Assessment of the RNA Silencing Suppressor Activity of Protein P0 of Pepper Vein Yellows Virus 5: Uncovering Natural Variability, Relevant Motifs and Underlying Mechanism
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Viral Isolates and RT-PCR Amplification
2.2. DNA Constructs
2.3. Sequence Analyses
2.4. Agroinfiltration Assays and Fluorescence Imaging
2.5. RNA Extraction and Northern Blot Analysis
2.6. Protein Extraction and Western Blot Analysis
3. Results
3.1. PeVYV-5 P0 Acts as Efficient VSR
3.2. PeVYV-5 P0 Induces Efficient Degradation of AGO Proteins
3.3. Analysis of Natural Variability of PeVYV-5 P0 Reveals Considerable Conservation
3.4. Alterations in Several Motifs of PeVYV-5 P0 Abolish Its VSR Function Concurrently with Its Capability to Induce AGO Degradation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Csorba, T.; Pantaleo, V.; Burgyán, J. RNA Silencing: An Antiviral Mechanism. Adv. Virus Res. 2009, 75, 35–71. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zhang, X.; Fan, Y.; Li, B.; Ryabov, E.; Shi, N.; Zhao, M.; Yu, Z.; Qin, C.; Zheng, Q.; et al. A Genetic Network for Systemic RNA Silencing in Plants. Plant Physiol. 2018, 176, 2700–2719. [Google Scholar] [CrossRef] [PubMed]
- Csorba, T.; Kontra, L.; Burgyán, J. Viral Silencing Suppressors: Tools Forged to Fine-Tune Host-Pathogen Coexistence. Virology 2015, 479–480, 85–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, Y.; Zhao, J.-H.; Guo, H.-S. Recent Advances in Understanding Plant Antiviral RNAi and Viral Suppressors of RNAi. Curr. Opin. Virol. 2021, 46, 65–72. [Google Scholar] [CrossRef]
- Vargason, J.M.; Szittya, G.; Burgyán, J.; Hall, T.M.T. Size Selective Recognition of SiRNA by an RNA Silencing Suppressor. Cell 2003, 115, 799–811. [Google Scholar] [CrossRef] [Green Version]
- Ye, K.; Malinina, L.; Patel, D.J. Recognition of Small Interfering RNA by a Viral Suppressor of RNA Silencing. Nature 2003, 426, 874–878. [Google Scholar] [CrossRef] [Green Version]
- Lakatos, L.; Csorba, T.; Pantaleo, V.; Chapman, E.J.; Carrington, J.C.; Liu, Y.-P.; Dolja, V.V.; Calvino, L.F.; López-Moya, J.J.; Burgyán, J. Small RNA Binding Is a Common Strategy to Suppress RNA Silencing by Several Viral Suppressors. EMBO J. 2006, 25, 2768–2780. [Google Scholar] [CrossRef] [Green Version]
- Hemmes, H.; Lakatos, L.; Goldbach, R.; Burgyán, J.; Prins, M. The NS3 Protein of Rice Hoja Blanca Tenuivirus Suppresses RNA Silencing in Plant and Insect Hosts by Efficiently Binding Both SiRNAs and MiRNAs. RNA 2007, 13, 1079–1089. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Cañamás, M.; Hernández, C. Key Importance of Small RNA Binding for the Activity of a Glycine-Tryptophan (GW) Motif-Containing Viral Suppressor of RNA Silencing. J. Biol. Chem. 2015, 290, 3106–3120. [Google Scholar] [CrossRef] [Green Version]
- González, I.; Rakitina, D.; Semashko, M.; Taliansky, M.; Praveen, S.; Palukaitis, P.; Carr, J.P.; Kalinina, N.; Canto, T. RNA Binding Is More Critical to the Suppression of Silencing Function of Cucumber Mosaic Virus 2b Protein than Nuclear Localization. RNA 2012, 18, 771–782. [Google Scholar] [CrossRef]
