Effectiveness of a 12-Week Multi-Component Training Program with and without Transcranial Direct-Current Stimulation (tDCS) on Balance to Prevent Falls in Community-Dwelling Older Adults: A Study Protocol
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Ethics and Registration
2.3. Sample Size
2.4. Randomization and Blinding
2.5. Eligibility Criteria
2.6. Intervention
2.6.1. The Multicomponent Exercise Program
2.6.2. Experimental Group
2.6.3. Control Group
2.7. Measures and Procedures
2.7.1. Primary Measures
2.7.2. Secondary Measures
- The 2-min walk test assesses the longest distance in metres that a person can walk along a rectangular path. It has high reliability, and its intraclass correlation coefficient is 0.888 [58].
- Lower body strength: The 30-s Chair Stand Test will be performed, which consists of sitting down and standing up from a chair for 30 s, counting the repetitions that the person can perform. Its reliability is considered high (0.87) [59].
- Lower limb flexibility: This will be measured by performing the Sit and Reach Test. Participants will sit with one leg extended and then slowly bend over, sliding their hands down the extended leg trying to touch (or pass) the toes of the toe line. The number of centimetres before reaching (negative score) or beyond (positive score) the toe will be recorded [60]. Two attempts will be measured for each leg. The average of the best results of both legs will be considered for the analysis. Its intraclass correlation coefficient value is 0.92, which shows high reliability [61].
- Speed: The Brisk Walking Test will be performed. The time taken to cover 30 m walking will be considered. Two repetitions will be conducted, with a one-minute rest between them [62], taking the best repetition for the analyses. The test–retest reproducibility of this assessment is 0.95, and its Cronbach’s alpha coefficient of reproducibility is 0.96 [63].
- Self-perception of physical fitness: The International Fitness Scale (IFIS) [66] will be administered. It permits us to obtain information about the participants’ general physical fitness self-perception, as well as their cardiorespiratory fitness, strength, speed-agility, and flexibility. This scale is composed of five questions with five response options (“very bad”, “bad”, “average”, “good” and “very good”).
2.8. Statistical Analysis
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Organización Mundial de la Salud. Informe Mundial Sobre el Envejecimiento y la Salud; Organización Mundial de la Salud: Ginebra, Switzerland, 2015; ISBN 978-92-4-356504-0. [Google Scholar]
- Mackenzie, P. Normal Changes of Ageing. InnovAiT 2012, 5, 605–613. [Google Scholar] [CrossRef] [Green Version]
- Rubenstein, L.Z. Falls in Older People: Epidemiology, Risk Factors and Strategies for Prevention. Age Ageing 2006, 35, ii37–ii41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Public Health Agency of Canada. Seniors’ Falls in Canada; Public Health Agency of Canada: Ottawa, ON, Canada, 2014; ISBN 978-1-100-23261-4. [Google Scholar]
- Pillay, J.; Riva, J.J.; Tessier, L.A.; Colquhoun, H.; Lang, E.; Moore, A.E.; Thombs, B.D.; Wilson, B.J.; Tzenov, A.; Donnelly, C.; et al. Fall Prevention Interventions for Oldercommunity-Dwelling Adults: Systematic Reviews on Benefits, Harms, and Patient Values and Preferences. Syst. Rev. 2021, 10, 18. [Google Scholar] [CrossRef] [PubMed]
- Abreu, H.C.d.A.; Reiners, A.A.O.; Azevedo, R.C.d.S.; Silva, A.M.C.d.; Abreu, D.R.d.O.M.; Oliveira, A.D.d. Incidence and Predicting Factors of Falls of Older Inpatients. Rev. Saúde Pública 2015, 49, 37. [Google Scholar] [CrossRef] [Green Version]
- Berg, K. Balance and Its Measure in the Elderly: A Review. Physiother Can. 1989, 41, 240–246. [Google Scholar] [CrossRef]
- Pollock, A.S.; Durward, B.R.; Rowe, P.J.; Paul, J.P. What Is Balance? Clin. Rehabil. 2000, 14, 402–406. [Google Scholar] [CrossRef]
- Gerson, L.W.; Jarjoura, D.; McCORD, G. Risk of Imbalance in Elderly People with Impaired Hearing or Vision. Age Ageing 1989, 18, 31–34. [Google Scholar] [CrossRef]
- Osoba, M.Y.; Rao, A.K.; Agrawal, S.K.; Lalwani, A.K. Balance and Gait in the Elderly: A Contemporary Review: Balance and Gait in the Elderly. Laryngoscope Investig. Otolaryngol. 2019, 4, 143–153. [Google Scholar] [CrossRef] [Green Version]
