Effects of Ciliate Infection on the Activities of Two Antioxidant Enzymes (SOD and CAT) in Captive Coral (Goniopora columna) and Evaluation of Drug Therapy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experiment 1: Culture and Drug Therapy of Ciliates
2.1.1. Purification and Identification of Ciliates (Philaster Lucinda)
2.1.2. Culture of Ciliates
2.1.3. Drug Tolerance Test for Ciliates
2.2. Experiment 2: Treatment of Coral Ciliate Diseases
2.2.1. Source of Coral Samples
2.2.2. Treatment Trial of Ciliate Infection
2.2.3. Stress Response of Ciliates to Corals
2.2.4. Antioxidant Enzyme Analysis
Preparation of Coral Tissue Solution
Superoxide Dismutase Detection
Catalase Detection
Protein Concentrations
2.2.5. Analysis of Zooxanthellar Density and Chlorophyll a
2.3. Statistical Analysis
3. Results
3.1. Experiment 1: Culture and Drug Therapy of Ciliates
3.1.1. Identification and Morphological Observation of Parasites
3.1.2. Treatment of Ciliates by KCl and H2O2
3.2. Experiment 2: Treatment of Coral Ciliate Diseases
3.2.1. Effects of Ciliate Infection on Coral
3.2.2. Evaluation of Drug Therapy
3.2.3. To Treat Stress Responses to Coral
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sweet, M.J.; Séré, M.G. Ciliate communities consistently associated with coral diseases. J. Sea Res. 2016, 113, 119–131. [Google Scholar] [CrossRef]
- Sweet, M.J.; Croquer, A.; Bythell, J.C. Experimental antibiotic treatment identifies potential pathogens of white band disease in the endangered Caribbean coral Acropora cervicornis. Proc. R. Soc. B Biol. Sci. 2014, 281, 20140094. [Google Scholar] [CrossRef] [Green Version]
- Winkler, R.; Antonius, A.; Abigail Renegar, D. The skeleton eroding band disease on coral reefs of Aqaba, Red Sea. Mar. Ecol. 2004, 25, 129–144. [Google Scholar] [CrossRef]
- Cróquer, A.; Bastidas, C.; Lipscomb, D. Folliculinid ciliates: A new threat to Caribbean corals? Dis. Aquat. Org. 2006, 69, 75–78. [Google Scholar] [CrossRef] [Green Version]
- Randall, C.J.; Jordán-Garza, A.G.; van Woesik, R. Ciliates associated with signs of disease on two Caribbean corals. Coral Reefs 2015, 34, 243–247. [Google Scholar] [CrossRef]
- Verde, A.; Bastidas, C.; Croquer, A. Tissue mortality by Caribbean ciliate infection and white band disease in three reef-building coral species. PeerJ 2016, 4, e2196. [Google Scholar] [CrossRef] [Green Version]
- Antonius, A. Halofolliculina corallasia, a new coral-killing ciliate on Indo-Pacific reefs. Coral Reefs 1999, 18, 300. [Google Scholar] [CrossRef]
- Page, C.; Willis, B. Epidemiology of skeletal eroding band on the Great Barrier Reef and the role of injury in the initiation of this widespread coral disease. Coral Reefs 2008, 27, 257–272. [Google Scholar] [CrossRef]
- Baird, A.H.; Bhagooli, R.; Ralph, P.J.; Takahashi, S. Coral bleaching: The role of the host. Trends Ecol. Evol. 2009, 24, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Lesser, M.P. Oxidative stress in marine environments: Biochemistry and physiological ecology. Annu. Rev. Physiol. 2006, 68, 253–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lesser, M.; Stochaj, W.; Tapley, D.; Shick, J. Bleaching in coral reef anthozoans: Effects of irradiance, ultraviolet radiation, and temperature on the activities of protective enzymes against active oxygen. Coral Reefs 1990, 8, 225–232. [Google Scholar] [CrossRef]
- Dykens, J.A.; Shick, J.M.; Benoit, C.; Buettner, G.R.; Winston, G.W. Oxygen radical production in the sea anemone Anthopleura elegantissima and its endosymbiotic algae. J. Exp. Biol. 1992, 168, 219–241. [Google Scholar] [CrossRef]
- Downs, C.; Fauth, J.E.; Halas, J.C.; Dustan, P.; Bemiss, J.; Woodley, C.M. Oxidative stress and seasonal coral bleaching. Free Radic. Biol. Med. 2002, 33, 533–543. [Google Scholar] [CrossRef]