- Mérai, Z.; Kerényi, Z.; Molnár, A.; Barta, E.; Válóczi, A.; Bisztray, G.; Havelda, Z.; Burgyán, J.; Silhavy, D. Aureusvirus P14 Is an Efficient RNA Silencing Suppressor That Binds Double-Stranded RNAs without Size Specificity. J. Virol. 2005, 79, 7217–7226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mérai, Z.; Kerényi, Z.; Kertész, S.; Magna, M.; Lakatos, L.; Silhavy, D. Double-Stranded RNA Binding May Be a General Plant. RNA Viral Strategy to Suppress RNA Silencing. J. Virol. 2006, 80, 5747–5756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva-Martins, G.; Bolaji, A.; Moffett, P. What Does It Take to Be Antiviral? An Argonaute-Centered Perspective on Plant Antiviral Defense. J. Exp. Bot. 2020, 71, 6197–6210. [Google Scholar] [CrossRef] [PubMed]
- Chiu, M.-H.; Chen, I.-H.; Baulcombe, D.C.; Tsai, C.-H. The Silencing Suppressor P25 of Potato Virus X Interacts with Argonaute1 and Mediates Its Degradation through the Proteasome Pathway. Mol. Plant Pathol. 2010, 11, 641–649. [Google Scholar] [CrossRef]
- Kenesi, E.; Carbonell, A.; Lózsa, R.; Vértessy, B.; Lakatos, L. A Viral Suppressor of RNA Silencing Inhibits ARGONAUTE 1 Function by Precluding Target RNA Binding to Pre-Assembled RISC. Nucleic Acids Res. 2017, 45, 7736–7750. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wu, Y.; Gong, Q.; Ismayil, A.; Yuan, Y.; Lian, B.; Jia, Q.; Han, M.; Deng, H.; Hong, Y.; et al. Geminiviral V2 Protein Suppresses Transcriptional Gene Silencing through Interaction with AGO4. J. Virol. 2019, 93, e01675-18. [Google Scholar] [CrossRef] [Green Version]
- Sõmera, M.; Fargette, D.; Hébrard, E.; Sarmiento, C.; ICTV Report Consortium. ICTV Virus Taxonomy Profile: Solemoviridae 2021. J. Gen. Virol. 2021, 102, 001707. [Google Scholar] [CrossRef]
- Garcia-Ruiz, H.; Holste, N.M.; LaTourrette, K. Poleroviruses (Luteoviridae). In Encyclopedia of Virology, 4th ed.; Bamford, D.H., Zuckerman, M., Eds.; Academic Press: Oxford, UK, 2021; pp. 594–602. ISBN 978-0-12-814516-6. [Google Scholar]
- LaTourrette, K.; Holste, N.M.; Garcia-Ruiz, H. Polerovirus Genomic Variation. Virus Evol. 2021, 7, veab102. [Google Scholar] [CrossRef]
- Baumberger, N.; Tsai, C.-H.; Lie, M.; Havecker, E.; Baulcombe, D.C. The Polerovirus Silencing Suppressor P0 Targets ARGONAUTE Proteins for Degradation. Curr. Biol. 2007, 17, 1609–1614. [Google Scholar] [CrossRef] [Green Version]
- Bortolamiol, D.; Pazhouhandeh, M.; Marrocco, K.; Genschik, P.; Ziegler-Graff, V. The Polerovirus F Box Protein P0 Targets ARGONAUTE1 to Suppress RNA Silencing. Curr. Biol. 2007, 17, 1615–1621. [Google Scholar] [CrossRef]
- Carbonell, A.; Carrington, J.C. Antiviral Roles of Plant ARGONAUTES. Curr. Opin. Plant Biol. 2015, 27, 111–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derrien, B.; Clavel, M.; Baumberger, N.; Iki, T.; Sarazin, A.; Hacquard, T.; Ponce, M.R.; Ziegler-Graff, V.; Vaucheret, H.; Micol, J.L.; et al. A Suppressor Screen for AGO1 Degradation by the Viral F-Box P0 Protein Uncovers a Role for AGO DUF1785 in SRNA Duplex Unwinding. Plant Cell 2018, 30, 1353–1374. [Google Scholar] [CrossRef] [Green Version]
- Fiallo-Olivé, E.; Navas-Hermosilla, E.; Ferro, C.G.; Zerbini, F.M.; Navas-Castillo, J. Evidence for a Complex of Emergent Poleroviruses Affecting Pepper Worldwide. Arch. Virol. 2018, 163, 1171–1178. [Google Scholar] [CrossRef]
