Exploring the Relationship between Biological Maturation Level, Muscle Strength, and Muscle Power in Adolescents
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Measurements
2.3.1. Anthropometric Measurements
2.3.2. Sitting Height Measurement
2.3.3. Somatic Maturation
2.3.4. Grip Strength
2.3.5. Countermovement Jump
2.3.6. Muscle Peak Power
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Malina, R.M.; Bouchard, C.; Bar-Or, O. Growth, Maturation, and Physical Activity; Human Kinetics: Champaign, IL, USA, 2004. [Google Scholar]
- Baxter-Jones, A.D.; Eisenmann, J.C.; Sherar, L.B. Controlling for maturation in pediatric exercise science. Pediatr. Exerc. Sci. 2005, 17, 18–30. [Google Scholar] [CrossRef]
- Pearson, D.; Naughton, G.A.; Torode, M. Predictability of physiological testing and the role of maturation in talent identification for adolescent team sports. J. Sci. Med. Sport 2006, 9, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Costa, E.C.; Vieira, C.M.; Moreira, A.; Ugrinowitsch, C.; Castagna, C.; Aoki, M.S. Monitoring external and internal loads of Brazilian soccer referees during official matches. J. Sport. Sci. Med. 2013, 12, 559–564. [Google Scholar]
- Van Praagh, E.; Doré, E. Short-term muscle power during growth and maturation. Sport. Med. 2002, 32, 701–728. [Google Scholar] [CrossRef] [PubMed]
- Malina, R.M.; Dompier, T.P.; Powell, J.W.; Barron, M.J.; Moore, M.T. Validation of a noninvasive maturity estimate relative to skeletal age in youth football players. Clin. J. Sport Med. 2007, 17, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Söğüt, M.; Yapici, H.; Luz, L.G.; Giudicelli, B.; Clemente, F.M.; Doğan, A.A. Maturity-associated variations in anthropometry, physical fitness, and sport-specific skills among young male and female futsal players. Hum. Mov. 2022, 23, 70–76. [Google Scholar] [CrossRef]
- Hollmann, W.; Strüder, H.K.; Tagarakis, C.V.; King, G. Physical activity and the elderly. Eur. J. Prev. Cardiol. 2007, 14, 730–739. [Google Scholar] [CrossRef]
- Beunen, G.; Thomis, M. Muscular strength development in children and adolescents. Pediatr. Exerc. Sci. 2000, 12, 174–197. [Google Scholar] [CrossRef] [Green Version]
- Faigenbaum, A.D.; Westcott, W.L. Strength & Power for Young Athletes; Human Kinetics: Champaign, IL, USA, 2000. [Google Scholar]
- Dowda, M.; Ainsworth, B.E.; Addy, C.L.; Saunders, R.; Riner, W. Environmental influences, physical activity, and weight status in 8-to 16-year-olds. Arch. Pediatr. Adolesc. Med. 2001, 155, 711–717. [Google Scholar] [CrossRef] [Green Version]
- Batterham, A.M.; Birch, K.M. Allometry of anaerobic performance: A gender comparison. Can. J. Appl. Physiol. 1996, 21, 48–62. [Google Scholar] [CrossRef]
- Nozaki, M.; Li, Y.; Zhu, J.; Ambrosio, F.; Uehara, K.; Fu, F.H.; Huard, J. Improved muscle healing after contusion injury by the inhibitory effect of suramin on myostatin, a negative regulator of muscle growth. Am. J. Sport. Med. 2008, 36, 2354–2362. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, R.S.; Oliver, J.L.; Faigenbaum, A.D.; Myer, G.D.; Croix, M.B.D.S. Chronological age vs. biological maturation: Implications for exercise programming in youth. J. Strength Cond. Res. 2014, 28, 1454–1464. [Google Scholar] [CrossRef]
