Evaluation of Clove Extract for Drug Therapy of Ciliate Infection in Coral (Goniopora columna)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experiment 1, Evaluation of Toxicity and Coral Drug Tolerance of Clove Extract on Coral Ciliates Disease
2.1.1. Purification and Identification of Ciliates
2.1.2. Clove Extract
2.1.3. Coral Samples
2.1.4. Ciliate Toxicity Test
2.1.5. Evaluation of Coral’s Drug Tolerance to Clove Extract
2.1.6. Analysis of Two Antioxidant Enzymes
2.1.7. Superoxide Dismutase and Catalase Detection
2.1.8. Protein Concentrations
2.1.9. Analysis of Zooxanthellar Density and Chlorophyll a
2.2. Experiment 2, Clove Extract for Treatment of Coral Ciliates Disease
2.2.1. Ciliate Disease Treatment Test
2.2.2. Histology Observation
2.3. Statistical Analysis
3. Results
3.1. Experiment 1, Evaluation of Toxicity and Coral Drug Tolerance of Clove Extract on Coral Ciliates Disease
3.1.1. Toxicity Test of Clove Extract on Ciliates
3.1.2. The Effect of Clove Extract on G. columna Stress Response
3.1.3. Coral Drug Tolerance Assessment
3.2. Experiment 2, Clove Extract for Treatment of Coral Ciliates Disease
3.2.1. Drug Therapy Evaluation
3.2.2. Evaluation of the Treatment’s Response to G. columna Stress
3.2.3. The Impact to Coral Tissue
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Acosta, A. Disease in zoanthids: Dynamics in space and time. In The Ecology and Etiology of Newly Emerging Marine Diseases; Springer: Dordrecht, The Netherlands, 2001; pp. 113–130. [Google Scholar]
- Harvell, C.D.; Mitchell, C.E.; Ward, J.R.; Altizer, S.; Dobson, A.P.; Ostfeld, R.S.; Samuel, M.D. Climate warming and disease risks for terrestrial and marine biota. Science 2002, 296, 2158–2162. [Google Scholar] [CrossRef] [Green Version]
- Bourne, D.G.; Boyett, H.V.; Henderson, M.E.; Muirhead, A.; Willis, B.L. Identification of a ciliate (Oligohymenophorea: Scuticociliatia) associated with brown band disease on corals of the Great Barrier Reef. Appl. Environ. Microbiol. 2008, 74, 883–888. [Google Scholar] [CrossRef] [Green Version]
- Cróquer, A.; Bastidas, C.; Lipscomb, D. Folliculinid ciliates: A new threat to Caribbean corals? Dis. Aquat. Org. 2006, 69, 75–78. [Google Scholar] [CrossRef] [Green Version]
- Sweet, M.J.; Croquer, A.; Bythell, J.C. Experimental antibiotic treatment identifies potential pathogens of white band disease in the endangered Caribbean coral Acropora cervicornis. Proc. R. Soc. B Biol. Sci. 2014, 281, 20140094. [Google Scholar] [CrossRef] [Green Version]
- Winkler, R.; Antonius, A.; Abigail Renegar, D. The skeleton eroding band disease on coral reefs of Aqaba, Red Sea. Mar. Ecol. 2004, 25, 129–144. [Google Scholar] [CrossRef]
- Randall, C.J.; Jordán-Garza, A.G.; van Woesik, R. Ciliates associated with signs of disease on two Caribbean corals. Coral Reefs 2015, 34, 243–247. [Google Scholar] [CrossRef]
- Sweet, M.; Craggs, J.; Robson, J.; Bythell, J. Assessment of the microbial communities associated with white syndrome and brown jelly syndrome in aquarium corals. J. Zoo Aquar. Res. 2013, 1, 20–27. [Google Scholar]
- Bourne, D.G.; Ainsworth, T.D.; Pollock, F.J.; Willis, B.L. Towards a better understanding of white syndromes and their causes on Indo-Pacific coral reefs. Coral Reefs 2015, 34, 233–242. [Google Scholar] [CrossRef]
