Anthocyanins Profiling Analysis and RNA-Seq Revealed the Dominating Pigments and Coloring Mechanism in Cyclamen Flowers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials and Growth Conditions
2.2. RNA Sequencing
2.3. Splicing of Transcripts, Reads Mapping, Gene Expression Level Quantifying, and Differential Expression Analysis
2.4. KEGG Pathway Enrichment Analysis
2.5. qRT-PCR Analysis
2.6. Anthocyanin Metabolic Profiling Analysis Using LC-MS/MS
2.6.1. Sample Extraction
2.6.2. HPLC Conditions
2.6.3. Mass Spectrometry
2.6.4. Metabolite Identification and Quantitative Analysis
3. Results
3.1. LC-MS/MS Analyzes the Anthocyanin Metabolic Profiling in Two Cyclamen Varieties with Different Colors
3.2. RNA Sequencing Analysis of Flowers of Two Cyclamen Varieties with Different Color
3.3. KEGG Analysis of DEGs
3.4. Analysis of DEGs Related to Anthocyanin Biosynthesis
3.5. g8206_i0, a Potential UFGT Responsible for Glycosylating Anthocyanins
3.6. Excavating Differentially Expressed Transcription Factors (TFs) in BXK-vs-HXK
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boase, M.R.; Lewis, D.H.; Davies, K.M.; Marshall, G.B.; Patel, D.; Schwinn, K.E.; Deroles, S.C. Isolation and antisense suppression of flavonoid 3’,5’-hydroxylase modifies flower pigments and colour in cyclamen. BMC Plant Biol. 2010, 10, 107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takamura, T.; Miyajima, I.; Kyushu Univ., F.J.F.O. Colchicine induced tetraploids in yellow-flowered cyclamens and their characteristics. Sci. Hortic. 1996, 65, 305–312. [Google Scholar] [CrossRef]
- Liu, Y.; Tikunov, Y.; Schouten, R.E.; Marcelis, L.; Visser, R.; Bovy, A. Anthocyanin Biosynthesis and Degradation Mechanisms in Solanaceous Vegetables: A Review. Front. Chem. 2018, 6, 52. [Google Scholar] [CrossRef]
- Lila, M.A.; Burton-Freeman, B.; Grace, M.; Kalt, W. Unraveling Anthocyanin Bioavailability for Human Health. Annu. Rev. Food Sci. Technol. 2016, 7, 375–393. [Google Scholar] [CrossRef]
- Winkel-Shirley, B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 2001, 126, 485–493. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Giusti, M.M. Anthocyanins: Natural colorants with health-promoting properties. Annu. Rev. Food Sci. Technol. 2010, 1, 163–187. [Google Scholar] [CrossRef] [PubMed]
- Jaakola, L. New insights into the regulation of anthocyanin biosynthesis in fruits. Trends Plant Sci. 2013, 18, 477–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, D.; Wang, X.; Tang, Z.; Yuan, Y.; Xu, Y.; He, J.; Jiang, X.; Peng, S.A.; Li, L.; Butelli, E.; et al. Subfunctionalization of the Ruby2-Ruby1 gene cluster during the domestication of citrus. Nat. Plants 2018, 4, 930–941. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, J.L.; Jez, J.M.; Bowman, M.E.; Dixon, R.A.; Noel, J.P. Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis. Nat. Struct. Biol. 1999, 6, 775–784. [Google Scholar] [CrossRef]
- Jez, J.M.; Bowman, M.E.; Dixon, R.A.; Noel, J.P. Structure and mechanism of the evolutionarily unique plant enzyme chalcone isomerase. Nat. Struct. Biol. 2000, 7, 786–791. [Google Scholar] [CrossRef] [PubMed]
- Mehrtens, F.; Kranz, H.; Bednarek, P.; Weisshaar, B. The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis. Plant Physiol. 2005, 138, 1083–1096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holton, T.A.; Cornish, E.C. Genetics and Biochemistry of Anthocyanin Biosynthesis. Plant Cell 1995, 7, 1071–1083. [Google Scholar] [CrossRef] [PubMed]
