavonoids (TFs) Contents
2.12. Anatomical Attributes
2.13. Statistical Analysis
3. Results
3.1. Effect of Irrigation Deficiency and Nanophosphorus on Growth and Yield Traits
3.2. Effect of Irrigation Deficiency and Nanophosphorus on Cell Integrity and Photosynthetic Pigment Contents
3.3. Effect of Irrigation Deficiency and Nanophosphorus on Antioxidant Activity and Secondary Metabolite Contents
3.4. Effect of Irrigation Deficiency and Nanophosphorus on Leafy Content of the Medicinal Compound Trigonelline
3.5. Effect of Irrigation Deficiency and NanoPhosphorus on Stem and Leaf Anatomy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Altuntas, E.; Ozgoz, E.; Taser, O.F. Some physical properties of fenugreek (Trigonella foenum-graceum L.) seeds. J. Food Eng. 2005, 71, 37–43. [Google Scholar] [CrossRef]
- Snehalata, H.S.; Payal, D.R. Fenugreek (Trigonella foenum-graecum L.): An Overview. Int. J. Cur. Pharmaceut. Rev. Res. 2012, 2, 169–187. [Google Scholar]
- Zameer, S.; Najmi, A.K.; Vohora, D.; Akhtar, M. A review on therapeutic potentials of Trigonella foenum graecum (fenugreek) and its chemical constituents in neurological disorders: Complementary roles to its hypolipidemic, hypoglycemic, and antioxidant potential. Nutr. Neurosci. 2018, 21, 539–545. [Google Scholar] [CrossRef]
- Basch, E.; Ulbricht, C.; Kuo, G.; Szapary, P.; Smith, M. Therapeutic applications of fenugreek. Alt. Med. Rev. 2003, 8, 20–27. [Google Scholar]
- McCue, P.; Shetty, K. Role of carbohydrate-cleaving enzymes in phenolic antioxidant mobilization from whole soybean fermented with Rhizopus oligosporus. Food Biotechnol. 2003, 17, 27–37. [Google Scholar] [CrossRef]
- Ruby, B.C.; Gaskill, S.E.; Slivka, D.; Harger, S.G. The addition of fenugreek extract (Trigonella foenum-graecum) to glucose feeding increases muscle glycogen resynthesis after exercise. Amino Acid. 2005, 28, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.E.; Basu, S.K.; Acharya, S.N. Identification of Trigonella accessions which lack antimicrobial activity and are suitable for forage development. Can. J. Plant Sci. 2006, 86, 727–732. [Google Scholar] [CrossRef]
- Im, K.K.; Maliakel, B.P. Fenugreek dietary fibre a novel class of functional food ingredient. Agro Food Ind. Hi-Tech. 2008, 19, 18–21. [Google Scholar]
- Zia, T.; Hasnain, S.N.; Hasan, S. Evaluation of the oral hypoglycaemic effect of Trigonella foenum-graecum (methi) in normal mice. J. Ethnopharm. 2001, 75, 191–195. [Google Scholar] [CrossRef]
- Bitarafan, Z.; Asghari, H.R.; Hasanloo, T.; Gholami, A.; Moradi, F.; Khakimov, B.; Liu, F.; Andreasen, C. The effect of charcoal on medicinal compounds of seeds of fenugreek (Trigonella foenum-graecum L.) exposed to drought stress. Ind. Crop Prod. 2019, 131, 323–329. [Google Scholar] [CrossRef]
- Tramontano, W.A.; Hartnett, C.M.; Lynn, D.G.; Evans, L.S. The relationship between trigonelline concentration and promotion of cell arrest in G2 in cultured roots of Pisum sativum. Phytochemistry 1982, 21, 1201–1206. [Google Scholar] [CrossRef]
- Boivin, C.; Camut, S.; Malpica, C.A.; Truchet, G.; Rosenberg, C. Rhizobium meliloti genes encoding catabolism of trigonelline are induced under symbiotic conditions. Plant Cell 1990, 2, 1157–1170. [Google Scholar] [CrossRef] [PubMed]
- Rajasekaran, L.R.; Aspinall, D.; Jones, G.; Paleg, L. Stress metabolism. IX. Effect of salt stress on trigonelline accumulation in tomato. Can. J. Plant Sci. 2001, 81, 487–498. [Google Scholar] [CrossRef]
- Evans, L.S.; Tramontano, W.A. Is trigonelline a plant hormone? Am. J. Bot. 1981, 68, 1282–1289. [Google Scholar] [CrossRef]
- Meena, S.; Mittal, G.K.; Shivran, A.C.; Singh, D.; Niyariya, R.; Gupta, N.K.; Singh, B.; Saxena, S.N. Water stress induced biochemical changes in fenugreek (Trigonella foenum graecum L.) genotypes. Inter. J. Seed Spices 2016, 6, 61–70. [Google Scholar]
- Ahmed, M.A.; Shalaby, M.A.; El-Housini, E.A.; Khater, M.A. Alleviation of Drought Stress on Fenugreek (Trigonella foenum-graecum L.) Plants by Foliar Application of Polyamines Compounds. Mid. East J. Appl. Sci. 2018, 8, 883–894. [Google Scholar]
- Abdelhameed, R.E.; Abdel Latef, A.A.H.; Shehata, R.S. Physiological Responses of Salinized Fenugreek (Trigonella foenum-graecum L.) Plants to Foliar Application of Salicylic Acid. Plants 2021, 10, 657. [Google Scholar] [CrossRef]
- Rady, M.M.; Desoky, E.-S.M.; Ahmed, S.M.; Majrashi, A.; Ali, E.F.; Arnaout, S.M.A.; Selem, E. Foliar Nourishment with Nano-Selenium Dioxide Promotes Physiology, Biochemistry, Antioxidant Defenses, and Salt Tolerance in Phaseolus vulgaris. Plants 2021, 10, 1189. [Google Scholar] [CrossRef]
- Semida, W.M.; Rady, M.M. Pre-soaking in 24-epibrassinolide or salicylic acid improves seed germination, seedling growth, and anti-oxidant capacity in Phaseolus vulgaris L. grown under NaCl stress. J. Hortic. Sci. Biotechnol. 2014, 89, 338–344. [Google Scholar] [CrossRef]
- Rady, M.M.; Abd El-Mageed, T.A.; Abdurrahman, H.A.; Mahdi, A.H. Humic acid application improves field performance of cotton (Gossypium barbadense L.) under saline conditions. J. Anim. Plant Sci. 2016, 26, 487–493. [Google Scholar]