- Sherrington, C.; Lord, S.R.; Vogler, C.M.; Close, J.C.; Howard, K.; Dean, C.M.; Clemson, L.; Barraclough, E.; Ramsay, E.; O’Rourke, S.D.; et al. Minimising Disability and Falls in Older People through a Post-Hospital Exercise Program: A Protocol for a Randomised Controlled Trial and Economic Evaluation. BMC Geriatr. 2009, 9, 8. [Google Scholar] [CrossRef] [Green Version]
- Berková, M.; Berka, Z. Falls: A Significant Cause of Morbidity and Mortality in Elderly People. Vnitr. Lek. 2018, 64, 1076–1083. [Google Scholar] [CrossRef]
- World Health Organization; Ageing, Life Course Unit. WHO Global Report on Falls Prevention in Older Age; World Health Organization: Geneva, Switzerland, 2008. [Google Scholar]
- Román, E.; Córdoba, J.; Torrens, M.; Guarner, C.; Soriano, G. Falls and Cognitive Dysfunction Impair Health-Related Quality of Life in Patients with Cirrhosis. Eur. J. Gastroenterol. Hepatol. 2013, 25, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Florence, C.S.; Bergen, G.; Atherly, A.; Burns, E.; Stevens, J.; Drake, C. Medical Costs of Fatal and Nonfatal Falls in Older Adults: Medical Costs of Falls. J. Am. Geriatr. Soc. 2018, 66, 693–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osho, O.; Owoeye, O.; Armijo-Olivo, S. Adherence and Attrition in Fall Prevention Exercise Programs for Community-Dwelling Older Adults: A Systematic Review and Meta-Analysis. J. Aging Phys. Act. 2018, 26, 304–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gillespie, L.D.; Robertson, M.C.; Gillespie, W.J.; Sherrington, C.; Gates, S.; Clemson, L.; Lamb, S.E. Interventions for Preventing Falls in Older People Living in the Community. Cochrane Database Syst. Rev. 2012, 9. [Google Scholar] [CrossRef]
- Sherrington, C.; Fairhall, N.; Kwok, W.; Wallbank, G.; Tiedemann, A.; Michaleff, Z.A.; Ng, C.A.C.M.; Bauman, A. Evidence on Physical Activity and Falls Prevention for People Aged 65+ Years: Systematic Review to Inform the WHO Guidelines on Physical Activity and Sedentary Behaviour. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 144. [Google Scholar] [CrossRef]
- Papalia, G.F.; Papalia, R.; Diaz Balzani, L.A.; Torre, G.; Zampogna, B.; Vasta, S.; Fossati, C.; Alifano, A.M.; Denaro, V. The Effects of Physical Exercise on Balance and Prevention of Falls in Older People: A Systematic Review and Meta-Analysis. J. Clin. Med. 2020, 9, 2595. [Google Scholar] [CrossRef]
- Lamb, S.E.; Becker, C.; Gillespie, L.D.; Smith, J.L.; Finnegan, S.; Potter, R.; Pfeiffer, K. Reporting of Complex Interventions in Clinical Trials: Development of a Taxonomy to Classify and Describe Fall-Prevention Interventions. Trials 2011, 12, 125. [Google Scholar] [CrossRef] [Green Version]
- Sherrington, C.; Fairhall, N.; Wallbank, G.; Tiedemann, A.; Michaleff, Z.A.; Howard, K.; Clemson, L.; Hopewell, S.; Lamb, S. Exercise for Preventing Falls in Older People Living in the Community: An Abridged Cochrane Systematic Review. Br. J. Sports Med. 2020, 54, 885–891. [Google Scholar] [CrossRef]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.-P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 Guidelines on Physical Activity and Sedentary Behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
- Liguori, G.; Feito, Y.; Fountaine, C.; Roy, B. (Eds.) American College of Sports Medicine´s Guidelines for Exercise Testing and Prescription, 11th ed.; Wolters Kluwer: Philadelphia, PA, USA, 2021; ISBN 978-1-975150-22-8. [Google Scholar]
- Mulasso, A.; Roppolo, M.; Liubicich, M.E.; Settanni, M.; Rabaglietti, E. A Multicomponent Exercise Program for Older Adults Living in Residential Care Facilities: Direct and Indirect Effects on Physical Functioning. J. Aging Phys. Act. 2015, 23, 409–416. [Google Scholar] [CrossRef] [Green Version]
- Cadore, E.L.; Rodríguez-Mañas, L.; Sinclair, A.; Izquierdo, M. Effects of Different Exercise Interventions on Risk of Falls, Gait Ability, and Balance in Physically Frail Older Adults: A Systematic Review. Rejuvenation Res. 2013, 16, 105–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cadore, E.; Izquierdo, M. How to Simultaneously Optimize Muscle Strength, Power, Functional Capacity, and Cardiovascular Gains in the Elderly: An Update. AGE 2013, 35, 2329–2344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ministerio de Sanidad, Servicios Sociales e Igualdad. Consenso Sobre Prevención de Fragilidad y Caídas en el SNS. Guía Para desarrollar Programas de Actividad Física Multicomponente en Recursos Comunitarios y Locales; Secretaría General de Sanidad y Consumo: Madrid, Spain, 2014.