- Hichri, I.; Barrieu, F.; Bogs, J.; Kappel, C.; Delrot, S.; Lauvergeat, V. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. J. Exp. Bot. 2011, 62, 2465–2483. [Google Scholar] [CrossRef] [Green Version]
- Silva, S.; Costa, E.M.; Calhau, C.; Morais, R.M.; Pintado, M.E. Anthocyanin extraction from plant tissues: A review. Crit. Rev. Food Sci. Nutr. 2017, 57, 3072–3083. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.H.; Stephen Inbaraj, B. Nanoemulsion and Nanoliposome Based Strategies for Improving Anthocyanin Stability and Bioavailability. Nutrients 2019, 11, 1052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carocho, M.; Barreiro, M.F.; Morales, P.; Ferreira, I.C.F.R. Adding Molecules to Food, Pros and Cons: A Review on Synthetic and Natural Food Additives. Compr. Rev. Food Sci. Food Saf. 2014, 13, 377–399. [Google Scholar] [CrossRef] [PubMed]
- Kong, J.M.; Chia, L.S.; Goh, N.K.; Chia, T.F.; Brouillard, R. Analysis and biological activities of anthocyanins. Phytochemistry 2003, 64, 923–933. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.L.; Yu, Y.Q.; Chen, Z.J.; Wen, G.S.; Wei, F.G.; Zheng, Q.; Wang, C.D.; Xiao, X.L. Stability-increasing effects of anthocyanin glycosyl acylation. Food Chem. 2017, 214, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Dubos, C.; Stracke, R.; Grotewold, E.; Weisshaar, B.; Martin, C.; Lepiniec, L. MYB transcription factors in Arabidopsis. Trends Plant Sci. 2010, 15, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Uematsu, C.; Katayama, H.; Makino, I.; Inagaki, A.; Arakawa, O.; Martin, C. Peace, a MYB-like transcription factor, regulates petal pigmentation in flowering peach ‘Genpei’ bearing variegated and fully pigmented flowers. J. Exp. Bot. 2014, 65, 1081–1094. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Du, L.; Liu, H.; Liu, Y. A novel R2R3-MYB from grape hyacinth, MaMybA, which is different from MaAN2, confers intense and magenta anthocyanin pigmentation in tobacco. BMC Plant Biol. 2019, 19, 390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Meng, D.; Wang, A.; Li, T.; Jiang, S.; Cong, P.; Li, T. The methylation of the PcMYB10 promoter is associated with green-skinned sport in Max Red Bartlett pear. Plant Physiol. 2013, 162, 885–896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Espley, R.V.; Brendolise, C.; Chagne, D.; Kutty-Amma, S.; Green, S.; Volz, R.; Putterill, J.; Schouten, H.J.; Gardiner, S.E.; Hellens, R.P.; et al. Multiple Repeats of a Promoter Segment Causes Transcription Factor Autoregulation in Red Apples. Plant Cell 2009, 21, 168–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, A.R.; Lee, E.; Bogs, J.; Mcdavid, D.A.; Thomas, M.R.; Robinson, S.P. White grapes arose through the mutation of two similar and adjacent regulatory genes. Plant J. 2007, 49, 772–785. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S.; Kawashima, S.; Okuno, Y.; Hattori, M. The KEGG resource for deciphering the genome. Nucleic Acids Res. 2004, 32, D277–D280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, X.; Mikami, R.; Akita, Y. Characterization of 5-O-glucosyltransferase involved in anthocyanin biosynthesis in Cyclamen purpurascens. Plant Biotechnol. 