- Rady, M.M.; Desoky, E.-S.M.; Elrys, A.S.; Boghdady, M.S. Can licorice root extract be used as an effective natural biostimulant for salt-stressed common bean plants? S. Afr. J. Bot. 2019, 121, 294–305. [Google Scholar] [CrossRef]
- Alharby, F.H.; Alzahrani, H.S.; Hakeem, K.; Alsamadany, H.; Desoky, E.-S.M.; Rady, M.M. Silymarin-Enriched Biostimulant Foliar Application Minimizes the Toxicity of Cadmium in Maize by Suppressing Oxidative Stress and Elevating Antioxidant Gene Expression. Biomolecules 2021, 11, 465. [Google Scholar] [CrossRef] [PubMed]
- Abdelfattah, M.A.; Rady, M.M.; Belal, E.E.H.; Belal, E.E.; Al-Qthanin, R.; Al-Yasi, H.; Ali, E.F. Revitalizing fertility of nutrient-deficient virgin sandy soil using leguminous bio-compost boosts Phaseolus vulgaris performance. Plants 2021, 10, 1637. [Google Scholar] [CrossRef]
- Rady, M.M.; El-Shewy, A.A.; Seif El-Yazal, M.A.; Abd El-Gawwad, I.F.M. Integrative application of soil P-solubilizing bacteria and foliar nano P improves Phaseolus vulgaris plant performance and antioxidative defense system components under calcareous soil conditions. J. Soil Sci. Plant Nutr. 2020, 20, 820–839. [Google Scholar] [CrossRef]
- Awad, A.A.M.; Sweed, A.A.A.; Rady, M.M.; Majrashi, A.; Ali, E.F. Rebalance to the Nutritional Status and the Productivity of High CaCO3-Stressed Sweet Potato Plants by Foliar Nourishment with Zinc Oxide Nanoparticles and Ascorbic Acid. Agronomy 2021, 11, 1443. [Google Scholar] [CrossRef]
- Rady, M.M.; Boriek, S.H.K.; Abd El-Mageed, T.A.; Seif El-Yazal, M.A.; Ali, E.F.; Hassan, F.A.S.; Abdelkhalik, A. Exogenous Gibberellic Acid or Dilute Bee Honey Boosts Drought Stress Tolerance in Vicia faba by Rebalancing Osmoprotectants, Antioxidants, Nutrients, and Phytohormones. Plants 2021, 10, 748. [Google Scholar] [CrossRef]
- Mohammed, A.E.; Abd-Elraouf, M.A.; Nasser, H.S. Crop water requirements in Egypt using remote sensing techniques. J. Agric. Chem. Environ. 2014, 3, 57–65. [Google Scholar]
- Ekmekc, I.Y.; Bohms, A.; Thomson, J.A.; Mundree, S.G. Photochemical and antioxidant responses in the leaves of Xerophyta viscosa Baker and Digitaria sanguinalis L. under water deficit. Z. für Nat. C 2005, 60, 435–443. [Google Scholar] [CrossRef] [Green Version]
- Bai, L.P.; Sui, F.G.; Ge, T.D.; Sun, Z.H.; Lu, Y.Y.; Zhou, G.S. Effect of soil drought stress on leaf water status, membrane permeability and enzymatic antioxidant system of maize. Pedosphere 2006, 16, 326–332. [Google Scholar] [CrossRef]
- Praba, M.L.; Cairns, J.E.; Babu, R.C.; Lafitte, H.R. Identification of physiological traits underlying cultivar differences in drought tolerance in rice and wheat. J. Agron. Crop Sci. 2009, 145, 30–46. [Google Scholar] [CrossRef]
- Sadak, M.S. Mitigation of drought stress on fenugreek plant by foliar application of trehalose. Int. J. ChemTech Res. 2016, 9, 147–155. [Google Scholar]
- Preetha, S.; Balakrishnan, N. A review of nano fertilizers and their use and functions in soil. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 3117–3133. [Google Scholar] [CrossRef]
- Ombódi, A.; Saigusa, M. Broadcast application versus band application of polyolefin-coated fertilizer on green peppers grown on andisol. J. Plant Nutr. 2000, 23, 1485–1493. [Google Scholar] [CrossRef]
- Baruah, S.; Dutta, J. Nanotechnology applications in sensing and pollution degradation in agriculture. Environ. Chem. Lett. 2009, 7, 191–204. [Google Scholar] [CrossRef]
- Ilahi, H.; Hidayat, K.; Adnan, M.; Rehman, F.U.; Tahir, R.; Saeed, M.S.; Shah, S.W.A.; Toor, M.D. Accentuating the Impact of Inorganic and Organic Fertilizers on Agriculture Crop Production: A Review. Ind. J. Pure App. Biosci. 2020, 9, 36–45. [Google Scholar] [CrossRef]
- Snapp, S.; Pound, B. (Eds.) Agricultural Systems: Agroecology and Rural Innovation for Development: Agroecology and Rural Innovation for Development, 2nd ed.; Academic Press: London, UK, 2017. [Google Scholar]
- Qureshi, A.; Singh, D.K.; Dwivedi, S. Nano fertilizers: A novel way for enhancing nutrient use efficiency and crop productivity. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 3325–3335. [Google Scholar] [CrossRef] [Green Version]
- DeRosa, M.C.; Monreal, C.; Schnitzer, M.; Walsh, R.; Sultan, Y. Nanotechnology in fertilizers. Nat. Nanotechnol. 2010, 5, 91. [Google Scholar] [CrossRef] [PubMed]
- Meena, D.S.; Gautam, C.; Patidar, O.P.; Meena, H.M.; Prakasha, G.; Vlshwa, J. Nano-Fertilizers are a new way to increase nutrients use efficiency in crop production. Int. J. Agric. Sci. 2017, 7, 3831–3833. [Google Scholar]
- Bhardwaj, B.; Singh, P.; Kumar, A.; Kumar, S.; Budhwar, V. Eco-Friendly Greener Synthesis of Nanoparticles—A review. Adv. Pharm. Bull. 2020, 10, 566–576. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, T.; Samaresh, K.; Vasudeb, M.; Anangi, S.R. Utilization of Nano Rock Phosphate by Maize (Zea mays L.) Crop in a Vertisol of Central India. J. Agric. Sci. Technol. A 2014, 4, 384–394. [Google Scholar]