- Angius, L.; Hopker, J.; Mauger, A.R. The Ergogenic Effects of Transcranial Direct Current Stimulation on Exercise Performance. Front. Physiol. 2017, 8, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boes, A.D.; Kelly, M.S.; Trapp, N.T.; Stern, A.P.; Press, D.Z.; Pascual-Leone, A. Noninvasive Brain Stimulation: Challenges and Opportunities for a New Clinical Specialty. J. Neuropsychiatry Clin. Neurosci. 2018, 30, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Thair, H.; Holloway, A.L.; Newport, R.; Smith, A.D. Transcranial Direct Current Stimulation (TDCS): A Beginner’s Guide for Design and Implementation. Front. Neurosci. 2017, 11, 641. [Google Scholar] [CrossRef] [Green Version]
- Judge, M.; Hopker, J.; Mauger, A.R. The Effect of TDCS Applied to the Dorsolateral Prefrontal Cortex on Cycling Performance and the Modulation of Exercise Induced Pain. Neurosci. Lett. 2021, 743, 135584. [Google Scholar] [CrossRef]
- Lerner, O.; Friedman, J.; Frenkel-Toledo, S. The Effect of High-Definition Transcranial Direct Current Stimulation Intensity on Motor Performance in Healthy Adults: A Randomized Controlled Trial. J. NeuroEng. Rehabil. 2021, 18, 103. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Paulus, W. Sustained Excitability Elevations Induced by Transcranial DC Motor Cortex Stimulation in Humans. Neurology 2001, 57, 1899–1901. [Google Scholar] [CrossRef]
- de Paz, R.H.; Serrano-Muñoz, D.; Pérez-Nombela, S.; Bravo-Esteban, E.; Avendaño-Coy, J.; Gómez-Soriano, J. Combining Transcranial Direct-Current Stimulation with Gait Training in Patients with Neurological Disorders: A Systematic Review. J. NeuroEng. Rehabil. 2019, 16, 114. [Google Scholar] [CrossRef] [Green Version]
- Conceição, N.R.; Gobbi, L.T.B.; Nóbrega-Sousa, P.; Orcioli-Silva, D.; Beretta, V.S.; Lirani-Silva, E.; Okano, A.H.; Vitório, R. Aerobic Exercise Combined With Transcranial Direct Current Stimulation Over the Prefrontal Cortex in Parkinson Disease: Effects on Cortical Activity, Gait, and Cognition. Neurorehabil. Neural Repair 2021, 35, 717–728. [Google Scholar] [CrossRef]
- Pol, F.; Salehinejad, M.A.; Baharlouei, H.; Nitsche, M.A. The Effects of Transcranial Direct Current Stimulation on Gait in Patients with Parkinson’s Disease: A Systematic Review. Transl. Neurodegener. 2021, 10, 22. [Google Scholar] [CrossRef] [PubMed]
- Holgado, D.; Vadillo, M.A.; Sanabria, D. “Brain-Doping,” Is It a Real Threat? Front. Physiol. 2019, 10, 483. [Google Scholar] [CrossRef] [PubMed]
- Schieber, M.H. Constraints on Somatotopic Organization in the Primary Motor Cortex. J. Neurophysiol. 2001, 86, 2125–2143. [Google Scholar] [CrossRef] [PubMed]
- Moscatelli, F.; Messina, G.; Valenzano, A.; Monda, V.; Viggiano, A.; Messina, A.; Petito, A.; Triggiani, A.I.; Ciliberti, M.A.; Monda, M.; et al. Functional Assessment of Corticospinal System Excitability in Karate Athletes. PLoS ONE 2016, 11, e0155998. [Google Scholar] [CrossRef]
- Hornyak, T. Smarter, Not Harder. Nature 2017, 549, S1–S3. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, L.R.; Nakamura-Palacios, E.M.; Boening, A.; Cabral, D.L.; Swarowsky, A.; Arêas, G.P.T.; Paiva, W.S.; da Silva Arêas, F.Z. Transcranial Direct Current Stimulation (TDCS) in Addition to Walking Training on Walking, Mobility, and Reduction of Falls in Parkinson’s Disease: Study Protocol for a Randomized Clinical Trial. Trials 2021, 22, 647. [Google Scholar] [CrossRef]