- Cheng, C.-M.; Cheng, Y.-R.; Ding, D.-S.; Chen, Y.-T.; Sun, W.-T.; Pan, C.-H. Effects of Ciliate Infection on the Activities of Two Antioxidant Enzymes (SOD and CAT) in Captive Coral (Goniopora columna) and Evaluation of Drug Therapy. Biology 2021, 10, 1216. [Google Scholar] [CrossRef]
- Willis, B.L.; Page, C.A.; Dindsdale, E.A. Coral disease in the Great Barrier Reef. In Coral Health and Disease; Rosenberg, E., Loya, Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Rodríguez, S.; Croquer, A.; Guzmán, H.M.; Bastidas, C. A mechanism of transmission and factors affecting coral susceptibility to Halofolliculina sp. infection. Coral Reefs 2009, 28, 67–77. [Google Scholar] [CrossRef]
- Katz, S.M.; Pollock, F.J.; Bourne, D.G.; Willis, B.L. Crown-of-thorns starfish predation and physical injuries promote brown band disease on corals. Coral Reefs 2014, 33, 705–716. [Google Scholar] [CrossRef]
- Ulstrup, K.E.; Kühl, M.; Bourne, D.G. Zooxanthellae harvested by ciliates associated with brown band syndrome of corals remain photosynthetically competent. Appl. Environ. Microbiol. 2007, 73, 1968–1975. [Google Scholar] [CrossRef] [Green Version]
- Aronson, R.B.; Precht, W.F. White-band disease and the changing face of Caribbean coral reefs. In The Ecology and Etiology of Newly Emerging Marine Diseases; Springer: Dordrecht, The Netherlands, 2001; pp. 25–38. [Google Scholar]
- Sweet, M.J.; Séré, M.G. Ciliate communities consistently associated with coral diseases. J. Sea Res. 2016, 113, 119–131. [Google Scholar] [CrossRef]
- Page, C.; Willis, B. Epidemiology of skeletal eroding band on the Great Barrier Reef and the role of injury in the initiation of this widespread coral disease. Coral Reefs 2008, 27, 257–272. [Google Scholar] [CrossRef]
- Liu, H.; Schmitz, J.C.; Wei, J.; Cao, S.; Beumer, J.H.; Strychor, S.; Cheng, L.; Liu, M.; Wang, C.; Wu, N. Clove extract inhibits tumor growth and promotes cell cycle arrest and apoptosis. Oncol. Res. Featur. Preclin. Clin. Cancer Ther. 2014, 21, 247–259. [Google Scholar] [CrossRef] [Green Version]
- Frisch, A.J.; Ulstrup, K.E.; Hobbs, J.-P.A. The effects of clove oil on coral: An experimental evaluation using Pocillopora damicornis (Linnaeus). J. Exp. Mar. Biol. Ecol. 2007, 345, 101–109. [Google Scholar] [CrossRef]
- Martini, N. Potion or Poison? Cloves. J. Prim. Health Care 2015, 7, 163. [Google Scholar] [CrossRef] [Green Version]
- Soto, C.G. Clove oil as a fish anaesthetic for measuring length and weight of rabbitfish (Siganus lineatus). Aquaculture 1995, 136, 149–152. [Google Scholar] [CrossRef]
- Taylor, P.W.; Roberts, S.D. Clove oil: An alternative anaesthetic for aquaculture. N. Am. J. Aquac. 1999, 61, 150–155. [Google Scholar] [CrossRef]
- Harper, C. Status of clove oil and eugenol for anesthesia of fish. Aquac. Mag. 2003, 29, 41–42. [Google Scholar]
- Munday, P.L.; Wilson, S. Comparative efficacy of clove oil and other chemicals in anaesthetization of Pomacentrus amboinensis, a coral reef fish. J. Fish Biol. 1997, 51, 931–938. [Google Scholar] [CrossRef]
- Nguyen, T. Isolation, Identification and Ecological Control Ciliates in Microalgal Cultures. KU Leuven, Science, Biology, 2019, 53. Available online: https://limo.libis.be/primo-explore/fulldisplay?docid=LIRIAS2803208&context=L&vid=Lirias&search_scope=Lirias&tab=default_tab&lang=en_US&fromSitemap=1 (accessed on 1 December 2021).