- Lotos, L.; Olmos, A.; Orfanidou, C.; Efthimiou, K.; Avgelis, A.; Katis, N.I.; Maliogka, V.I. Insights into the Etiology of Polerovirus-Induced Pepper Yellows Disease. Phytopathology 2017, 107, 1567–1576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamran, A.; Lotos, L.; Amer, M.A.; Al-Saleh, M.A.; Alshahwan, I.M.; Shakeel, M.T.; Ahmad, M.H.; Umar, M.; Katis, N.I. Characterization of Pepper Leafroll Chlorosis Virus, a New Polerovirus Causing Yellowing Disease of Bell Pepper in Saudi Arabia. Plant Dis. 2018, 102, 318–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pantoja, K.F.C.; De Marchi, B.R.; Krause-Sakate, R.; Mituti, T.; Rezende, J.a.M.; Ghanim, M.; Ghosh, S.; Boari, A.J. First Report of a Putative New Pepper Vein Yellows Virus Species Associated with a Vein Yellows Disease of Bonnet Pepper Plants in Brazil. Plant Dis. 2019, 103, 2972. [Google Scholar] [CrossRef]
- Koeda, S.; Homma, K.; Kamitani, M.; Nagano, A.J.; Taniguchi, M.; Pohan, N.; Kesumawati, E. Pepper Vein Yellows Virus 9: A Novel Polerovirus Isolated from Chili Pepper in Indonesia. Arch. Virol. 2020, 165, 3017–3021. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Yin, Y.; Hua, M.; Wang, S.; Mo, X.; Yuan, E.; Zheng, H.; Lin, L.; Chen, H.; Lu, Y.; et al. Pod Pepper Vein Yellows Virus, a New Recombinant Polerovirus Infecting Capsicum Frutescens in Yunnan Province, China. Virol. J. 2021, 18, 42. [Google Scholar] [CrossRef]
- Villanueva, F.; Castillo, P.; Font, M.I.; Alfaro-Fernández, A.; Moriones, E.; Navas-Castillo, J. First Report of Pepper Vein Yellows Virus Infecting Sweet Pepper in Spain. Plant Dis. 2013, 97, 1261. [Google Scholar] [CrossRef]
- Liu, M.; Liu, X.; Li, X.; Zhang, D.; Dai, L.; Tang, Q. Complete Genome Sequence of a Chinese Isolate of Pepper Vein Yellows Virus and Evolutionary Analysis Based on the CP, MP and RdRp Coding Regions. Arch. Virol. 2016, 161, 677–683. [Google Scholar] [CrossRef]
- Wang, L.; Tian, P.; Yang, X.; Zhou, X.; Zhang, S.; Li, C.; Yang, X.; Liu, Y. Key Amino Acids for Pepper Vein Yellows Virus P0 Protein Pathogenicity, Gene Silencing, and Subcellular Localization. Front. Microbiol. 2021, 12, 680658. [Google Scholar] [CrossRef]
- Dombrovsky, A.; Glanz, E.; Lachman, O.; Sela, N.; Doron-Faigenboim, A.; Antignus, Y. The Complete Genomic Sequence of Pepper Yellow Leaf Curl Virus (PYLCV) and Its Implications for Our Understanding of Evolution Dynamics in the Genus Polerovirus. PLoS ONE 2013, 8, e70722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knoester, M.; van Loon, L.C.; van den Heuvel, J.; Hennig, J.; Bol, J.F.; Linthorst, H.J. Ethylene-Insensitive Tobacco Lacks Nonhost Resistance against Soil-Borne Fungi. Proc. Natl. Acad. Sci. USA 1998, 95, 1933–1937. [Google Scholar] [CrossRef] [Green Version]
- Carbonell, A.; Fahlgren, N.; Garcia-Ruiz, H.; Gilbert, K.B.; Montgomery, T.A.; Nguyen, T.; Cuperus, J.T.; Carrington, J.C. Functional Analysis of Three Arabidopsis ARGONAUTES Using Slicer-Defective Mutants. Plant Cell 2012, 24, 3613–3629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montgomery, T.A.; Howell, M.D.; Cuperus, J.T.; Li, D.; Hansen, J.E.; Alexander, A.L.; Chapman, E.J.; Fahlgren, N.; Allen, E.; Carrington, J.C. Specificity of ARGONAUTE7-MiR390 Interaction and Dual Functionality in TAS3 Trans-Acting SiRNA Formation. Cell 2008, 133, 128–141. [Google Scholar] [CrossRef] [Green Version]
- Madeira, F.; Pearce, M.; Tivey, A.R.N.; Basutkar, P.; Lee, J.; Edbali, O.; Madhusoodanan, N.; Kolesnikov, A.; Lopez, R. Search and Sequence Analysis Tools Services from EMBL-EBI in 2022. Nucleic Acids Res. 2022, 50, W276–W279. [Google Scholar] [CrossRef]