- Prasad, R.; Bhattacharyya, A.; Nguyen, Q.D. Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Front Microbiol. 2017, 8, 1014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Juthery, H.W.A.; Sahar, F.S. Fertilizer use efficiency of nano fertilizers of micronutrients foliar application on jerusalem artichoke. Al-Qad. J. Agric. Sci. 2019, 9, 156–164. [Google Scholar] [CrossRef] [Green Version]
- Elemike, E.E.; Uzoh, I.M.; Onwudiwe, D.C.; Babalola, O.O. The Role of nanotechnology in the fortification of plant nutrients and improvement of crop production. Appl. Sci. 2019, 9, 499. [Google Scholar] [CrossRef] [Green Version]
- Morales-Díaz, A.B.; Ortega-Ortíz, H.; Juárez-Maldonado, A.; Cadenas-Pliego, G.; González-Morales, S.; Benavides-Mendoza, A. Application of nanoelements in plant nutrition and its impact in ecosystems. Nanosci. Nanotechnol. 2017, 8, 1–13. [Google Scholar] [CrossRef]
- Khan, M.K.; Pandey, A.; Hamurcu, M.; Gezgin, S.; Athar, T.; Rajput, V.D.; Gupta, O.P.; Minkina, T. Insight into the Prospects for Nanotechnology in Wheat Biofortifification. Biology 2021, 10, 1123. [Google Scholar] [CrossRef] [PubMed]
- Miranda-Villagómez, E.; Trejo-Téllez, L.I.; Gómez-Merino, F.C.; Sandoval-Villa, M.; Sánchez-García, P.; Aguilar-Méndez, M.A. Nanophosphorus Fertilizer Stimulates Growth and Photosynthetic Activity and Improves P Status in Rice. J. Nanomater. 2019, 11, 5368027. [Google Scholar] [CrossRef] [Green Version]
- Walkley, A.; Black, C.A. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 27–38. [Google Scholar] [CrossRef]
- Eleyan, S.E.D.; Abodahab, A.A.; Abdallah, A.M.; Rabeh, H.A. Effect of nitrogen, phosphorus and potassium nano fertilizers with different application times, methods and rates on some growth parameters of Egyptian cotton (Gossypium barbadense L.). Biosci. Res. 2018, 15, 549–564. [Google Scholar]
- Wang, X.; Mohamed, I.; Xia, Y.; Chen, F. Effects of water and potassium stresses on potassium utilization efficiency of two cotton genotypes. J. Soil Sci. Plant Nutr. 2014, 14, 833–844. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration guidelines for computing crop water requirements. In Irrigation and Drainage; FAO, United Nations: Rome, Italy, 1998; pp. 30–42. [Google Scholar]
- Israelsen, O.W.; Hansen, E.V. Irrigation Principles and Practices; Wiley, Inc., 440 Park Avenue South: New York, NY, USA, 1963. [Google Scholar]
- Jensen, M.E. Design and Operation of Farm Irrigation Systems; ASAE: Michigan, MI, USA, 1983; p. 827. [Google Scholar]
- Osman, A.S.; Rady, M.M. Effect of humic acid as an additive to growing media to enhance the production of eggplant and tomato transplants. J. Hortic. Sci. Biotechnol. 2014, 89, 237–244. [Google Scholar] [CrossRef]
- Rady, M.M. Effect of 24-epibrassinolide on growth, yield, antioxidant system and cadmium content of bean (Phaseolus vulgaris L.) plants under salinity and cadmium stress. Sci. Hortic. 2011, 129, 232–237. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar]
- Dubey, R.S.; Rani, M. Influence of NaCl salinity on growth and metabolic status of protein and amino acids in rice seedlings. J. Agron. Crop Sci. 1989, 162, 97–106. [Google Scholar] [CrossRef]
- Irigoyen, J.J.; Emerich, D.W.; Sanchez-Diaz, M. Water stress induced changes in the concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiol. Plant 1992, 8, 455–460. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldeen, R.P.; Teare, I.D. Rapid determination of free proline for water stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Kampfenkel, K.; Vanmontagu, M.; Inzé, D. Extraction and determination of ascorbate and dehydroascorbate from plant tissue. Anal. Biochem. 1995, 225, 165–167. [Google Scholar] [CrossRef]
- Griffith, O.W. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal. Biochem. 1980, 106, 207–212. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Rongjie, Z.; Li, W.; Longxing, W. Determination of trigonelline in Trigonella foenum-graecum L. by hydrophilic interaction chromatography. Chin. J. Chromatogr. 2010, 4, 379–382. [Google Scholar]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu, sreagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Leontowicz, M.; Gorinstein, S.; Leontowicz, H.; Krzeminski, R.; Lojek, A.; Katrich, E. Apple and pear peel and pulp and their influence on plasma lipids and antioxidant potentials in rats fed cholesterol-containing diets. J. Agric. Food Chem. 2003, 51, 5780–5785. [Google Scholar] [CrossRef]
- Nassar, M.A.; El-Sahhar, K.F. Botanical Preparations and Microscopy Microtechnique; Academic Bookshop: Giza, Egyp, 1998; p. 219. [Google Scholar]
- Gomez, K.A.; Gomez, A.A. Statistical Analysis Procedures of Agricultural Research; Joh Wiley and Sons: New York, NY, USA, 1983; pp. 25–30. [Google Scholar]
- InfoStat. InfoStat Software Estadistico User’s Guide, 2016, Version 26/01/2016 InfoStat Institute; Available online: https://www.infostat.com.ar/index.php (accessed on 25 August 2021).
