Brain-Derived Estrogen and Neurological Disorders
Abstract
:Simple Summary
Abstract
1. Introduction
2. Ischemic Brain Injury
3. Traumatic Brain Injury
4. Excitotoxic Brain Injury and Epileptic Seizures
5. Alzheimer’s Disease (AD)
6. Parkinson’s Disease (PD)
7. Summary and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
E1 | estrone |
E2 | 17β-estradiol |
BDE2 | brain-derived 17β-estradiol |
ADE2 | astrocyte-derived 17β-estradiol |
NDE2 | neuron-derived 17β-estradiol |
FBN-ARO-KO | forebrain neuron-specific aromatase knockout |
FCI | Focal cerebral ischemia |
GCI | global cerebral ischemia |
JAK | Janus kinase |
STAT3 | signal transducer and activator of transcription 3 |
FGF2 | fibroblast growth factor-2 |
TBI | traumatic brain injury |
IL-1β | interleukin-1beta |
IL-6 | interleukin-6 |
PGE2 | prostaglandin E2 |
AD | Alzheimer’s disease |
APP | Amyloid precursor protein |
BACE1 | β-site amyloid precursor protein cleaving enzyme 1 |
PD | Parkinson’s disease |
References
- Simpson, E.R.; Clyne, C.; Rubin, G.; Boon, W.C.; Robertson, K.; Britt, K.; Speed, C.; Jones, M. Aromatase—A brief overview. Annu. Rev. Physiol. 2002, 64, 93–127. [Google Scholar] [CrossRef]
- Blakemore, J.; Naftolin, F. Aromatase: Contributions to Physiology and Disease in Women and Men. Physiology 2016, 31, 258–269. [Google Scholar] [CrossRef] [Green Version]
- Brann, D.W.; Lu, Y.; Wang, J.; Zhang, Q.; Thakkar, R.; Sareddy, G.R.; Pratap, U.P.; Tekmal, R.R.; Vadlamudi, R.K. Brain-derived estrogen and neural function. Neurosci. Biobehav. Rev. 2022, 132, 793–817. [Google Scholar] [CrossRef] [PubMed]
- Naftolin, F.; Ryan, K.J.; Petro, Z. Aromatization of androstenedione by the diencephalon. J. Clin. Endocrinol. Metab. 1971, 33, 368–370. [Google Scholar] [CrossRef] [PubMed]
- Callard, G.V.; Petro, Z.; Ryan, K.J. Phylogenetic distribution of aromatase and other androgen-converting enzymes in the central nervous system. Endocrinology 1978, 103, 2283–2290. [Google Scholar] [CrossRef] [PubMed]
- Stoffel-Wagner, B.; Watzka, M.; Schramm, J.; Bidlingmaier, F.; Klingmuller, D. Expression of CYP19 (aromatase) mRNA in different areas of the human brain. J. Steroid. Biochem. Mol. Biol. 1999, 70, 237–241. [Google Scholar] [CrossRef]
- Zhang, Q.G.; Wang, R.; Tang, H.; Dong, Y.; Chan, A.; Sareddy, G.R.; Vadlamudi, R.K.; Brann, D.W. Brain-derived estrogen exerts anti-inflammatory and neuroprotective actions in the rat hippocampus. Mol. Cell Endocrinol. 2014, 389, 84–91. [Google Scholar] [CrossRef] [Green Version]
- Azcoitia, I.; Yague, J.G.; Garcia-Segura, L.M. Estradiol synthesis within the human brain. Neuroscience 2011, 191, 139–147. [Google Scholar] [CrossRef]
- Garcia-Segura, L.M.; Wozniak, A.; Azcoitia, I.; Rodriguez, J.R.; Hutchison, R.E.; Hutchison, J.B. Aromatase expression by astrocytes after brain injury: Implications for local estrogen formation in brain repair. Neuroscience 1999, 89, 567–578. [Google Scholar] [CrossRef]
- Saldanha, C.J.; Burstein, S.R.; Duncan, K.A. Induced synthesis of oestrogens by glia in the songbird brain. J. Neuroendocrinol. 2013, 25, 1032–1038. [Google Scholar] [CrossRef]