- Higuchi, T.; Fujimura, H.; Arakaki, T.; Oomori, T. Activities of antioxidant enzymes (SOD and CAT) in the coral Galaxea fascicularis against increased hydrogen peroxide concentrations in seawater. In Proceedings of the 11th International Coral Reef Symposium, Fort Lauderdale, FL, USA, 7–11 July 2008; pp. 926–930. [Google Scholar]
- Shick, J.; Lesser, M.; Dunlap, W.; Stochaj, W.; Chalker, B.; Won, J.W. Depth-dependent responses to solar ultraviolet radiation and oxidative stress in the zooxanthellate coral Acropora microphthalma. Mar. Biol. 1995, 122, 41–51. [Google Scholar] [CrossRef]
- Gardner, S.G.; Raina, J.-B.; Ralph, P.J.; Petrou, K. Reactive oxygen species (ROS) and dimethylated sulphur compounds in coral explants under acute thermal stress. J. Exp. Biol. 2017, 220, 1787–1791. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, A. Comparative sensitivities of the tropical cladoceran, Ceriodaphnia rigaudii and the temperate species Daphnia magna to seven toxicants. Toxicol. Environ. Chem. 2007, 89, 347–352. [Google Scholar] [CrossRef]
- Struewing, K.A.; Lazorchak, J.M.; Weaver, P.C.; Johnson, B.R.; Funk, D.H.; Buchwalter, D.B. Part 2: Sensitivity comparisons of the mayfly Centroptilum triangulifer to Ceriodaphnia dubia and Daphnia magna using standard reference toxicants; NaCl, KCl and CuSO4. Chemosphere 2015, 139, 597–603. [Google Scholar] [CrossRef] [PubMed]
- Roque, A.; Yildiz, H.Y.; Carazo, I.; Duncan, N. Physiological stress responses of sea bass (Dicentrarchus labrax) to hydrogen peroxide (H2O2) exposure. Aquaculture 2010, 304, 104–107. [Google Scholar] [CrossRef]
- Wang, C.; Pan, X.; Fan, Y.; Chen, Y.; Mu, W. The oxidative stress response of oxytetracycline in the ciliate Pseudocohnilembus persalinus. Environ. Toxicol. Pharmacol. 2017, 56, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Ding, D.-S.; Sun, W.-T.; Pan, C.-H. Feeding of a Scleractinian Coral, Goniopora columna, on Microalgae, Yeast, and Artificial Feed in Captivity. Animals 2021, 11, 3009. [Google Scholar] [CrossRef]
- Levy, O.; Dubinsky, Z.; Achituv, Y. Photobehavior of stony corals: Responses to light spectra and intensity. J. Exp. Biol. 2003, 206, 4041–4049. [Google Scholar] [CrossRef] [Green Version]
- Liñán-Cabello, M.A.; Flores-Ramírez, L.A.; Zenteno-Savin, T.; Olguín-Monroy, N.O.; Sosa-Avalos, R.; Patiño-Barragan, M.; Olivos-Ortiz, A. Seasonal changes of antioxidant and oxidative parameters in the coral Pocillopora capitata on the Pacific coast of Mexico. Mar. Ecol. 2010, 31, 407–417. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Main, W.; Ross, C.; Bielmyer, G. Copper accumulation and oxidative stress in the sea anemone, Aiptasia pallida, after waterborne copper exposure. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2010, 151, 216–221. [Google Scholar] [CrossRef]
- Titlyanov, E.; Titlyanova, T.; Yamazato, K.; Van Woesik, R. Photo-acclimation of the hermatypic coral Stylophora pistillata while subjected to either starvation or food provisioning. J. Exp. Mar. Biol. Ecol. 2001, 257, 163–181. [Google Scholar] [CrossRef]
- Jeffrey, S.T.; Humphrey, G. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Und Physiol. Der Pflanz. 1975, 167, 191–194. [Google Scholar] [CrossRef]
- Robbins, R.; Shick, J. Expansion-contraction behavior in the sea anemone Metridium senile: Environmental cues and energetic consequences. In Nutrition in the Lower Metazoa; Pergamon Press: Oxford, UK, 1980; pp. 101–116. [Google Scholar]