- Kosakovsky Pond, S.L.; Frost, S.D.W. Not So Different After All: A Comparison of Methods for Detecting Amino Acid Sites Under Selection. Mol. Biol. Evol. 2005, 22, 1208–1222. [Google Scholar] [CrossRef] [Green Version]
- Verwoerd, T.C.; Dekker, B.M.M.; Hoekema, A. A Small-Scale Procedure for the Rapid Isolation of Plant RNAs. Nucleic Acids Res. 1989, 17, 2362. [Google Scholar] [CrossRef]
- Voinnet, O.; Pinto, Y.M.; Baulcombe, D.C. Suppression of Gene Silencing: A General Strategy Used by Diverse DNA and RNA Viruses of Plants. Proc. Nat. Acad. Sci. USA 1999, 96, 14147–14152. [Google Scholar] [CrossRef] [Green Version]
- Johansen, L.K.; Carrington, J.C. Silencing on the Spot. Induction and Suppression of RNA Silencing in the Agrobacterium-Mediated Transient Expression System. Plant Physiol. 2001, 126, 930–938. [Google Scholar] [CrossRef] [PubMed]
- Agrofoglio, Y.C.; Delfosse, V.C.; Casse, M.F.; Hopp, H.E.; Bonacic Kresic, I.; Ziegler-Graff, V.; Distéfano, A.J. P0 Protein of Cotton Leafroll Dwarf Virus-Atypical Isolate Is a Weak RNA Silencing Suppressor and the Avirulence Determinant That Breaks the Cotton Cbd Gene-Based Resistance. Plant Pathol. 2019, 68, 1059–1071. [Google Scholar] [CrossRef]
- Cascardo, R.S.; Arantes, I.L.G.; Silva, T.F.; Sachetto-Martins, G.; Vaslin, M.F.S.; Corrêa, R.L. Function and Diversity of P0 Proteins among Cotton Leafroll Dwarf Virus Isolates. Virol. J. 2015, 12, 123. [Google Scholar] [CrossRef] [PubMed]
- Kozlowska-Makulska, A.; Guilley, H.; Szyndel, M.S.; Beuve, M.; Lemaire, O.; Herrbach, E.; Bouzoubaa, S. P0 Proteins of European Beet-Infecting Poleroviruses Display Variable RNA Silencing Suppression Activity. J. Gen. Virol. 2010, 91, 1082–1091. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Sun, Q.; Zhao, T.; Xiang, H.; Zhang, X.; Wu, Z.; Zhou, C.; Zhang, X.; Wang, Y.; Zhang, Y.; et al. Interaction between Brassica Yellows Virus Silencing Suppressor P0 and Plant SKP1 Facilitates Stability of P0 in Vivo against Degradation by Proteasome and Autophagy Pathways. New Phytol. 2019, 222, 1458–1473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuo, T.; Li, Y.-Y.; Xiang, H.-Y.; Wu, Z.-Y.; Wang, X.-B.; Wang, Y.; Zhang, Y.-L.; Li, D.-W.; Yu, J.-L.; Han, C.-G. Amino Acid Sequence Motifs Essential for P0-Mediated Suppression of RNA Silencing in an Isolate of Potato Leafroll Virus from Inner Mongolia. Mol. Plant Microbe Interact. 2014, 27, 515–527. [Google Scholar] [CrossRef] [Green Version]
- Derrien, B.; Baumberger, N.; Schepetilnikov, M.; Viotti, C.; De Cillia, J.; Ziegler-Graff, V.; Isono, E.; Schumacher, K.; Genschik, P. Degradation of the Antiviral Component ARGONAUTE1 by the Autophagy Pathway. Proc. Natl. Acad. Sci. USA 2012, 109, 15942–15946. [Google Scholar] [CrossRef] [Green Version]
- Pazhouhandeh, M.; Dieterle, M.; Marrocco, K.; Lechner, E.; Berry, B.; Brault, V.; Hemmer, O.; Kretsch, T.; Richards, K.E.; Genschik, P.; et al. F-Box-like Domain in the Polerovirus Protein P0 Is Required for Silencing Suppressor Function. Proc. Natl. Acad. Sci. USA 2006, 103, 1994–1999. [Google Scholar] [CrossRef] [Green Version]