- Brocca, M.E.; Garcia-Segura, L.M. Non-reproductive Functions of Aromatase in the Central Nervous System Under Physiological and Pathological Conditions. Cell. Mol. Neurobiol. 2019, 39, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Duncan, K.A.; Saldanha, C.J. Central aromatization: A dramatic and responsive defense against threat and trauma to the vertebrate brain. Front. Neuroendocrinol. 2020, 56, 100816. [Google Scholar] [CrossRef] [PubMed]
- Brann, D.W.; Lu, Y.; Wang, J.; Sareddy, G.R.; Pratap, U.P.; Zhang, Q.; Tekmal, R.R.; Vadlamudi, R.K. Neuron-Derived Estrogen-A Key Neuromodulator in Synaptic Function and Memory. Int. J. Mol. Sci. 2021, 22, 13242. [Google Scholar] [CrossRef] [PubMed]
- Azcoitia, I.; Arevalo, M.A.; Garcia-Segura, L.M. Neural-derived estradiol regulates brain plasticity. J. Chem. Neuroanat. 2018, 89, 53–59. [Google Scholar] [CrossRef]
- Lu, Y.; Sareddy, G.R.; Wang, J.; Wang, R.; Li, Y.; Dong, Y.; Zhang, Q.; Liu, J.; O’Connor, J.C.; Xu, J.; et al. Neuron-Derived Estrogen Regulates Synaptic Plasticity and Memory. J. Neurosci. 2019, 39, 2792–2809. [Google Scholar] [CrossRef] [Green Version]
- Cornil, C.A.; Taziaux, M.; Baillien, M.; Ball, G.F.; Balthazart, J. Rapid effects of aromatase inhibition on male reproductive behaviors in Japanese quail. Horm. Behav. 2006, 49, 45–67. [Google Scholar] [CrossRef] [Green Version]
- Sato, S.M.; Woolley, C.S. Acute inhibition of neurosteroid estrogen synthesis suppresses status epilepticus in an animal model. Elife 2016, 5, e12917. [Google Scholar] [CrossRef]
- Garcia-Segura, L.M.; Veiga, S.; Sierra, A.; Melcangi, R.C.; Azcoitia, I. Aromatase: A neuroprotective enzyme. Prog. Neurobiol. 2003, 71, 31–41. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Sareddy, G.R.; Lu, Y.; Pratap, U.P.; Tang, F.; Greene, K.M.; Meyre, P.L.; Tekmal, R.R.; Vadlamudi, R.K.; Brann, D.W. Astrocyte-Derived Estrogen Regulates Reactive Astrogliosis and is Neuroprotective following Ischemic Brain Injury. J. Neurosci. 2020, 40, 9751–9771. [Google Scholar] [CrossRef]
- Lu, Y.; Sareddy, G.R.; Wang, J.; Zhang, Q.; Tang, F.L.; Pratap, U.P.; Tekmal, R.R.; Vadlamudi, R.K.; Brann, D.W. Neuron-Derived Estrogen Is Critical for Astrocyte Activation and Neuroprotection of the Ischemic Brain. J. Neurosci. 2020, 40, 7355–7374. [Google Scholar] [CrossRef]
- Feske, S.K. Ischemic Stroke. Am. J. Med. 2021, 134, 1457–1464. [Google Scholar] [CrossRef]
- Sanganalmath, S.K.; Gopal, P.; Parker, J.R.; Downs, R.K.; Parker, J.C., Jr.; Dawn, B. Global cerebral ischemia due to circulatory arrest: Insights into cellular pathophysiology and diagnostic modalities. Mol. Cell. Biochem. 2017, 426, 111–127. [Google Scholar] [CrossRef]
- Traystman, R.J. Animal models of focal and global cerebral ischemia. ILAR J. 2003, 44, 85–95. [Google Scholar] [CrossRef] [Green Version]
- Carswell, H.V.; Dominiczak, A.F.; Garcia-Segura, L.M.; Harada, N.; Hutchison, J.B.; Macrae, I.M. Brain aromatase expression after experimental stroke: Topography and time course. J. Steroid. Biochem. Mol. Biol. 2005, 96, 89–91. [Google Scholar] [CrossRef]