- Ahanger, M.A.; Tyagi, S.R.; Wani, M.R.; Ahmad, P. Drought Tolerance: Role of organic osmolytes, growth regulators, and mineral nutrients. In Physiological Mechanisms and Adaptation Strategies in Plants under Changing Environment; Ahmad, P., Wani, M.R., Eds.; Springer: New York, NY, USA, 2014; pp. 25–55. [Google Scholar]
- Elshamy, M.T.; ELKhallal, S.M.; Husseiny, S.M.; Farroh, K.Y. Application of nano-chitosan NPK fertilizer on growth and productivity of potato plant. J. Sci. Res. Sci. 2019, 36, 424–441. [Google Scholar] [CrossRef] [Green Version]
- Faizan, M.; Hayat, S.; Pichtel, J. Effects of zinc oxide nanoparticles on crop plants: A Perspective Analysis. Sustain. Agric. Rev. 2020, 41, 83–99. [Google Scholar]
- Saxena, S.N.; Kakani, R.K.; Sharma, L.K.; Agarwal, D.; John, S.; Sharma, Y. Effect of water stress on morpho-physiological parameters of fenugreek (Trigonella foenum-graecum L.) genotypes. Legume Res. 2019, 42, 60–65. [Google Scholar] [CrossRef] [Green Version]
- Silva, E.N.; Ribeiro, R.V.; Ferreira-Silva, S.L.; Viegas, R.A.; Silveira, J.A.G. Comparative effects of salinity and water stress on photosynthesis, water relations and growth of Jatropha curcas plants. J. Arid Environ. 2010, 74, 1130–1137. [Google Scholar] [CrossRef]
- Tariq, A.; Pan, K.; Olatunji, O.A. Phosphorous fertilization alleviates drought effects on Alnus cremastogyne by regulating its antioxidant and osmotic potential. Sci. Rep. 2018, 8, 5644. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, H.; Fraga, R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 1999, 17, 31–339. [Google Scholar] [CrossRef]
- Alori, E.T.; Glick, B.R.; Babalola, O.O. Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front. Microbiol. 2017, 8, 971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussien, M.M.; El-Ashry, S.M.; Haggag, W.M.; Mubarak, D.M. Response of Mineral Status to Nano-Fertilizer and Moisture Stress during Different Growth Stages of Cotton Plants. Int. J. ChemTech Res. 2015, 8, 643–650. [Google Scholar]
- El-Ghany, M.F.A.; El-Kherbawy, M.I.; Abdel-Aal, Y.A.; El-Dek, S.I.; Abd El-Baky, T. Comparative Study between Traditional and Nano Calcium Phosphate Fertilizers on Growth and Production of Snap Bean (Phaseolus vulgaris L.) Plants. Nanomaterials 2021, 11, 2913. [Google Scholar] [CrossRef]
- Rady, M.M.; Taha, R.S.; Mahdi, A.H.A. Proline enhances growth, productivity and anatomy of two varieties of Lupinus termis L. grown under salt stress. S. Afric. J. Bot. 2016, 102, 221–227. [Google Scholar] [CrossRef]
- Buckley, T.N. How do stomata respond to water status. New phytol. 2019, 224, 21–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Depth (cm) | Particle Size Distribution | ρb (g cm−3) | Ksat cm h−1 | θFc (%) | θWP (%) | AW (%) | |||
---|---|---|---|---|---|---|---|---|---|
Sand % | Silt % | Clay % | Texture Class | ||||||
0–25 | 9.9 | 20.0 | 70.1 | Clay | 1.41 | 1.15 | 35.1 | 19.6 | 15.5 |
25–50 | 8.6 | 20.4 | 71.0 | Clay | 1.37 | 1.02 | 33.3 | 19.1 | 14.1 |
Mean | 9.2 | 20.2 | 70.6 | Clay | 1.39 | 1.09 | 34.2 | 19.4 | 14.8 |