- Naylor, P.-J.; Nettlefold, L.; Race, D.; Hoy, C.; Ashe, M.C.; Higgins, J.W.; McKay, H.A. Implementation of school based physical activity interventions: A systematic review. Prev. Med. 2015, 72, 95–115. [Google Scholar] [CrossRef]
- Malina, R.M. Growth, Maturation and Performance. In GARRET, WE.; KIRKENDAL, DT Exercise and Sport Science; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2000; pp. 425–446. [Google Scholar]
- Dougherty, K.A.; Schall, J.I.; Rovner, A.J.; Stallings, V.A.; Zemel, B.S. Attenuated maximal muscle strength and peak power in children with sickle cell disease. J. Pediatr. Hematol. Oncol. 2011, 33, 93–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, D.A.; Round, J.M. Skeletal Muscle in Health and Disease: A Textbook of Muscle Physiology; Manchester University Press: Manchester, UK, 1990. [Google Scholar]
- Mendez-Villanueva, A.; Buchheit, M.; Kuitunen, S.; Douglas, A.; Peltola, E.; Bourdon, P. Age-related differences in acceleration, maximum running speed, and repeated-sprint performance in young soccer players. J. Sport. Sci. 2011, 29, 477–484. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, W.J. A series of studies—The physiological basis for strength training in American football: Fact over philosophy. J. Strength Cond. Res. 1997, 11, 131–142. [Google Scholar] [CrossRef]
- Khamis, H.J.; Roche, A.F. Predicting adult stature without using skeletal age: The Khamis-Roche method. Pediatrics 1994, 94, 504–507. [Google Scholar] [PubMed]
- Malina, R.M.; Cumming, S.P.; Morano, P.J.; Barron, M.; Miller, S.J. Maturity status of youth football players: A noninvasive estimate. Med. Sci. Sport. Exerc. 2005, 37, 1044–1052. [Google Scholar]
- Cumming, S.P.; Standage, M.; Gillison, F.B.; Dompier, T.P.; Malina, R.M. Biological maturity status, body size, and exercise behaviour in British youth: A pilot study. J. Sport. Sci. 2009, 27, 677–686. [Google Scholar] [CrossRef] [PubMed]
- Bonitch-Góngora, J.G.; Bonitch-Domínguez, J.G.; Padial, P.; Feriche, B. The effect of lactate concentration on the handgrip strength during judo bouts. J. Strength Cond. Res. 2012, 26, 1863–1871. [Google Scholar] [CrossRef] [PubMed]
- Lindstrom-Hazel, D.; Kratt, A.; Bix, L. Interrater reliability of students using hand and pinch dynamometers. Am. J. Occup. Ther. 2009, 63, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Kons, R.L.; Dal Pupo, J.; Gheller, R.G.; Costa, F.E.; Rodrigues, M.M.; Bishop, C.; Detanico, D. Effects of successive judo matches on interlimb asymmetry and bilateral deficit. Phys. Ther. Sport 2021, 47, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Detanico, D.; Dellagrana, R.A.; Athayde, M.S.d.S.; Kons, R.L.; Góes, A. Effect of a Brazilian Jiu-jitsu-simulated tournament on strength parameters and perceptual responses. Sport. Biomech. 2017, 16, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Ingebrigtsen, J.; Brochmann, M.; Castagna, C.; Bradley, P.S.; Ade, J.; Krustrup, P.; Holtermann, A. Relationships between field performance tests in high-level soccer players. J. Strength Cond. Res. 2014, 28, 942–949. [Google Scholar] [CrossRef]
- Germano, M.D.; de Mattos, R.S.; Sindorf, M.A.G.; Marchetti, P.H.; Verlengia, R.; Lopes, C.R.; Da Mota, G.R.; Crisp, A.H. Effects of pre-season short-term daily undulating periodized training on muscle strength and sprint performance of under-20 soccer players. Int. J. Sport Cult. Sci. 2015, 3, 64–72. [Google Scholar]