- Zhong, Y.H.; Dhawan, J.; Kovoor, J.A.; Sullivan, J.; Zhang, W.X.; Choi, D.; Biegon, A. Aromatase and neuroinflammation in rat focal brain ischemia. J. Steroid. Biochem. Mol. Biol. 2017, 174, 225–233. [Google Scholar] [CrossRef]
- Cincioglu, M.; Kismali, G.; Ugur, S.A.; Kelicen-Ugur, P. Indinavir inhibits the expression of cytoplasmic aromatase and nuclear SREBP in the hippocampus of reperfusion injury-induced ischemic rats. J. Steroid. Biochem. Mol. Biol. 2012, 130, 81–89. [Google Scholar] [CrossRef]
- Kelicen Ugur, P.; Lule, S.; Cincioglu, M.; Pekiner, C.; Gursoy-Ozdemir, Y. Megestrol acetate inhibits the expression of cytoplasmic aromatase through nuclear C/EBPbeta in reperfusion injury-induced ischemic rat hippocampus. Eur. J. Pharmacol. 2011, 654, 217–225. [Google Scholar] [CrossRef]
- McCullough, L.D.; Blizzard, K.; Simpson, E.R.; Oz, O.K.; Hurn, P.D. Aromatase cytochrome P450 and extragonadal estrogen play a role in ischemic neuroprotection. J. Neurosci. 2003, 23, 8701–8705. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.L.; Qin, P.; Liu, Y.; Zhang, L.X.; Guo, H.; Deng, Y.L.; Yizhao, L.; Hou, Y.S.; Wang, L.Y.; Miao, Y.; et al. Alleviation of ischaemia-reperfusion injury by endogenous estrogen involves maintaining Bcl-2 expression via the ERalpha signalling pathway. Brain Res. 2017, 1661, 15–23. [Google Scholar] [CrossRef]
- Patkar, S.; Uwanogho, D.; Modo, M.; Tate, R.J.; Plevin, R.; Carswell, H.V.O. Targeting 17beta-estradiol biosynthesis in neural stem cells improves stroke outcome. Front. Cell. Neurosci. 2022, 16, 917181. [Google Scholar] [CrossRef]
- Manwani, B.; Fall, P.; Zhu, L.; O’Reilly, M.R.; Conway, S.; Staff, I.; McCullough, L.D. Increased P450 aromatase levels in post-menopausal women after acute ischemic stroke. Biol. Sex Differ 2021, 12, 8. [Google Scholar] [CrossRef]
- Liddelow, S.A.; Guttenplan, K.A.; Clarke, L.E.; Bennett, F.C.; Bohlen, C.J.; Schirmer, L.; Bennett, M.L.; Munch, A.E.; Chung, W.S.; Peterson, T.C.; et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017, 541, 481–487. [Google Scholar] [CrossRef] [Green Version]
- Liddelow, S.A.; Barres, B.A. Reactive Astrocytes: Production, Function, and Therapeutic Potential. Immunity 2017, 46, 957–967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceyzeriat, K.; Abjean, L.; Carrillo-de Sauvage, M.A.; Ben Haim, L.; Escartin, C. The complex STATes of astrocyte reactivity: How are they controlled by the JAK-STAT3 pathway? Neuroscience 2016, 330, 205–218. [Google Scholar] [CrossRef] [Green Version]
- Chamniansawat, S.; Chongthammakun, S. A priming role of local estrogen on exogenous estrogen-mediated synaptic plasticity and neuroprotection. Exp. Mol. Med. 2012, 44, 403–411. [Google Scholar] [CrossRef]
- Cui, J.; Wang, Y.; Dong, Q.; Wu, S.; Xiao, X.; Hu, J.; Chai, Z.; Zhang, Y. Morphine protects against intracellular amyloid toxicity by inducing estradiol release and upregulation of Hsp70. J. Neurosci. 2011, 31, 16227–16240. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Xu, S.; Liang, K.Y.; Li, K.; Zou, Z.P.; Yang, C.L.; Tan, K.; Cao, X.; Jiang, Y.; Gao, T.M.; et al. Neuronal mTORC1 Is Required for Maintaining the Nonreactive State of Astrocytes. J. Biol. Chem. 2017, 292, 100–111. [Google Scholar] [CrossRef] [Green Version]