2021, 38, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Gong, L.; Guo, Z.; Wang, W.; Zhang, H.; Liu, X.; Yu, S.; Xiong, L.; Luo, J. A Novel Integrated Method for Large-Scale Detection, Identification, and Quantification of Widely Targeted Metabolites: Application in the Study of Rice Metabolomics. Mol. Plant 2013, 6, 1769–1780. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.; Zhang, D.; Zhou, L.; Zhang, X.; Liao, J.; Duan, Y.; Wen, B.; Ma, Y.; Wang, Y.; Fang, W.; et al. Transcriptomic and metabolomic profiling of Camellia sinensis L. cv. ‘Suchazao’ exposed to temperature stresses reveals modification in protein synthesis and photosynthetic and anthocyanin biosynthetic pathways. Tree Physiol. 2019, 39, 1583–1599. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Wang, S.; Huang, Z.; Zhang, S.; Liao, Q.; Zhang, C.; Lin, T.; Qin, M.; Peng, M.; Yang, C.; et al. Rewiring of the Fruit Metabolome in Tomato Breeding. Cell 2018, 172, 249–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraga, C.G.; Clowers, B.H.; Moore, R.J.; Zink, E.M. Signature-Discovery Approach for Sample Matching of a Nerve-Agent Precursor Using Liquid Chromatography−Mass Spectrometry, XCMS, and Chemometrics. Anal. Chem. 2010, 82, 4165–4173. [Google Scholar] [CrossRef]
- Takos, A.M.; Jaffé, F.W.; Jacob, S.R.; Bogs, J. Light-Induced Expression of a MYB Gene Regulates Anthocyanin Biosynthesis in Red Apples1. Plant Physiol. 2006, 142, 1216–1232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, C.; Mei, X.; Rothenberg, D.O.; Yang, Z.; Zhang, W.; Wan, S.; Yang, H.; Zhang, L. Metabolome and transcriptome analysis reveals putative genes involved in anthocyanin accumulation and coloration in white and pink tea (Camellia sinensis)flower. Molecules 2020, 25, 190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, L.; Wang, J.; Zhao, J.; Zheng, Y.; Wang, H.-F.; Wu, X.; Xian, C.; Lei, J.-J.; Zhong, C.-F.; Zhang, Y.-T. Study on cyanidin metabolism in petals of pink-flowered strawberry based on transcriptome sequencing and metabolite analysis. BMC Plant Biol. 2019, 19, 423. [Google Scholar] [CrossRef]
- Smeriglio, A.; Barreca, D.; Bellocco, E.; Trombetta, D. Chemistry, pharmacology and health benefits of anthocyanins. Phytother. Res. 2016, 30, 1265–1286. [Google Scholar] [CrossRef] [PubMed]
- Shahid, M.; Shahid ul, I.; Mohammad, F. Recent advancements in natural dye applications: A review. J. Clean. Prod. 2013, 53, 310–331. [Google Scholar] [CrossRef]
- Goto, T.; Kondo, T. Structure and Molecular Stacking of Anthocyanins—Flower Color Variation. Angewandte Chemie International Edition in English 1991, 30, 17–33. [Google Scholar] [CrossRef]
- Cornea-Cipcigan, M.; Bunea, A.; Bouari, C.M.; Pamfil, D.; Páll, E.; Urcan, A.C.; Mărgăoan, R. Anthocyanins and Carotenoids Characterization in Flowers and Leaves of Cyclamen Genotypes Linked with Bioactivities Using Multivariate Analysis Techniques. Antioxidants 2022, 11, 1126. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, M.; Gong, Z.; Fukuchi-Mizutani, M.; Fukui, Y.; Tanaka, Y.; Kusumi, T.; Saito, K. Molecular cloning and biochemical characterization of a novel anthocyanin 5-O-glucosyltransferase by mRNA differential display for plant forms regarding anthocyanin. J. Biol. Chem. 1999, 274, 7405–7411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogt, T.; Jones, P. Glycosyltransferases in plant natural product synthesis: Characterization of a supergene family. Trends Plant Sci. 2000, 5, 380–386. [Google Scholar] [CrossRef]