Chemical properties | Value | ||||||||
pH [at a soil: water (w/v) ratio of 1:2.5] | 7.55 | ||||||||
ECe (dS.m−1; soil paste extract) | 2.57 | ||||||||
CEC (cmole kg−1) | 14.2 | ||||||||
CaCO3 (g kg−1) | 4.81 | ||||||||
OM (%) | 1.20 | ||||||||
Available | N | mg kg−1 soil | 52.6 | ||||||
P | 5.10 | ||||||||
K | 59.9 |
Irrigation Treatments | 2018/2019 | 2019/2020 | ||
---|---|---|---|---|
per ha (10,000 m2) | per Plot (6 m2) | per ha (10,000 m2) | per Plot (6 m2) | |
Control (dI-00) | 4500 m3 | 2.70 m3 | 4460 m3 | 2.68 m3 |
dI-20 | 3600 m3 | 2.16 m3 | 3568 m3 | 2.14 m3 |
dI-40 | 2700 m3 | 1.62 m3 | 2676 m3 | 1.61 m3 |
Treatments | PHt (cm) | RLh (cm) | PDWt (g) | ||||
---|---|---|---|---|---|---|---|
S-I | S-II | S-I | S-II | S-I | S-II | ||
dI-00 | cP | 70.0 c ± 1.4 | 70.1 c ± 1.4 | 20.5 c ± 0.7 | 19.3 d ± 0.7 | 16.9 c ± 0.5 | 17.1 c ± 0.5 |
nP-1 | 72.7 b ± 1.4 | 73.4 b ± 1.5 | 22.2 b ± 0.7 | 21.9 b ± 0.7 | 18.5 b ± 0.5 | 18.3 b ± 0.5 | |
nP-2 | 74.2 a ± 1.5 | 75.2 a ± 1.5 | 23.5 a ± 0.7 | 22.8 a ± 0.7 | 19.5 a ± 0.5 | 19.3 a ± 0.5 | |
dI-20 | cP | 63.2 f ± 1.2 | 62.2 f ± 1.1 | 16.4 f ± 0.6 | 16.8 f ± 0.6 | 14.1 f ± 0.4 | 13.9 f ± 0.4 |
nP-1 | 65.5 e ± 1.3 | 64.7 e ± 1.3 | 17.4 e ± 0.6 | 18.8 e ± 0.6 | 15.7 e ± 0.5 | 15.1 e ± 0.4 | |
nP-2 | 67.0 d ± 1.3 | 67.7 d ± 1.3 | 19.5 d ± 0.6 | 20.8 c ± 0.7 | 16.8 cd ± 0.5 | 16.0 d ± 0.5 | |
dI-40 | cP | 54.0 i ± 1.1 | 53.4 i ± 1.0 | 13.8 h ± 0.5 | 12.5 i ± 0.5 | 10.5 i ± 0.4 | 10.9 i ± 0.4 |
nP-1 | 57.9 h ± 1.3 | 56.2 h ± 1.0 | 14.7 gh ± 0.5 | 13.6 h ± 0.5 | 11.6 h ± 0.4 | 12.1 h ± 0.4 | |
nP-2 | 59.8 g ± 1.3 | 60.2 g ± 1.3 | 15.9 g ± 0.6 | 15.2 g ± 0.6 | 13.9 fg ± 0.4 | 13.0 g ± 0.4 | |
p-value | 1.1 | 1.3 | 1.0 | 0.4 | 0.2 | 0.5 |
Treatments | PNpP | SWpP (g) | SY (t ha−1) | iWUE (kg Seed Yield m−3 Water) | |||||
---|---|---|---|---|---|---|---|---|---|
S-I | S-II | S-I | S-II | S-I | S-II | S-I | S-II | ||
dI-00 | cP | 12.7 c ± 0.3 | 12.4 c ± 0.4 | 4.33 c ± 0.26 | 4.50 c ± 0.26 | 6.07 c ± 0.36 | 6.12 c ± 0.35 | 1.18 e ± 0.02 | 1.17 d ± 0.03 |
nP-1 | 13.8 b ± 0.4 | 13.6 b ± 0.4 | 4.67 b ± 0.26 | 4.82 b ± 0.27 | 6.26 b ± 0.37 | 6.28 b ± 0.37 | 1.39 d ± 0.03 | 1.41 c ± 0.03 | |
nP-2 | 15.2 a ± 0.4 | 14.8 a ± 0.4 | 5.20 a ± 0.28 | 5.27 a ± 0.29 | 6.55 a ± 0.38 | 6.42 a ± 0.37 | 1.64 b ± 0.04 | 1.65 b ± 0.04 | |
dI-20 | cP | 9.7 f ± 0.3 | 10.0 f ± 0.4 | 3.22 f ± 0.23 | 3.66 f ± 0.24 | 5.50 f ± 0.33 | 5.54 f ± 0.34 | 1.40 d ± 0.03 | 1.41 c ± 0.03 |
nP-1 | 10.4 e ± 0.4 | 11.1 e ± 0.4 | 3.44 e ± 0.24 | 4.07 e ± 0.25 | 5.70 e ± 0.35 | 5.74 e ± 0.34 | 1.56 bc ± 0.04 | 1.59 b ± 0.05 | |
nP-2 | 11.9 d ± 0.4 | 11.7 d ± 0.4 | 3.91 d ± 0.25 | 4.15 d ± 0.26 | 5.91 d ± 0.35 | 5.96 d ± 0.35 | 1.78 a ± 0.04 | 1.81 a ± 0.06 | |
dI-40 | cP | 6.6 i ± 0.3 | 6.0 i ± 0.3 | 2.60 i ± 0.23 | 2.47 i ± 0.22 | 4.02 i ± 0.30 | 4.10 i ± 0.33 | 1.39 d ± 0.03 | 1.42 c ± 0.03 |
nP-1 | 7.8 h ± 0.3 | 6.9 h ± 0.3 | 2.88 gh ± 0.24 | 2.85 h ± 0.24 | 4.25 h ± 0.32 | 4.33 h ± 0.34 | 1.53 c ± 0.03 | 1.58 b ± 0.03 | |