- Kang, W.; Balordi, F.; Su, N.; Chen, L.; Fishell, G.; Hebert, J.M. Astrocyte activation is suppressed in both normal and injured brain by FGF signaling. Proc. Natl. Acad. Sci. USA 2014, 111, E2987–E2995. [Google Scholar] [CrossRef] [Green Version]
- Mehos, C.J.; Nelson, L.H.; Saldanha, C.J. A Quantification of the Injury-Induced Changes in Central Aromatase, Oestrogenic Milieu and Steroid Receptor Expression in the Zebra Finch. J. Neuroendocrinol. 2016, 28, 12348. [Google Scholar] [CrossRef]
- Peterson, R.S.; Saldanha, C.J.; Schlinger, B.A. Rapid upregulation of aromatase mRNA and protein following neural injury in the zebra finch (Taeniopygia guttata). J. Neuroendocrinol. 2001, 13, 317–323. [Google Scholar] [CrossRef]
- Pedersen, A.L.; Nelson, L.H.; Saldanha, C.J. Centrally Synthesized Estradiol Is a Potent Anti-Inflammatory in the Injured Zebra Finch Brain. Endocrinology 2016, 157, 2041–2051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wynne, R.D.; Walters, B.J.; Bailey, D.J.; Saldanha, C.J. Inhibition of injury-induced glial aromatase reveals a wave of secondary degeneration in the songbird brain. Glia 2008, 56, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Garringer, J.A.; Niyonkuru, C.; McCullough, E.H.; Loucks, T.; Dixon, C.E.; Conley, Y.P.; Berga, S.; Wagner, A.K. Impact of aromatase genetic variation on hormone levels and global outcome after severe TBI. J. Neurotrauma 2013, 30, 1415–1425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lozano, D.; Gonzales-Portillo, G.S.; Acosta, S.; de la Pena, I.; Tajiri, N.; Kaneko, Y.; Borlongan, C.V. Neuroinflammatory responses to traumatic brain injury: Etiology, clinical consequences, and therapeutic opportunities. Neuropsychiatr. Dis. Treat. 2015, 11, 97–106. [Google Scholar] [PubMed] [Green Version]
- Pedersen, A.L.; Brownrout, J.L.; Saldanha, C.J. Neuroinflammation and neurosteroidogenesis: Reciprocal modulation during injury to the adult zebra finch brain. Physiol. Behav. 2018, 187, 51–56. [Google Scholar] [CrossRef]
- Pedersen, A.L.; Brownrout, J.L.; Saldanha, C.J. Central Administration of Indomethacin Mitigates the Injury-Induced Upregulation of Aromatase Expression and Estradiol Content in the Zebra Finch Brain. Endocrinology 2017, 158, 2585–2592. [Google Scholar] [CrossRef] [Green Version]
- Duncan, K.A.; Saldanha, C.J. Neuroinflammation induces glial aromatase expression in the uninjured songbird brain. J. Neuroinflamm. 2011, 8, 81. [Google Scholar] [CrossRef] [Green Version]
- Sadasivam, M.; Ramatchandirin, B.; Balakrishnan, S.; Selvaraj, K.; Prahalathan, C. The role of phosphoenolpyruvate carboxykinase in neuronal steroidogenesis under acute inflammation. Gene 2014, 552, 249–254. [Google Scholar] [CrossRef]