- Sweet, M.; Bythell, J. Ciliate and bacterial communities associated with White Syndrome and Brown Band Disease in reef-building corals. Environ. Microbiol. 2012, 14, 2184–2199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bidlas, E.; Lambert, R.J. Comparing the antimicrobial effectiveness of NaCl and KCl with a view to salt/sodium replacement. Int. J. Food Microbiol. 2008, 124, 98–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarei, M.; Borujeni, M.P.; Khezrzadeh, M.; Kazemipour, S.; Hesami, G.; Bemani, E. Growth and Cell Morphology of Listeria Monocytogenes as Affected by Various Concentrations of NaCl and KCl. J. Appl. Biol. Sci. 2012, 6, 55–58. [Google Scholar]
Water Quality Conditions | |
---|---|
Temperature | 25.5 ± 0.5 °C |
pH | 8.0 ± 0.5 |
Dissolved oxygen | 5.00 ± 0.05 ppm |
Nitrous acid | 0.01 ± 0.05 ppm |
Nitric acid | 0.05 ± 0.05 ppm |
Calcium | 425 ± 30.12 ppm |
Magnesium | 1345 ± 40.25 ppm |
Ammonia nitrogen | 0.01 ± 0.05 ppm |
Phosphate | 0.01 ± 0.01 ppm |
Survival Rate% (Mean ± SD) | ||||||||
---|---|---|---|---|---|---|---|---|
Sec | C | 0.05% | 0.1% | 0.5% | 1% | 1.5% | 2% | |
KCl | 30 | 100 ± 0.00 | 100 ± 0.00 | 100 ± 0.00 | 100 ± 0.00 | 82.67 ± 8.33 | 41.73 ± 5.60 | 13.60 ± 2.12 |
60 | 100 ± 0.00 | 100 ± 0.00 | 100 ± 0.00 | 100 ± 0.00 | 46.67 ± 6.11 | 40.00 ± 8.00 | 6.80 ± 1.74 | |
90 | 100 ± 0.00 | 100 ± 0.00 | 100 ± 0.00 | 100 ± 0.00 | 36.00 ± 4.00 | 13.33 ± 6.11 | 0.00 ± 0.00 | |
H2O2 | 30 | 100 ± 0.00 | 100 ± 0.00 | 100 ± 0.00 | 100 ± 0.00 | 85.33 ± 10.07 | 41.73 ± 5.60 | 10.67 ± 3.59 |
60 | 100 ± 0.00 | 100 ± 0.00 | 100 ± 0.00 | 100 ± 0.00 | 42.53 ± 4.46 | 38.00 ± 3.02 | 7.20 ± 3.17 | |
90 | 100 ± 0.00 | 100 ± 0.00 | 100 ± 0.00 | 100 ± 0.00 | 35.73 ± 3.61 | 13.47 ± 3.06 | 0.00 ± 0.00 |
Treatments (%) | Zooxanthellae (Cells×107 m−2) | Chlorophyll a (µg cm−2) | Polyps Length (cm/polyps) | Survival Rate (%) | |
---|---|---|---|---|---|
Ciliate Tttack | C K1.5 K2.0 H1.5 H2.0 | 0.21 ± 0.17 c 4.83 ± 0.50 a 4.93 ± 0.38 a 2.70 ± 0.46 c 2.47 ± 1.36 c | 1.53 ± 0.11 c 48.33 ± 5.03 a 52.33 ± 3.51 a 33.00 ± 8.72 b 36.67 ± 7.23 b | 0.03 ± 0.06 d 1.00 ± 0.20 b 0.83 ± 0.21 b 0.20 ± 0.21 c 0.10 ± 0.00 d | 13.33 ± 5.77 b 100 ± 0.00 a 100 ± 0.00 a 100 ± 0.00 a 100 ± 0.00 a |
Y | |||||
N | K1.5 | 4.43 ± 0.40 a | 50.67 ± 1.53 a | 1.07 ± 0.12 b | 100 ± 0.00 a |
K2.0 | 5.03 ± 0.40 a | 53.33 ± 3.21 a | 1.20 ± 0.10 b | 100 ± 0.00 a | |
H1.5 | 2.97 ± 0.81 b | 29.00 ± 4.36 b | 0.07 ± 0.06 d | 100 ± 0.00 a | |
H2.0 | 2.40 ± 1.04 b | 24.67 ± 4.04 b | 0.03 ± 0.06 d | 100 ± 0.00 a | |
N | 5.23 ± 0.35 a | 58.00 ± 5.29 a | 1.93 ± 0.12 a | 100± 0.00 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, C.-M.; Cheng, Y.-R.; Ding, D.-S.; Chen, Y.-T.; Sun, W.-T.; Pan, C.-H. Effects of Ciliate Infection on the Activities of Two Antioxidant Enzymes (SOD and CAT) in Captive Coral (Goniopora columna) and Evaluation of Drug Therapy. Biology 2021, 10, 1216. https://doi.org/10.3390/biology10111216
Cheng C-M, Cheng Y-R, Ding D-S, Chen Y-T, Sun W-T, Pan C-H. Effects of Ciliate Infection on the Activities of Two Antioxidant Enzymes (SOD and CAT) in Captive Coral (Goniopora columna) and Evaluation of Drug Therapy. Biology. 2021; 10(11):1216. https://doi.org/10.3390/biology10111216
Chicago/Turabian StyleCheng, Chiu-Min, Yu-Rong Cheng, De-Sing Ding, Ya-Ting Chen, Wei-Ting Sun, and Chih-Hung Pan. 2021. "Effects of Ciliate Infection on the Activities of Two Antioxidant Enzymes (SOD and CAT) in Captive Coral (Goniopora columna) and Evaluation of Drug Therapy" Biology 10, no. 11: 1216. https://doi.org/10.3390/biology10111216
APA StyleCheng, C. -M., Cheng, Y. -R., Ding, D. -S., Chen, Y. -T., Sun, W. -T., & Pan, C. -H. (2021). Effects of Ciliate Infection on the Activities of Two Antioxidant Enzymes (SOD and CAT) in Captive Coral (Goniopora columna) and Evaluation of Drug Therapy. Biology, 10(11), 1216. https://doi.org/10.3390/biology10111216