- Ford, C.M.; Høj, P.B. Multiple glucosyltransferase activities in the grapevine Vitis vinifera L. Aust. J. Grape Wine R. 1998, 4, 48–58. [Google Scholar] [CrossRef]
- Yamazaki, M.; Yamagishi, E.; Gong, Z.; Fukuchi-Mizutani, M.; Fukui, Y.; Tanaka, Y.; Kusumi, T.; Yamaguchi, M.; Saito, K. Two flavonoid glucosyltransferases from Petunia hybrida: Molecular cloning, biochemical properties and developmentally regulated expression. Plant Mol. Biol. 2002, 48, 401–411. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Li, Y.; Zhou, T.; Sun, W.; Shan, X.; Gao, X.; Wang, L. Functional Differentiation of Duplicated Flavonoid 3-O-Glycosyltransferases in the Flavonol and Anthocyanin Biosynthesis of Freesia hybrida. Front. Plant Sci. 2019, 10, 1330. [Google Scholar] [CrossRef]
Compounds | HXK_1 | HXK_2 | HXK_3 | BXK_1 | BXK_2 | BXK_3 |
---|---|---|---|---|---|---|
cyanidin-3,5-O-diglucoside | 6.68 | 6.70 | 6.18 | 0.79 | 0.95 | 0.86 |
cyanidin-3-O-sambubioside-5-O-glucoside | 0.21 | 0.21 | 0.19 | 0.00 | 0.00 | 0.00 |
cyanidin-3-O-xyloside | 0.05 | 0.04 | 0.05 | 0.00 | 0.00 | 0.00 |
cyanidin-3-O-sambubioside | 31.10 | 29.64 | 29.32 | 0.00 | 0.00 | 0.00 |
cyanidin-3-O-rutinoside-5-O-glucoside | 0.59 | 0.49 | 0.49 | 0.00 | 0.00 | 0.00 |
cyanidin-3-O-rutinoside | 188.05 | 188.79 | 169.85 | 0.00 | 0.00 | 0.00 |
cyanidin-3-O-(6-O-malonyl-beta-D-glucoside) | 1.26 | 1.17 | 1.14 | 0.00 | 0.00 | 0.00 |
cyanidin-3-O-sophoroside | 25.73 | 24.20 | 23.41 | 0.00 | 0.00 | 0.00 |
cyanidin-3-O-glucoside | 117.54 | 112.72 | 109.88 | 0.00 | 0.00 | 0.00 |
delphinidin-3-O-(6-O-p-coumaroyl)-glucoside | 0.00 | 0.00 | 0.00 | 0.04 | 0.04 | 0.04 |
delphinidin-3-O-glucoside | 22.23 | 20.42 | 19.97 | 0.13 | 0.12 | 0.11 |
delphinidin-3-O-galactoside | 0.23 | 0.25 | 0.24 | 0.02 | 0.03 | 0.03 |
delphinidin-3-O-sambubioside | 0.10 | 0.09 | 0.09 | 0.00 | 0.00 | 0.00 |
delphinidin-3-O-rutinoside | 0.13 | 0.13 | 0.13 | 0.00 | 0.00 | 0.00 |
delphinidin-3-O-sophoroside | 0.23 | 0.26 | 0.24 | 0.03 | 0.03 | 0.03 |
delphinidin-3,5-O-diglucoside | 0.00 | 0.00 | 0.00 | 0.07 | 0.06 | 0.06 |
delphinidin | 0.72 | 0.67 | 0.68 | 0.00 | 0.00 | 0.00 |
malvidin-3-O-(6-O-malonyl-beta-D-glucoside) | 53.95 | 50.78 | 49.96 | 0.17 | 0.17 | 0.17 |
malvidin-3-O-galactoside | 68.52 | 63.64 | 65.12 | 0.00 | 0.00 | 0.00 |
malvidin-3-O-(6-O-p-coumaroyl)-glucoside | 0.31 | 0.30 | 0.29 | 0.00 | 0.00 | 0.00 |
malvidin-3-O-glucoside | 2969.14 | 2746.50 | 2602.56 | 0.00 | 0.00 | 0.00 |
malvidin-3-O-arabinoside | 0.33 | 0.29 | 0.31 | 0.00 | 0.00 | 0.00 |
pelargonidin-3-O-(6-O-p-coumaroyl)-glucoside | 0.00 | 0.00 | 0.00 | 0.09 | 0.09 | 0.10 |
pelargonidin-3-O-galactoside | 0.00 | 0.00 | 0.00 | 0.07 | 0.07 | 0.07 |
pelargonidin | 0.07 | 0.06 | 0.06 | 0.00 | 0.00 | 0.00 |
pelargonidin-3-O-glucoside | 0.06 | 0.06 | 0.07 | 0.00 | 0.00 | 0.00 |
pelargonidin-3-O-rutinoside | 0.46 | 0.47 | 0.54 | 0.00 | 0.00 | 0.00 |
pelargonidin-3-O-sambubioside | 3.49 | 3.26 | 3.27 | 0.00 | 0.00 | 0.00 |
pelargonidin-3,5-O-diglucoside | 0.02 | 0.02 | 0.02 | 0.57 | 0.63 | 0.58 |