- Schulz, K.F.; Altman, D.G.; Moher, D. CONSORT 2010 Statement: Updated Guidelines for Reporting Parallel Group Randomised Trials. Int. J. Surg. 2011, 9, 672–677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rydwik, E.; Bergland, A.; Forsén, L.; Frändin, K. Psychometric Properties of Timed Up and Go in Elderly People: A Systematic Review. Phys. Occup. Ther. Geriatr. 2011, 29, 102–125. [Google Scholar] [CrossRef]
- Barry, E.; Galvin, R.; Keogh, C.; Horgan, F.; Fahey, T. Is the Timed Up and Go Test a Useful Predictor of Risk of Falls in Community Dwelling Older Adults: A Systematic Review and Meta- Analysis. BMC Geriatr. 2014, 14, 14. [Google Scholar] [CrossRef]
- Estrada, E.; Ferrer, E.; Pardo, A. Statistics for Evaluating Pre-Post Change: Relation Between Change in the Distribution Center and Change in the Individual Scores. Front. Psychol. 2018, 9, 2696. [Google Scholar] [CrossRef] [Green Version]
- Urbaniak, G.; Plous, S. Research Randomizer (Version 4.0). Available online: https://www.randomizer.org/ (accessed on 15 September 2021).
- Cardinal, B.J.; Esters, J.; Cardinal, M.K. Evaluation of the Revised Physical Activity Readiness Questionnaire in Older Adults. Med. Sci. Sports Exerc. 1996, 28, 468–472. [Google Scholar] [CrossRef] [PubMed]
- Lobo, A.; Saz, P.; Marcos, G.; Día, J.L.; de la Cámara, C.; Ventura, T.; Morales Asín, F.; Fernando Pascual, L.; Montañés, J.A.; Aznar, S. Revalidation and standardization of the cognition mini-exam (first Spanish version of the Mini-Mental Status Examination) in the general geriatric population. Med. Clin. Barc. 1999, 112, 767–774. [Google Scholar] [PubMed]
- Foster, C.; Florhaug, J.A.; Franklin, J.; Gottschall, L.; Hrovatin, L.A.; Parker, S.; Doleshal, P.; Dodge, C. A New Approach to Monitoring Exercise Training. J. Strength Cond. Res. 2001, 15, 109–115. [Google Scholar] [PubMed]
- Guo, Z.; Bao, D.; Manor, B.; Zhou, J. The Effects of Transcranial Direct Current Stimulation (TDCS) on Balance Control in Older Adults: A Systematic Review and Meta-Analysis. Front. Aging Neurosci. 2020, 12, 275. [Google Scholar] [CrossRef]
- Auten, A.; Cavey, K.; Reed, J.; Dolgener, F.; Moriarty, T. Effects of Transcranial Direct Current Stimulation on Cycling Time Trial Performance and Prefrontal Cortex Activation. Sci 2021, 3, 32. [Google Scholar] [CrossRef]
- Park, S.-B.; Sung, D.J.; Kim, B.; Kim, S.; Han, J.-K. Transcranial Direct Current Stimulation of Motor Cortex Enhances Running Performance. PLoS ONE 2019, 14, e0211902. [Google Scholar] [CrossRef] [Green Version]
- Powell, L.E.; Myers, A.M. The Activities-Specific Balance Confidence (ABC) Scale. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 1995, 50, M28–M34. [Google Scholar] [CrossRef]
- Montilla-Ibáñez, A.; Martínez-Amat, A.; Lomas-Vega, R.; Cruz-Díaz, D.; Torre-Cruz, M.J.D.l.; Casuso-Pérez, R.; Hita-Contreras, F. The Activities-Specific Balance Confidence Scale: Reliability and Validity in Spanish Patients with Vestibular Disorders. Disabil. Rehabil. 2017, 39, 697–703. [Google Scholar] [CrossRef]