- Gatson, J.W.; Simpkins, J.W.; Yi, K.D.; Idris, A.H.; Minei, J.P.; Wigginton, J.G. Aromatase is increased in astrocytes in the presence of elevated pressure. Endocrinology 2011, 152, 207–213. [Google Scholar] [CrossRef] [Green Version]
- Golz, C.; Kirchhoff, F.P.; Westerhorstmann, J.; Schmidt, M.; Hirnet, T.; Rune, G.M.; Bender, R.A.; Schafer, M.K.E. Sex hormones modulate pathogenic processes in experimental traumatic brain injury. J. Neurochem. 2019, 150, 173–187. [Google Scholar] [CrossRef]
- Wynne, R.D.; Saldanha, C.J. Glial aromatization decreases neural injury in the zebra finch (Taeniopygia guttata): Influence on apoptosis. J. Neuroendocrinol. 2004, 16, 676–683. [Google Scholar] [CrossRef] [PubMed]
- Saldanha, C.J.; Rohmann, K.N.; Coomaralingam, L.; Wynne, R.D. Estrogen provision by reactive glia decreases apoptosis in the zebra finch (Taeniopygia guttata). J. Neurobiol. 2005, 64, 192–201. [Google Scholar] [CrossRef]
- Mehta, A.; Prabhakar, M.; Kumar, P.; Deshmukh, R.; Sharma, P.L. Excitotoxicity: Bridge to various triggers in neurodegenerative disorders. Eur. J. Pharmacol. 2013, 698, 6–18. [Google Scholar] [CrossRef]
- Mattson, M.P. Excitotoxic and excitoprotective mechanisms: Abundant targets for the prevention and treatment of neurodegenerative disorders. Neuromolecular. Med. 2003, 3, 65–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veiga, S.; Azcoitia, I.; Garcia-Segura, L.M. Extragonadal synthesis of estradiol is protective against kainic acid excitotoxic damage to the hippocampus. Neuroreport 2005, 16, 1599–1603. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, T.; Yamamoto, M.; Ishihara, Y.; Komatsu, S.; Munetsuna, E.; Onizaki, M.; Ishida, A.; Kawato, S.; Mukuda, T. De novo synthesized estradiol protects against methylmercury-induced neurotoxicity in cultured rat hippocampal slices. PLoS ONE 2013, 8, e55559. [Google Scholar] [CrossRef]
- Chan, K.W.; Kalra, S.; Kirby, R.M.; Brunt, A.M.; Hawkins, C.P. Epileptic seizure abolition with aromatase inhibition. J. Neurol Neurosurg. Psychiatry 2012, 83, 1249–1250. [Google Scholar] [CrossRef]
- Harden, C.; MacLusky, N.J. Aromatase inhibition, testosterone, and seizures. Epilepsy Behav. 2004, 5, 260–263. [Google Scholar] [CrossRef]
- Butler, H.T.; Warden, D.R.; Hogervorst, E.; Ragoussis, J.; Smith, A.D.; Lehmann, D.J. Association of the aromatase gene with Alzheimer’s disease in women. Neurosci. Lett. 2010, 468, 202–206. [Google Scholar] [CrossRef]
- Combarros, O.; Sanchez-Juan, P.; Riancho, J.A.; Mateo, I.; Rodriguez-Rodriguez, E.; Infante, J.; Garcia-Gorostiaga, I.; Vazquez-Higuera, J.L.; Berciano, J. Aromatase and interleukin-10 genetic variants interactively modulate Alzheimer’s disease risk. J. Neural. Transm. 2008, 115, 863–867. [Google Scholar] [CrossRef]
- Hiltunen, M.; Iivonen, S.; Soininen, H. Aromatase enzyme and Alzheimer’s disease. Minerva Endocrinol. 2006, 31, 61–73. [Google Scholar] [PubMed]
- Huang, R.; Poduslo, S.E. CYP19 haplotypes increase risk for Alzheimer’s disease. J. Med. Genet. 2006, 43, e42. [Google Scholar] [CrossRef] [Green Version]