- Gülü, M.; Akalan, C. A new peak-power estimation equations in 12 to 14 years-old soccer players. Medicine 2021, 100, e27383. [Google Scholar] [CrossRef]
- Yagin, F.H.; Guldogan, E.; Colak, C. A web-based software for the calculation of theoretical probability distributions. J. Cogn. Syst. 2021, 6, 44–50. [Google Scholar]
- Cohen, J. The Earth Is Round (p < 0.05). In What If There Were No Significance Tests? Routledge: Oxfordshire, UK, 2016; pp. 69–82. [Google Scholar]
- Yagin, B.; Yagin, F.H.; Gozukara, H.; Colak, C. A Web-Based Software for Reporting Guidelines of Scientific Researches. J. Cogn. Syst. 2021, 6, 39–43. [Google Scholar]
- Albaladejo-Saura, M.; Vaquero-Cristóbal, R.; García-Roca, J.A.; Esparza-Ros, F. The effect of age, biological maturation and birth quartile in the kinanthropometric and physical fitness differences between male and female adolescent volleyball players. Children 2022, 9, 58. [Google Scholar] [CrossRef]
- Almeida-Neto, P.F.d.; de Medeiros, R.C.d.S.C.; de Matos, D.G.; Baxter-Jones, A.D.; Aidar, F.J.; de Assis, G.G.; Silva Dantas, P.M.; Cabral, B.G.d.A.T. Lean mass and biological maturation as predictors of muscle power and strength performance in young athletes. PLoS ONE 2021, 16, e0254552. [Google Scholar] [CrossRef] [PubMed]
- Massa, M.; Moreira, A.; Costa, R.A.; Lima, M.R.; Thiengo, C.R.; Marquez, W.Q.; Coutts, A.J.; Aoki, M.S. Biological maturation influences selection process in youth elite soccer players. Biol. Sport 2022, 39, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, E.; Ramos, A.; Janeira, M.A.; Baxter-Jones, A.D.; Maia, J. How does biological maturation and training experience impact the physical and technical performance of 11–14-year-old male basketball players? Sports 2019, 7, 243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Almeida-Neto, P.F.; de Matos, D.G.; Jeffreys, I.; de Queiros, V.S.; Aidar, F.J.; Pinto, V.C.M.; Bulhões-Correia, A.; Dantas, P.M.S.; de Araújo Tinôco Cabral, B.G. Muscle strength of the upper limbs & biological maturation: Associations with bone mass in adolescent athletes of both sexes. Sport Sci. Health 2022, 18, 771–780. [Google Scholar]
- Gómez-Campos, R.; Andruske, C.L.; Arruda, M.d.; Sulla-Torres, J.; Pacheco-Carrillo, J.; Urra-Albornoz, C.; Cossio-Bolaños, M. Normative data for handgrip strength in children and adolescents in the Maule Region, Chile: Evaluation based on chronological and biological age. PLoS ONE 2018, 13, e0201033. [Google Scholar] [CrossRef]
- Jones, M.; Hitchen, P.; Stratton, G. The importance of considering biological maturity when assessing physical fitness measures in girls and boys aged 10 to 16 years. Ann. Hum. Biol. 2000, 27, 57–65. [Google Scholar] [CrossRef]
Variables | Sex | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Girls (n = 277) | Boys (n = 414) | |||||||||
Mean | SD | 95% CI | Min | Max | Mean | SD | 95% CI | Min | Max | |
Chronological age (years) | 11.96 | 0.25 | [11.93–11.99] | 11.52 | 12.68 | 12.02 | 0.30 | [11.98–12.05] | 11.51 | 12.50 |
Percentage of PAS (%) | 85.04 | 6.58 | [77.29–92.78] | 69.50 | 98.70 | 84.85 | 2.71 | [84.53–85.17] | 75.40 | 92.60 |