nP-2 | 8.7 g ± 0.3 | 8.2 g ± 0.3 | 2.92 g ± 0.24 | 2.91 g ± 0.24 | 4.38 g ± 0.33 | 4.41 g ± 0.35 | 1.75 a ± 0.06 | 1.80 a ± 0.05 | |
p-value | 0.40 | 0.50 | 0.04 | 0.05 | 0.10 | 0.07 | 0.04 | 0.08 |
Treatments | RWC (%) | MSI (%) | TChC (mg g−1 FW) | TCrC (mg g−1 FW) | |||||
---|---|---|---|---|---|---|---|---|---|
S-I | S-II | S-I | S-II | S-I | S-II | S-I | S-II | ||
dI-00 | cP | 83.1 c ± 1.2 | 84.3 c ± 1.1 | 70.1 c ± 0.7 | 69.6 c ± 0.8 | 2.41 b ± 0.13 | 2.43 c ± 0.13 | 0.55 b ± 0.04 | 0.54 c ± 0.03 |
nP-1 | 85.6 b ± 1.3 | 85.0 b ± 1.1 | 71.4 b ± 0.8 | 72.0 b ± 0.8 | 2.51 a ± 0.13 | 2.51 b ± 0.12 | 0.57 ab ± 0.4 | 0.56 b ± 0.03 | |
nP-2 | 87.6 a ± 1.3 | 86.3 a ± 1.3 | 73.2 a ± 0.9 | 73.3 a ± 0.9 | 2.54 a ± 0.14 | 2.58 a ± 0.13 | 0.59 a ± 0.04 | 0.59 a ± 0.03 | |
dI-20 | cP | 80.2 f ± 1.0 | 80.6 f ± 0.9 | 64.5 f ± 0.8 | 63.8 f ± 0.7 | 2.13 d ± 0.12 | 2.09 f ± 0.13 | 0.49 d ± 0.03 | 0.50 d ± 0.02 |
nP-1 | 81.7 e ± 1.1 | 81.6 e ± 0.9 | 65.9 e ± 0.8 | 65.3 e ± 0.7 | 2.17 d ± 0.13 | 2.19 e ± 012 | 0.52 c ± 0.03 | 0.54 c ± 0.03 | |
nP-2 | 82.0 d ± 1.1 | 82.4 d ± 1.0 | 67.1 d ± 0.8 | 66.7 d ± 0.7 | 2.26 c ± 0.13 | 2.31 d ± 0.13 | 0.53 bc ± 0.03 | 0.55 bc ± 0.03 | |
dI-40 | cP | 75.3 i ± 0.8 | 74.6 i ± 0.8 | 58.7 i ± 0.7 | 58.0 i ± 0.6 | 1.82 g ± 0.10 | 1.82 i ± 0.10 | 0.45 ef ± 0.02 | 0.44 f ± 0.02 |
nP-1 | 76.7 h ± 0.9 | 76.6 h ± 0.9 | 60.3 h ± 0.7 | 59.4 h ± 0.7 | 1.88 f ± 0.11 | 1.88 h ± 0.11 | 0.46 e ± 0.02 | 0.46 e ± 0.02 | |
nP-2 | 79.1 g ± 1.0 | 78.7 g ± 0.9 | 62.1 g ± 0.8 | 61.6 g ± 0.7 | 1.98 e ± 0.11 | 1.96 g ± 0.11 | 0.48 de ± 0.03 | 0.47 e ± 0.02 | |
p-value | 0.3 | 0.6 | 0.9 | 1.1 | 0.05 | 0.06 | 0.03 | 0.02 |
Treatments | TFAa Conrent (mg g−1 DW) | TSs Content (mg g−1 DW) | Proline Content (μg g−1 DW) | Leaf P (mg g−1 DW) | Seed P (mg g−1 DW) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
S-I | S-II | S-I | S-II | S-I | S-II | S-I | S-II | S-I | S-II | ||
dI-00 | cP | 0.21 i ± 0.01 | 0.22 hi ± 0.01 | 0.78 i ± 0.06 | 0.85 gh ± 0.07 | 0.14 g ± 0.01 | 0.16 fg ± 0.01 | 0.57 d ± 0.03 | 0.55 c ± 0.03 | 3.78 bc ± 0.18 | 3.75 bc ± 0.17 |
nP-1 | 0.26 h ± 0.01 | 0.24 h ± 0.01 | 0.87 h ± 0.06 | 0.90 g ± 0.07 | 0.17 ef ± 0.01 | 0.17 f ± 0.01 | 0.63 ab ± 0.04 | 0.62 b ± 004 | 3.82 b ± 0.18 | 3.86 ab ± 0.19 | |
nP-2 | 0.29 g ± 0.02 | 0.28 g ± 0.01 | 1.13 g ± 0.08 | 1.14 f ± 0.07 | 0.19 e ± 0.01 | 0.20 e ± 0.01 | 0.65 a ± 0.04 | 0.67 a ± 0.04 | 3.93 a ± 0.20 | 3.95 a ± 0.21 | |
dI-20 | cP | 0.33 f ± 0.02 | 0.34 f ± 0.02 | 1.22 f ± 0.08 | 1.26 e ± 0.08 | 0.22 d ± 0.01 | 0.22 e ± 0.01 | 0.53 ef ± 0.02 | 0.52 c ± 0.03 | 3.62 d ± 0.17 | 3.59 d ± 0.17 |
nP-1 | 0.37 e ± 0.02 | 0.38 e ± 0.02 | 1.52 e ± 0.08 | 1.65 d ± 0.08 | 0.24 d ± 0.01 | 0.25 d ± 0.01 | 0.59 cd ± 0.03 | 0.60 b ± 0.03 | 3.72 c ± 0.18 | 3.74 c ± 0.19 | |
nP-2 | 0.44 d ± 0.03 | 0.45 d ± 0.02 | 2.04 d ± 0.08 | 2.10 c ± 0.08 | 0.27 c ± 0.01 | 0.26 d ± 0.01 | 0.61 bc ± 0.04 | 0.62 b ± 0.04 | 3.84 ab ± 0.20 | 3.83 bc ± 0.19 | |
dI-40 | cP | 0.50 c ± 0.03 | 0.52 c ± 0.03 | 2.15 bc ± 0.08 | 2.12 c ± 0.08 | 0.28 c ± 0.01 | 0.30 c ± 0.02 | 0.45 g ± 0.02 | 0.47 d ± 0.02 | 3.40 e ± 0.15 | 3.42 e ± 0.15 |