- Iivonen, S.; Corder, E.; Lehtovirta, M.; Helisalmi, S.; Mannermaa, A.; Vepsalainen, S.; Hanninen, T.; Soininen, H.; Hiltunen, M. Polymorphisms in the CYP19 gene confer increased risk for Alzheimer disease. Neurology 2004, 62, 1170–1176. [Google Scholar] [CrossRef] [PubMed]
- Yue, X.; Lu, M.; Lancaster, T.; Cao, P.; Honda, S.; Staufenbiel, M.; Harada, N.; Zhong, Z.; Shen, Y.; Li, R. Brain estrogen deficiency accelerates Abeta plaque formation in an Alzheimer’s disease animal model. Proc. Natl. Acad. Sci. USA 2005, 102, 19198–19203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prange-Kiel, J.; Dudzinski, D.A.; Prols, F.; Glatzel, M.; Matschke, J.; Rune, G.M. Aromatase Expression in the Hippocampus of AD Patients and 5xFAD Mice. Neural Plast 2016, 2016, 9802086. [Google Scholar] [CrossRef] [Green Version]
- Luchetti, S.; Bossers, K.; Van de Bilt, S.; Agrapart, V.; Morales, R.R.; Frajese, G.V.; Swaab, D.F. Neurosteroid biosynthetic pathways changes in prefrontal cortex in Alzheimer’s disease. Neurobiol. Aging 2011, 32, 1964–1976. [Google Scholar] [CrossRef]
- Chang, P.K.; Boridy, S.; McKinney, R.A.; Maysinger, D. Letrozole Potentiates Mitochondrial and Dendritic Spine Impairments Induced by beta Amyloid. J. Aging Res. 2013, 2013, 538979. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, S.; Jun, S.; Simpkins, J.W. Estrogen amelioration of Abeta-induced defects in mitochondria is mediated by mitochondrial signaling pathway involving ERbeta, AKAP and Drp1. Brain Res. 2015, 1616, 101–111. [Google Scholar] [CrossRef] [Green Version]
- Morale, M.C.; L’Episcopo, F.; Tirolo, C.; Giaquinta, G.; Caniglia, S.; Testa, N.; Arcieri, P.; Serra, P.A.; Lupo, G.; Alberghina, M.; et al. Loss of aromatase cytochrome P450 function as a risk factor for Parkinson’s disease? Brain Res. Rev 2008, 57, 431–443. [Google Scholar] [CrossRef] [PubMed]
- McArthur, S.; Murray, H.E.; Dhankot, A.; Dexter, D.T.; Gillies, G.E. Striatal susceptibility to a dopaminergic neurotoxin is independent of sex hormone effects on cell survival and DAT expression but is exacerbated by central aromatase inhibition. J. Neurochem. 2007, 100, 678–692. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brann, D.W.; Lu, Y.; Wang, J.; Sareddy, G.R.; Pratap, U.P.; Zhang, Q.; Tekmal, R.R.; Vadlamudi, R.K. Brain-Derived Estrogen and Neurological Disorders. Biology 2022, 11, 1698. https://doi.org/10.3390/biology11121698
Brann DW, Lu Y, Wang J, Sareddy GR, Pratap UP, Zhang Q, Tekmal RR, Vadlamudi RK. Brain-Derived Estrogen and Neurological Disorders. Biology. 2022; 11(12):1698. https://doi.org/10.3390/biology11121698
Chicago/Turabian StyleBrann, Darrell W., Yujiao Lu, Jing Wang, Gangadhara R. Sareddy, Uday P. Pratap, Quanguang Zhang, Rajeshwar R. Tekmal, and Ratna K. Vadlamudi. 2022. "Brain-Derived Estrogen and Neurological Disorders" Biology 11, no. 12: 1698. https://doi.org/10.3390/biology11121698
APA StyleBrann, D. W., Lu, Y., Wang, J., Sareddy, G. R., Pratap, U. P., Zhang, Q., Tekmal, R. R., & Vadlamudi, R. K. (2022). Brain-Derived Estrogen and Neurological Disorders. Biology, 11(12), 1698. https://doi.org/10.3390/biology11121698