peonidin-3-O-arabinoside | 0.05 | 0.04 | 0.04 | 0.00 | 0.00 | 0.00 |
peonidin-3,5-O-diglucoside | 12.96 | 12.31 | 11.93 | 3.27 | 3.52 | 3.18 |
peonidin-3-O-(6-O-malonyl-beta-D-glucoside) | 0.70 | 0.61 | 0.64 | 0.00 | 0.00 | 0.00 |
peonidin-3-O-glucoside | 22.29 | 21.18 | 20.67 | 0.02 | 0.02 | 0.01 |
peonidin-3-O-rutinoside | 742.94 | 733.11 | 716.02 | 0.00 | 0.00 | 0.00 |
peonidin-3-O-(6-O-p-coumaroyl)-glucoside | 14.85 | 13.20 | 13.96 | 0.00 | 0.00 | 0.00 |
petunidin-3-O-galactoside | 17.94 | 17.30 | 17.09 | 0.00 | 0.00 | 0.00 |
petunidin-3-O-glucoside | 3.83 | 3.55 | 3.45 | 0.00 | 0.00 | 0.00 |
procyanidin B2 | 7.00 | 6.55 | 5.93 | 0.41 | 0.52 | 0.43 |
procyanidin B1 | 0.24 | 0.21 | 0.21 | 0.01 | 0.01 | 0.01 |
procyanidin B3 | 0.48 | 0.42 | 0.39 | 0.00 | 0.00 | 0.00 |
quercetin-3-O-glucoside | 380.52 | 353.15 | 356.23 | 37.09 | 40.72 | 38.06 |
kaempferol-3-O-rutinoside | 7.57 | 7.12 | 6.35 | 14.08 | 14.88 | 15.02 |
rutin | 694.99 | 696.19 | 640.73 | 45.35 | 50.33 | 45.72 |
dihydromyricetin | 3.64 | 3.22 | 3.01 | 8.28 | 9.09 | 8.85 |
Transcript Length Interval | 200–500 bp | 500–1k bp | 1k–2k bp | >2k bp | Total |
---|---|---|---|---|---|
Number of transcripts | 62,606 | 25,307 | 31,355 | 29,654 | 148,922 |
Number of unigenes | 62,588 | 21,048 | 14,300 | 13,006 | 110,942 |
Number of conden genes | 302 | 3345 | 7946 | 10,029 | 21,622 |
Samples | Total_Reads | Clean_Reads | %>Q20 | %>Q30 | Mapped Reads (%) | Secondary Alignments (%) | Unique Mapped (%) |
---|---|---|---|---|---|---|---|
BXK_1 | 81,727,748 | 81,727,706 | 97.81% | 93.52% | 67,113,867 (67.24) | 18,086,546 (18.12) | 49,027,321 (49.12) |
BXK_2 | 93,641,990 | 93,641,948 | 97.87% | 93.71% | 76,691,067 (67.22) | 20,445,351 (17.92) | 56,245,716 (49.3) |
BXK_3 | 106,129,474 | 106,129,422 | 97.96% | 93.97% | 86,499,777 (66.63) | 23,691,204 (18.25) | 62,808,573 (48.38) |
HXK_1 | 91,740,416 | 91,740,386 | 97.92% | 93.85% | 77,487,325 (68.14) | 21,970,557 (19.32) | 55,516,768 (48.82) |
HXK_2 | 96,117,694 | 96,117,654 | 97.73% | 93.31% | 81,692,006 (68.9) | 22,455,670 (18.94) | 59,236,336 (49.96) |
HXK_3 | 94,944,072 | 94,944,020 | 97.78% | 93.44% | 81,438,637 (69.49) | 22,253,903 (18.99) | 59,184,734 (50.5) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, D.; He, G.; Wang, K.; Wang, T.; Zhu, Z.; Niu, Z.; Shi, G.; Liu, G. Anthocyanins Profiling Analysis and RNA-Seq Revealed the Dominating Pigments and Coloring Mechanism in Cyclamen Flowers. Biology 2022, 11, 1721. https://doi.org/10.3390/biology11121721
Xia D, He G, Wang K, Wang T, Zhu Z, Niu Z, Shi G, Liu G. Anthocyanins Profiling Analysis and RNA-Seq Revealed the Dominating Pigments and Coloring Mechanism in Cyclamen Flowers. Biology. 2022; 11(12):1721. https://doi.org/10.3390/biology11121721
Chicago/Turabian StyleXia, Demei, Guoqiang He, Kai Wang, Taoyuan Wang, Zhiguo Zhu, Zhaoqian Niu, Gongfa Shi, and Guiling Liu. 2022. "Anthocyanins Profiling Analysis and RNA-Seq Revealed the Dominating Pigments and Coloring Mechanism in Cyclamen Flowers" Biology 11, no. 12: 1721. https://doi.org/10.3390/biology11121721
APA StyleXia, D., He, G., Wang, K., Wang, T., Zhu, Z., Niu, Z., Shi, G., & Liu, G. (2022). Anthocyanins Profiling Analysis and RNA-Seq Revealed the Dominating Pigments and Coloring Mechanism in Cyclamen Flowers. Biology, 11(12), 1721. https://doi.org/10.3390/biology11121721