nP-1 | 0.67 b ± 0.03 | 0.72 b ± 0.03 | 2.19 b ± 0.09 | 2.29 b ± 0.08 | 0.31 b ± 0.02 | 0.33 b ± 0.02 | 0.51 f ± 0.03 | 0.52 c ± 0.03 | 3.55 d ± 0.17 | 3.54 d ± 0.16 | |
nP-2 | 0.92 a ± 0.04 | 0.99 a ± 0.04 | 2.52 a ± 0.08 | 2.62 a ± 0.09 | 0.34 a ± 0.02 | 0.36 a ± 0.02 | 0.56 de ± 0.03 | 0.55 c ± 0.03 | 3.61 d ± 0.17 | 3.59 d ± 0.17 | |
p-value | 0.02 | 0.03 | 0.05 | 0.06 | 0.03 | 0.03 | 0.04 | 0.04 | 0.10 | 0.12 |
Treatments | AsA (μmole g−1 Fresh Leaf) | GSH (μmole g−1 Fresh Leaf) | AAc (TE g−1 Seed DW) | ||||
---|---|---|---|---|---|---|---|
S-I | S-II | S-I | S-II | S-I | S-II | ||
dI-00 | cP | 1.31 g ± 0.03 | 1.42 g ± 0.04 | 0.40 f ± 0.00 | 0.46 g ± 0.01 | 35.8 f ± 0.7 | 37.6 f ± 0.9 |
nP-1 | 1.58 f ± 0.04 | 1.81 f ± 0.05 | 0.46 e ± 0.00 | 0.53 f ± 0.01 | 39.7 e ± 0.9 | 41.9 e ± 1.0 | |
nP-2 | 1.83 e ± 0.04 | 2.20 d ± 0.06 | 0.49 d ± 0.01 | 0.58 de ± 0.01 | 43.2 d ± 1.2 | 46.2 d ± 1.3 | |
dI-20 | cP | 1.62 f ± 0.04 | 1.81 f ± 0.04 | 0.47 de ± 0.01 | 0.55 ef ± 0.02 | 42.8 de ± 1.1 | 45.7 d ± 1.2 |
nP-1 | 1.94 d ± 0.05 | 2.32 c ± 0.06 | 0.52 c ± 0.01 | 0.64 c ± 0.02 | 49.1 c ± 1.5 | 51.5 c ± 1.5 | |
nP-2 | 2.41 b ± 0.05 | 2.64 a ± 0.07 | 0.57 b ± 0.02 | 0.72 b ± 0.03 | 55.2 b ± 1.8 | 57.0 b ± 1.7 | |
dI-40 | cP | 1.84 e ± 0.04 | 1.98 e ± 0.05 | 0.52 c ± 0.01 | 0.61 cd ± 0.02 | 47.5 c ± 1.6 | 51.2 c ± 1.5 |
nP-1 | 2.22 c ± 0.05 | 2.44 b ± 0.06 | 0.57 b ± 0.01 | 0.69 b ± 0.02 | 53.4 b ± 1.8 | 56.7 b ± 1.5 | |
nP-2 | 2.56 a ± 0.06 | 2.71 a ± 0.07 | 0.62 a ± 0.02 | 0.76 a ± 0.03 | 59.2 a ± 1.9 | 62.1 a ± 1.8 | |
p-value | 0.06 | 0.09 | 0.03 | 0.04 | 3.10 | 3.50 |
Treatments | Trigonelline Content (μg g−1 Dry Seed) | TPhs Content (mg CA g−1 Dry Seed) | TFvs Content (mg RU g−1 Dry Seed) | ||||
---|---|---|---|---|---|---|---|
S-I | S-II | S-I | S-II | S-I | S-II | ||
dI-00 | cP | 46.3 f ± 1.2 | 51.2 f ± 1.1 | 2.44 f ± 0.08 | 2.39 g ± 0.06 | 3.51 f ± 0.15 | 4.02 e ± 0.18 |
nP-1 | 49.9 de ± 1.4 | 56.4 e ± 1.5 | 2.68 e ± 0.10 | 2.70 f ± 0.11 | 3.80 ef ± 0.18 | 4.42 d ± 0.22 | |
nP-2 | 54.2 bc ± 1.7 | 61.3 c ± 1.8 | 2.86 d ± 0.12 | 2.98 e ± 0.13 | 4.12 cd ± 0.21 | 4.75 cd ± 0.30 | |
dI-20 | cP | 51.2 cd ± 1.4 | 60.2 cd ± 1.7 | 2.68 e ± 0.09 | 2.71 f ± 0.11 | 3.84 de ± 0.17 | 4.49 d ± 0.22 |
nP-1 | 55.4 b ± 1.6 | 66.0 b ± 2.0 | 2.89 d ± 0.12 | 3.07 e ± 0.14 | 4.22 bc ± 0.22 | 4.86 bc ± 0.30 | |
nP-2 | 59.3 a ± 1.8 | 69.8 a ± 2.2 | 3.18 c ± 0.15 | 3.46 cd ± 0.17 | 4.48 b ± 0.25 | 5.22 ab ± 0.32 | |
dI-40 | cP | 46.8 ef ± 1.1 | 50.1 f ± 1.2 | 3.14 c ± 0.13 | 3.28 d ± 0.15 | 4.09 cde ± 0.21 | 4.78 cd ± 0.30 |
nP-1 | 55.9 b ± 1.6 | 57.4 de ± 1.2 | 3.42 b ± 0.16 | 3.55 bc ± 0.17 | 4.38 bc ± 0.22 | 5.04 bc ± 0.31 | |
nP-2 | 59.2 a ± 1.9 | 62.0 c ± 1.7 | 3.72 a ± 0.18 | 3.84 a ± 0.20 | 4.79 a ± 0.28 | 5.41 a ± 0.35 | |
p-value | 3.30 | 3.50 | 0.15 | 0.21 | 0.30 | 0.37 |
Treatments | Length (µ) | Width (µ) | CorTh (µ) | XyVZTh (µ) | NoXyV | DXyV (µ) | PiL (µ) | PiW (µ) | |
---|---|---|---|---|---|---|---|---|---|
dI-00 | cP | 2300 c | 2575 d | 225 c | 325 b | 760 c | 37.5 a | 1575 c | 1850 d |