- Baird, A.H.; Bhagooli, R.; Ralph, P.J.; Takahashi, S. Coral bleaching: The role of the host. Trends Ecol. Evol. 2009, 24, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Lesser, M.P. Oxidative stress in marine environments: Biochemistry and physiological ecology. Annu. Rev. Physiol. 2006, 68, 253–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lesser, M.; Stochaj, W.; Tapley, D.; Shick, J. Bleaching in coral reef anthozoans: Effects of irradiance, ultraviolet radiation, and temperature on the activities of protective enzymes against active oxygen. Coral Reefs 1990, 8, 225–232. [Google Scholar] [CrossRef]
- DYKENS, J.A.; Shick, J.M.; Benoit, C.; Buettner, G.R.; Winston, G.W. Oxygen radical production in the sea anemone Anthopleura elegantissima and its endosymbiotic algae. J. Exp. Biol. 1992, 168, 219–241. [Google Scholar] [CrossRef]
- Downs, C.; Fauth, J.E.; Halas, J.C.; Dustan, P.; Bemiss, J.; Woodley, C.M. Oxidative stress and seasonal coral bleaching. Free Radic. Biol. Med. 2002, 33, 533–543. [Google Scholar] [CrossRef]
- Higuchi, T.; Fujimura, H.; Arakaki, T.; Oomori, T. Activities of antioxidant enzymes (SOD and CAT) in the coral Galaxea fascicularis against increased hydrogen peroxide concentrations in seawater. In Proceedings of the 11th International Coral Reef Symposium, Fort Lauderdale, FL, USA, 7–11 July 2008; pp. 926–930. [Google Scholar]
- Boyer, S.; White, J.; Stier, A.; Osenberg, C. Effects of the fish anesthetic, clove oil (eugenol), on coral health and growth. J. Exp. Mar. Biol. Ecol. 2009, 369, 53–57. [Google Scholar] [CrossRef]
- Ding, D.-S.; Sun, W.-T.; Pan, C.-H. Feeding of a Scleractinian Coral, Goniopora columna, on Microalgae, Yeast, and Artificial Feed in Captivity. Animals 2021, 11, 3009. [Google Scholar] [CrossRef]
- Wang, C.; Pan, X.; Fan, Y.; Chen, Y.; Mu, W. The oxidative stress response of oxytetracycline in the ciliate Pseudocohnilembus persalinus. Environ. Toxicol. Pharmacol. 2017, 56, 35–42. [Google Scholar] [CrossRef]
- Liñán-Cabello, M.A.; Flores-Ramírez, L.A.; Zenteno-Savin, T.; Olguín-Monroy, N.O.; Sosa-Avalos, R.; Patiño-Barragan, M.; Olivos-Ortiz, A. Seasonal changes of antioxidant and oxidative parameters in the coral Pocillopora capitata on the Pacific coast of Mexico. Mar. Ecol. 2010, 31, 407–417. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Main, W.; Ross, C.; Bielmyer, G. Copper accumulation and oxidative stress in the sea anemone, Aiptasia pallida, after waterborne copper exposure. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2010, 151, 216–221. [Google Scholar] [CrossRef]
- Levy, O.; Dubinsky, Z.; Achituv, Y. Photobehavior of stony corals: Responses to light spectra and intensity. J. Exp. Biol. 2003, 206, 4041–4049. [Google Scholar] [CrossRef] [Green Version]