Body height (cm) | 155.66 | 7.94 | [154.72–156.59] | 130 | 175 | 155.23 | 9.10 | [154.16–156.30] | 115 | 175 |
Sitting height (cm) | 76.19 | 5.01 | [75.60–76.78] | 66.90 | 88.20 | 77.35 | 5.00 | [76.76–77.94] | 66.90 | 88.20 |
Body mass (kg) | 49.64 | 11.90 | [48.23–51.04] | 27.00 | 88.00 | 50.20 | 12.57 | [48.71–51.68] | 27.50 | 92.00 |
BMI (kg/m2) | 20.47 | 4.02 | [19.99–20.94] | 12.49 | 33.29 | 20.51 | 4.35 | [19.99–21.02] | 12.96 | 39.64 |
Grip strength right (kg) | 22.22 | 5.37 | [21.59–22.85] | 10.20 | 40.30 | 22.39 | 5.46 | [21.74–23.03] | 7.90 | 55.80 |
Grip strength left (kg) | 20.96 | 5.55 | [20.31–21.61] | 8.20 | 45.40 | 21.08 | 5.35 | [20.45–21.71] | 8.20 | 52.30 |
Vertical jump (cm) | 21.54 | 4.43 | [21.02–22.06] | 10.20 | 34.10 | 22.74 | 4.66 | [22.19–23.29] | 8.30 | 34.70 |
Power (Watt/kg) | 1928.51 | 630.50 | [1854.26–2002.76] | 422.55 | 3700.24 | 2025.99 | 640.95 | [1950.51–2101.47] | 468.41 | 4086.01 |
Variables | Girls (n = 277) | Boys (n = 414) | t-Value | p-Value | ES |
---|---|---|---|---|---|
Chronological age (years) | 11.96 ± 0.3 | 12.01 ± 0.3 | −2.467 | 0.014 * | 0.167 |
Anthropometry | |||||
Body height (cm) | 155.6 ± 7.9 | 155.2 ± 9.1 | 0.654 | 0.520 | 0.046 |
Sitting height (cm) | 76.2 ± 5.0 | 77.3 ± 4.9 | −2.986 | 0.003 * | 0.223 |
Body mass (kg) | 49.6 ± 11.8 | 50.2 ± 12.6 | −0.587 | 0.553 | 0.049 |
BMI (kg/m2) | 20.5 ± 4.0 | 20.5 ± 4.3 | −0.137 | 0.889 | 0 |
Fitness | |||||
Grip strength right (kg) | 22.2 ± 5.4 | 22.4 ± 5.5 | −0.401 | 0.688 | 0.037 |
Grip strength left (kg) | 21.0 ± 5.6 | 21.1 ± 5.4 | −0.295 | 0.768 | 0.018 |
Vertical jump (cm) | 21.5 ± 4.4 | 22.7 ± 4.7 | −3.376 | 0.001 * | 0.262 |
Power (Watt/kg) | 1928 ± 630 | 2025 ± 640 | −1.972 | 0.048 * | 0.153 |
Dependent Variables | Maturity Groups (n = 691) | ANOVA | ES | ||||||
---|---|---|---|---|---|---|---|---|---|
Early (n = 114) | On-Time (n = 538) | Late (n = 39) | F | p-Value | Post-Hoc Comparisons | Early On-Time | Early Late | On-Time Late | |
Chronological age (years) | 12.1 ± 0.3 | 11.9 ± 0.3 | 11.9 ± 0.3 | 9.441 | 0.001 * | Early > on-time & late | 0.31 | 0.57 | 0.50 |
Anthropometry | |||||||||
Body height (cm) | 160.3 ± 8.6 | 154.8 ± 8.4 | 149.5 ± 8.1 | 31.276 | 0.001 * | Early > on-time > late | 0.57 | 1.03 | 0.92 |
Sitting height (cm) | 81.6 ± 3.9 | 75.9 ± 4.7 | 76.1 ± 4.2 | 71.266 | 0.001 * | Early > on-time & late | 0.87 | 1.56 | 1.39 |
Body mass (kg) | 59.7 ± 12.1 | 48.1 ± 11.3 | 47.8 ± 12.6 | 47.970 | 0.001 * | Early > on-time & late | 0.71 | 1.28 | 1.14 |
BMI (kg/m2) | 22.9 ± 4.4 | 20.1 ± 4.0 | 19.0 ± 4.1 | 24.485 | 0.001 * | Early > on-time & late | 0.51 | 0.91 | 0.82 |
Fitness | |||||||||
Grip strength right (kg) | 24.8 ± 3.9 | 21.9 ± 5.7 | 20.9 ± 3.7 | 14.915 | 0.001 * | Early > on-time & late | 0.39 | 0.71 | 0.64 |
Grip strength left (kg) | 23.5 ± 3.9 | 20.6 ± 5.7 | 19.5 ± 3.5 | 15.790 | 0.001 * | Early > on-time & late | 0.40 | 0.73 | 0.65 |
Vertical jump (cm) | 23.2 ± 4.5 | 22.2 ± 4.7 | 19.9 ± 3.0 | 7.819 | 0.001 * | Early & on-time > late | 0.28 | 0.51 | 0.46 |
Power (Watt/kg) | 2506 ± 621 | 1894 ± 585 | 1742 ± 636 | 53.239 | 0.001 * | Early > on-time & late | 0.75 | 1.35 | 1.21 |
Dependent Variables | Maturity Groups (n = 414) | ANOVA | ES | ||||||
---|---|---|---|---|---|---|---|---|---|