nP-1 | 2625 b | 2650 b | 250 b | 325 b | 880 b | 37.5 a | 1600 b | 1925 b | |
nP-2 | 2650 a | 2725 a | 275 a | 350 a | 960 a | 37.5 a | 1650 a | 2000 a | |
dI-20 | cP | 2200 g | 2325 g | 225 c | 275 d | 510 fg | 25.0 b | 1475 f | 1700 g |
nP-1 | 2250 f | 2575 d | 225 c | 300 c | 570 e | 25.0 b | 1525 e | 1750 e | |
nP-2 | 2450 d | 2600 c | 250 b | 325 b | 630 d | 25.0 b | 1550 d | 1875 c | |
dI-40 | cP | 2000 i | 2125 h | 175 e | 250 e | 450 h | 25.0 b | 1350 i | 1575 i |
nP-1 | 2075 h | 2500 e | 200 d | 275 d | 490 g | 25.0 b | 1425 h | 1650 h | |
nP-2 | 2375 e | 2450 f | 200 d | 300 c | 520 f | 25.0 b | 1450 g | 1725 f | |
p-value | 22 | 25 | 11 | 14 | 21 | 1.5 | 12 | 15 |
Treatments | MidL (µ) | MidW (µ) | VBuL (µ) | VBuW (µ) | NoXyV | LamTh (µ) | PalTiTh (µ) | SpTiTh (µ) | |
---|---|---|---|---|---|---|---|---|---|
dI-00 | cP | 625 c | 575 c | 150 c | 200 c | 35 b | 350 c | 200 b | 100 c |
nP-1 | 650 b | 600 b | 175 b | 225 b | 40 a | 375 b | 200 b | 125 b | |
nP-2 | 725 a | 625 a | 200 a | 250 a | 40 a | 400 a | 225 a | 150 a | |
dI-20 | cP | 575 d | 525 e | 125 d | 175 d | 30 c | 325 d | 150 d | 75 d |
nP-1 | 625 c | 550 d | 150 c | 200 c | 35 b | 325 d | 175 c | 100 c | |
nP-2 | 650 b | 575 c | 150 c | 225 b | 35 b | 350 c | 200 b | 100 c | |
dI-40 | cP | 450 f | 500 f | 100 e | 150 e | 20 e | 275 f | 125 e | 75 d |
nP-1 | 550 e | 525 e | 125 d | 150 e | 25 d | 275 f | 125 e | 75 d | |
nP-2 | 575 d | 550 d | 125 d | 175 d | 25 d | 300 e | 150 d | 100 c | |
p-value | 18 | 15 | 5 | 7 | 2 | 10 | 8 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abou-Sreea, A.I.B.; Kamal, M.; El Sowfy, D.M.; Rady, M.M.; Mohamed, G.F.; Al-Dhumri, S.A.; AL-Harbi, M.S.; Abdou, N.M. Small-Sized Nanophosphorus Has a Positive Impact on the Performance of Fenugreek Plants under Soil-Water Deficit Stress: A Case Study under Field Conditions. Biology 2022, 11, 115. https://doi.org/10.3390/biology11010115
Abou-Sreea AIB, Kamal M, El Sowfy DM, Rady MM, Mohamed GF, Al-Dhumri SA, AL-Harbi MS, Abdou NM. Small-Sized Nanophosphorus Has a Positive Impact on the Performance of Fenugreek Plants under Soil-Water Deficit Stress: A Case Study under Field Conditions. Biology. 2022; 11(1):115. https://doi.org/10.3390/biology11010115
Chicago/Turabian StyleAbou-Sreea, Alaa I. B., Marwa Kamal, Dalia M. El Sowfy, Mostafa M. Rady, Gamal F. Mohamed, Sami A. Al-Dhumri, Mohammad S. AL-Harbi, and Nasr M. Abdou. 2022. "Small-Sized Nanophosphorus Has a Positive Impact on the Performance of Fenugreek Plants under Soil-Water Deficit Stress: A Case Study under Field Conditions" Biology 11, no. 1: 115. https://doi.org/10.3390/biology11010115
APA StyleAbou-Sreea, A. I. B., Kamal, M., El Sowfy, D. M., Rady, M. M., Mohamed, G. F., Al-Dhumri, S. A., AL-Harbi, M. S., & Abdou, N. M. (2022). Small-Sized Nanophosphorus Has a Positive Impact on the Performance of Fenugreek Plants under Soil-Water Deficit Stress: A Case Study under Field Conditions. Biology, 11(1), 115. https://doi.org/10.3390/biology11010115