- Titlyanov, E.; Titlyanova, T.; Yamazato, K.; Van Woesik, R. Photo-acclimation of the hermatypic coral Stylophora pistillata while subjected to either starvation or food provisioning. J. Exp. Mar. Biol. Ecol. 2001, 257, 163–181. [Google Scholar] [CrossRef]
- Jeffrey, S.T.; Humphrey, G. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanz. 1975, 167, 191–194. [Google Scholar] [CrossRef]
- Sterud, E.; Hansen, M.K.; Mo, T.A. Systemic infection with Uronema-like ciliates in farmed turbot, Scophthalmus maximus (L.). J. Fish Dis. 2000, 23, 33–37. [Google Scholar] [CrossRef]
- Work, T.; Meteyer, C. To understand coral disease, look at coral cells. EcoHealth 2014, 11, 610–618. [Google Scholar] [CrossRef] [PubMed]
- Chuang, Y.-Y.; Hou, R.F. Effectiveness of attract-and-kill systems using methyl eugenol incorporated with neonicotinoid insecticides against the oriental fruit fly (Diptera: Tephritidae). J. Econ. Entomol. 2008, 101, 352–359. [Google Scholar] [CrossRef] [PubMed]
- Mulochau, T.; Durville, P. Effects of a clove oil-ethanol solution on the coral Pocillopora verrucosa. Revue Ecol. 2004, 59, 425–432. [Google Scholar]
Water Quality Conditions | Ciliates | Coral |
---|---|---|
Temperature (°C) | 26.0 ± 0.5 | 26.0 ± 0.5 |
pH | 8.0 ± 0.5 | 8.0 ± 0.5 |
Dissolved oxygen (ppm) | 6.00 ± 0.05 | 6.00 ± 0.05 |
Nitrous acid (ppm) | 0.01 ± 0.01 | 0.01 ± 0.01 |
Nitric acid (ppm) | 0.05 ± 0.02 | 0.02 ± 0.01 |
Calcium (ppm) | 425 ± 40.12 | 455 ± 10.32 |
Magnesium (ppm) | 1324 ± 63.21 | 1360 ± 52.21 |
Ammonia nitrogen (ppm) | 0.01 ± 0.05 | 0.01 ± 0.05 |
Phosphate (ppm) | 0.01 ± 0.01 | 0.01 ± 0.01 |
Survival Rate% (Mean ± SD) | |||||||
---|---|---|---|---|---|---|---|
Sec | C | 500 ppm | 1500 ppm | 2500 ppm | 5000 ppm | 7500 ppm | 10,000 ppm |
60 | 100 ± 0.00 | 100 ± 0.00 | 100 ± 0.00 | 100 ± 0.00 | 80.33 ± 1.53 | 75.33 ± 5.51 | 38.33 ± 7.64 |
120 | 100 ± 0.00 | 100 ± 0.00 | 100 ± 0.00 | 100 ± 0.00 | 54.00 ± 4.36 | 50.00 ± 2.65 | 32.33 ± 7.51 |
180 | 100 ± 0.00 | 100 ± 0.00 | 100 ± 0.00 | 100 ± 0.00 | 40.00 ± 3.61 | 40.67 ± 1.53 | 13.33 ± 1.53 |
240 | 100 ± 0.00 | 100 ± 0.00 | 100 ± 0.00 | 58.33 ± 2.89 | 15.33 ± 1.53 | 11.00 ± 1.00 | 6.33 ± 2.52 |
300 | 100 ± 0.00 | 100 ± 0.00 | 61.67 ± 5.57 | 16.67 ± 2.89 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 |
360 | 100 ± 0.00 | 100 ± 0.00 | 23.33 ± 7.64 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 |
420 | 100 ± 0.00 | 100 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 |
480 | 100 ± 0.00 | 100 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 |
540 | 100 ± 0.00 | 100 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 |
600 | 100 ± 0.00 | 100 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 |