Early (n = 53) | On-Time (n = 322) | Late (n = 39) | F | p-Value | Post-Hoc Comparisons | Early On-Time | Early Late | On-Time Late | |
Chronological age (years) | 12.2 ± 0.3 | 12.0 ± 0.3 | 11.9 ± 0.3 | 10.371 | 0.001 * | Early > on-time & late | 0.47 | 0.67 | 0.54 |
Anthropometry | |||||||||
Body height (cm) | 157.6 ± 10.9 | 155.5 ± 8.7 | 149.5 ± 8.1 | 10.076 | 0.001 * | Early & on-time > late | 0.47 | 0.66 | 0.53 |
Sitting height (cm) | 83.7 ± 2.5 | 76.5 ± 4.6 | 76.1 ± 4.2 | 65.185 | 0.001 * | Early > on-time & late | 1.19 | 1.70 | 1.36 |
Body mass (kg) | 56.3 ± 13.5 | 49.5 ± 12.1 | 47.8 ± 12.6 | 7.632 | 0.001 * | Early > on-time & late | 0.40 | 0.58 | 0.46 |
BMI (kg/m2) | 22.8 ± 4.8 | 20.3 ± 4.2 | 19.1 ± 4.1 | 10.279 | 0.001 * | Early > on-time & late | 0.47 | 0.67 | 0.54 |
Fitness | |||||||||
Grip strength right (kg) | 25.4 ± 4.5 | 22.1 ± 5.6 | 20.9 ± 3.7 | 10.596 | 0.001 * | Early > on-time & late | 0.48 | 0.68 | 0.55 |
Grip strength left (kg) | 24.0 ± 4.6 | 20.8 ± 5.5 | 19.5 ± 3.5 | 10.744 | 0.001 * | Early > on-time & late | 0.48 | 0.69 | 0.55 |
Vertical jump (cm) | 23.6 ± 5.0 | 22.9 ± 4.7 | 19.9 ± 3.0 | 8.691 | 0.001 * | Early & on-time > late | 0.49 | 0.62 | 0.49 |
Power (Watt/kg) | 2363 ± 686 | 2004 ± 612 | 1742 ± 636 | 11.927 | 0.001 * | Early > on-time & late | 0.51 | 0.72 | 0.58 |
Maturity Groups (n = 277) | t-Value | p-Value | ES | ||
---|---|---|---|---|---|
Dependent Variables | Early (n = 61) | On-Time (n = 216) | |||
Chronological age (years) | 12.0 ± 0.3 | 11.9 ± 0.2 | 2.128 | 0.034 * | 0.44 |
Anthropometry | |||||
Body height (cm) | 162.7 ± 5.6 | 153.7 ± 7.4 | 8.796 | 0.001 * | 1.27 |
Sitting height (cm) | 79.7 ± 3.9 | 75.2 ± 4.9 | 6.635 | 0.001 * | 0.95 |
Body mass (kg) | 62.6 ± 9.9 | 45.9 ± 9.7 | 11.658 | 0.001 * | 1.71 |
BMI (kg/m2) | 22.9 ± 3.9 | 19.8 ± 3.8 | 5.605 | 0.001 * | 0.81 |
Fitness | |||||
Grip strength right (kg) | 24.2 ± 3.2 | 21.7 ± 5.7 | 3.275 | 0.001 * | 0.47 |
Grip strength left (kg) | 23.8 ± 3.2 | 20.4 ± 5.9 | 3.446 | 0.001 * | 0.62 |
Vertical jump (cm) | 22.9 ± 4.1 | 21.1 ± 4.5 | 2.846 | 0.005 * | 0.40 |
Power (Watt/kg) | 2630 ± 534 | 1730 ± 501 | 10.669 | 0.001 * | 1.77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yapici, H.; Gulu, M.; Yagin, F.H.; Eken, O.; Gabrys, T.; Knappova, V. Exploring the Relationship between Biological Maturation Level, Muscle Strength, and Muscle Power in Adolescents. Biology 2022, 11, 1722. https://doi.org/10.3390/biology11121722
Yapici H, Gulu M, Yagin FH, Eken O, Gabrys T, Knappova V. Exploring the Relationship between Biological Maturation Level, Muscle Strength, and Muscle Power in Adolescents. Biology. 2022; 11(12):1722. https://doi.org/10.3390/biology11121722
Chicago/Turabian StyleYapici, Hakan, Mehmet Gulu, Fatma Hilal Yagin, Ozgur Eken, Tomasz Gabrys, and Vera Knappova. 2022. "Exploring the Relationship between Biological Maturation Level, Muscle Strength, and Muscle Power in Adolescents" Biology 11, no. 12: 1722. https://doi.org/10.3390/biology11121722
APA StyleYapici, H., Gulu, M., Yagin, F. H., Eken, O., Gabrys, T., & Knappova, V. (2022). Exploring the Relationship between Biological Maturation Level, Muscle Strength, and Muscle Power in Adolescents. Biology, 11(12), 1722. https://doi.org/10.3390/biology11121722