- Michaeli, S.; Clavel, M.; Lechner, E.; Viotti, C.; Wu, J.; Dubois, M.; Hacquard, T.; Derrien, B.; Izquierdo, E.; Lecorbeiller, M.; et al. The Viral F-Box Protein P0 Induces an ER-Derived Autophagy Degradation Pathway for the Clearance of Membrane-Bound AGO1. Proc. Natl. Acad. Sci. USA 2019, 116, 22872–22883. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Kanakala, S.; Lebedev, G.; Kontsedalov, S.; Silverman, D.; Alon, T.; Mor, N.; Sela, N.; Luria, N.; Dombrovsky, A.; et al. Transmission of a New Polerovirus Infecting Pepper by the Whitefly Bemisia Tabaci. J. Virol. 2019, 93, e00488-19. [Google Scholar] [CrossRef]
Primer | Position a | Sequence b | Constructs/ RT-PCR |
---|---|---|---|
CH857 CH857 | 51-72 (S) 779-801 (AS) | 5′-GTGGATCCATGAACTTTGAATTGATCAAC-3′ (BamHI) 5′-GACTGCAGTCACTGTAGTTCCTCCTGAATC-3′ (PstI) | 35S:P0REF 35S:P0BN2 |
CH857 CH868 | 51-72 (S) 779-798 (AS) | 5′-GTGGATCCATGAACTTTGAATTGATCAAC-3′ (BamHI) 5′-GGCTGCAGAGCGTAATCTGGAACATCGTATGGGTACTGTAGTTCCTCCTGAATC-3′ (PstI) | 35S:P0REF-HAFlag 35S:P0BN2-HAFlag |
CH882P CH883P | 81-136 (S) 81-136 (AS) | 5′-CTGAAAGTTTCCCTCACTGCCGCGGCCGGTTACGCAGAGAGAATCCTAAATTTAG-3′ 5′-CTAAATTTAGGATTCTCTCTGCGTAACCGGCCGCGGCAGTGAGGGAAACTTTCAG-3′ | 35S:P0REF-HAFlag mut1 |
CH884P CH885 | 200-245 (S) 200-245 (AS) | 5′-CTCTATTTGTGCTCTCGTCGCTTTCGTTTTCAGCAGCCAATGTCC-3′ 5′-GGACATTGGCTGCTGAAAACGAAAGCGACGAGAGCACAAATAGAG-3′ | 35S:P0REF-HAFlag mut2 |
CH886 CH887 | 200-245 (S) 200-245 (AS) | 5′-CTCTATTTGTGCTCTCCTCGCTTTCCTTCTCAGCAGCCAATGTCC-3′ 5′-GGACATTGGCTGCTGAGAAGGAAAGCGAGGAGAGCACAAATAGAG-3′ | 35S:P0REF-HAFlag mut3 |
CH888 CH889 | 264-313 (S) 264-313 (AS) | 5′-CCGCACCGGAACGGCATCGGGGAATGGGTCCGAGTCTCTAAGCTCGCTC-3′ 5′-GAGCGAGCTTAGAGACTCGGACCCATTCCCCGATGCCGTTCCGGTGCGG-3′ | 35S:P0REF-HAFlag mut4 |
CH890 CH891 | 662-707 (S) 662-707 (AS) | 5′-TGCTTTATGCCTTCACTACGTTCATGGTTATGGTA TTGCTGTGGA-3′ 5′-TCCACAGCAATACCATAACCATGAACGTAGTGA AGGCATAAAGCA-3′ | 35S:P0REF-HAFlag mut5 |
CH911 CH912 | 1-31 (S) 808-832 (AS) | 5′-CGTCTAGACAAAATATACGAAGAGAGAGAGCCCTTGC-3′ 5′-GCCTGCAGCAAAGAAATAAATCCCTTAACTTG-3′ | RT-PCR |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Cañamás, M.; Bustos, M.; Puértolas, V.; Castelló, Y.; Peiró, S.; Hernández, C. Assessment of the RNA Silencing Suppressor Activity of Protein P0 of Pepper Vein Yellows Virus 5: Uncovering Natural Variability, Relevant Motifs and Underlying Mechanism. Biology 2022, 11, 1801. https://doi.org/10.3390/biology11121801
Pérez-Cañamás M, Bustos M, Puértolas V, Castelló Y, Peiró S, Hernández C. Assessment of the RNA Silencing Suppressor Activity of Protein P0 of Pepper Vein Yellows Virus 5: Uncovering Natural Variability, Relevant Motifs and Underlying Mechanism. Biology. 2022; 11(12):1801. https://doi.org/10.3390/biology11121801
Chicago/Turabian StylePérez-Cañamás, Miryam, Mónica Bustos, Victoria Puértolas, Yolanda Castelló, Sofía Peiró, and Carmen Hernández. 2022. "Assessment of the RNA Silencing Suppressor Activity of Protein P0 of Pepper Vein Yellows Virus 5: Uncovering Natural Variability, Relevant Motifs and Underlying Mechanism" Biology 11, no. 12: 1801. https://doi.org/10.3390/biology11121801
APA StylePérez-Cañamás, M., Bustos, M., Puértolas, V., Castelló, Y., Peiró, S., & Hernández, C. (2022). Assessment of the RNA Silencing Suppressor Activity of Protein P0 of Pepper Vein Yellows Virus 5: Uncovering Natural Variability, Relevant Motifs and Underlying Mechanism. Biology, 11(12), 1801. https://doi.org/10.3390/biology11121801