Time | Treatments (ppm) | Zooxanthellae (Cells × 107 m−2) | Chlorophyll a (µg cm−2) | Polyp Length (cm/polyp) | Survival Rate (%) |
---|---|---|---|---|---|
10 min | C | 5.10 ± 2.54 a | 45.72 ± 5.30 a | 1.05 ± 0.05 a | 100 ± 0.00 a |
1500 | 5.05 ± 1.45 a | 44.21 ± 9.32 a | 1.03 ± 0.50 a | 100 ± 0.00 a | |
2500 | 5.02 ± 2.34 a | 47.07 ± 8.83 a | 0.65 ± 0.32 bc | 100 ± 0.00 a | |
5000 | 5.02 ± 1.45 a | 48.45 ± 7.05 a | 0.10 ± 0.01 c | 100 ± 0.00 a | |
7500 | 5.07 ± 1.36 a | 46.93 ± 9.32 a | 0.10 ± 0.01 c | 100 ± 0.00 a | |
10,000 | 5.06 ± 2.08 a | 47.21 ± 7.31 a | 0.10± 0.02 c | 100 ± 0.00 a | |
24 h | C | 5.12 ± 0.41 a | 46.03 ± 4.83 a | 1.05 ± 0.00 a | 100 ± 0.00 a |
1500 | 4.53 ± 0.21 a | 43.02 ± 3.42 a | 1.03 ± 0.50 a | 90.00 ± 0.50 b | |
2500 | 3.21 ± 0.41 b | 32.33 ± 5.09 b | 0.20 ± 0.00 b | 85.00 ± 0.00 c | |
5000 | 2.92 ± 0.31 b | 24.04 ± 6.42 b | 0.10 ± 0.00 c | 0.00 ± 0.00 d | |
7500 | 0.04 ± 0.00 c | 0.90 ± 0.00 c | 0.00 ± 0.00 d | 0.00 ± 0.00 d | |
10,000 | 0.04 ± 0.00 c | 0.90 ± 0.00 c | 0.00 ± 0.00 d | 0.00 ± 0.00 d |
Treatments (ppm) | Zooxanthellae (Cells×107 m−2) | Chlorophyll a (µg cm−2) | Polyp Length (cm/polyp) | Survival Rate (%) |
---|---|---|---|---|
C | 0.23 ± 0.15 b | 5.53 ± 0.12 c | 0.00 ± 0.00 e | 11.35 ± 5.73 b |
1500 | 5.03 ± 0.50 a | 50.21 ± 4.35 a | 1.00 ± 0.20 a | 100 ± 0.00 a |
2500 | 4.43 ± 0.42 a | 48.24 ± 2.55 a | 0.50 ± 0.21 b | 100 ± 0.00 a |
5000 | 4.56 ± 1.04 a | 43.00 ± 4.52 a | 0.20 ± 0.00 c | 100 ± 0.00 a |
7000 | 3.51 ± 1.21 ab | 32.25 ± 3.20 b | 0.10 ± 0.00 d | 100 ± 0.00 a |
10,000 | 3.23 ± 0.05 b | 30.02 ± 3.54 b | 0.10 ± 0.00 d | 100 ± 0.00 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, T.-W.; Cheng, C.-M.; Cheng, Y.-R.; Dong, C.-D.; Chuang, C.-H.; Pan, C.-H.; Sun, W.-T.; Ding, D.-S. Evaluation of Clove Extract for Drug Therapy of Ciliate Infection in Coral (Goniopora columna). Biology 2022, 11, 280. https://doi.org/10.3390/biology11020280
Chu T-W, Cheng C-M, Cheng Y-R, Dong C-D, Chuang C-H, Pan C-H, Sun W-T, Ding D-S. Evaluation of Clove Extract for Drug Therapy of Ciliate Infection in Coral (Goniopora columna). Biology. 2022; 11(2):280. https://doi.org/10.3390/biology11020280
Chicago/Turabian StyleChu, Tah-Wei, Chiu-Min Cheng, Yu-Rong Cheng, Cheng-Di Dong, Chih-Hung Chuang, Chih-Hung Pan, Wei-Ting Sun, and De-Sing Ding. 2022. "Evaluation of Clove Extract for Drug Therapy of Ciliate Infection in Coral (Goniopora columna)" Biology 11, no. 2: 280. https://doi.org/10.3390/biology11020280
APA StyleChu, T. -W., Cheng, C. -M., Cheng, Y. -R., Dong, C. -D., Chuang, C. -H., Pan, C. -H., Sun, W. -T., & Ding, D. -S. (2022). Evaluation of Clove Extract for Drug Therapy of Ciliate Infection in Coral (Goniopora columna). Biology, 11(2), 280. https://doi.org/10.3390/biology11020280