- Ishimoto, Y.; Wada, T.; Kasahara, Y.; Kimura, Y.; Fukutomi, E.; Chen, W.; Hirosaki, M.; Nakatsuka, M.; Fujisawa, M.; Sakamoto, R.; et al. Fall Risk Index Predicts Functional Decline Regardless of Fall Experiences among Community-Dwelling Elderly. Geriatr. Gerontol. Int. 2012, 12, 659–666. [Google Scholar] [CrossRef] [Green Version]
- Yardley, L.; Beyer, N.; Hauer, K.; Kempen, G.; Piot-Ziegler, C.; Todd, C. Development and Initial Validation of the Falls Efficacy Scale-International (FES-I). Age Ageing 2005, 34, 614–619. [Google Scholar] [CrossRef] [Green Version]
- Lomas-Vega, R.; Hita-Contreras, F.; Mendoza, N.; Martínez-Amat, A. Cross-Cultural Adaptation and Validation of the Falls Efficacy Scale International in Spanish Postmenopausal Women. Menopause 2012, 19, 904–908. [Google Scholar] [CrossRef] [PubMed]
- Rikli, R.E.; Jones, C.J. Development and Validation of a Functional Fitness Test for Community-Residing Older Adults. J. Aging Phys. Act. 1999, 7, 129–161. [Google Scholar] [CrossRef]
- Jones, C.J.; Rikli, R.E.; Max, J.; Noffal, G. The Reliability and Validity of a Chair Sit-and-Reach Test as a Measure of Hamstring Flexibility in Older Adults. Res. Q Exerc. Sport 1998, 69, 338–343. [Google Scholar] [CrossRef]
- Ayala, F.; Sainz de Baranda, P.; De Ste Croix, M.; Santonja, F. Reproducibility and Criterion-Related Validity of the Sit and Reach Test and Toe Touch Test for Estimating Hamstring Flexibility in Recreationally Active Young Adults. Phys. Ther. Sport 2012, 13, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Cabello, A.; Vicente-Rodríguez, G.; Albers, U.; Mata, E.; Rodriguez-Marroyo, J.A.; Olivares, P.R.; Gusi, N.; Villa, G.; Aznar, S.; Gonzalez-Gross, M.; et al. Harmonization Process and Reliability Assessment of Anthropometric Measurements in the Elderly EXERNET Multi-Centre Study. PLoS ONE 2012, 7, e41752. [Google Scholar] [CrossRef]
- Curcio, C.L.; Gómez, J.F.; Galeano, I.C. Validez y Reproducibilidad de Medidas de Evaluación Funcional Basadas En La Ejecución. Rev. Esp. Geriatr. Gerontol. Ed. Impr. 2000, 35, 82–88. [Google Scholar]
- Guralnik, J.M.; Simonsick, E.M.; Ferrucci, L.; Glynn, R.J.; Berkman, L.F.; Blazer, D.G.; Scherr, P.A.; Wallace, R.B. A Short Physical Performance Battery Assessing Lower Extremity Function: Association with Self-Reported Disability and Prediction of Mortality and Nursing Home Admission. J. Gerontol. 1994, 49, M85–M94. [Google Scholar] [CrossRef]
- Llopis, L.G. Validación de La Escala de Desempeño Físico ‘Short Physical Performance Battery’En Atención Primaria de Salud. Ph.D. Thesis, Universitat d’Alacant-Universidad de Alicante, Alicante, Spain, 2011. [Google Scholar]
- Merellano-Navarro, E.; Collado-Mateo, D.; García-Rubio, J.; Gusi, N.; Olivares, P.R. Validity of the International Fitness Scale “IFIS” in Older Adults. Exp. Gerontol. 2017, 95, 77–81. [Google Scholar] [CrossRef]
- Sánchez-López, M.; Martínez-Vizcaíno, V.; García-Hermoso, A.; Jiménez-Pavón, D.; Ortega, F.B. Construct Validity and Test-Retest Reliability of the International Fitness Scale (IFIS) in Spanish Children Aged 9-12 Years. Scand. J. Med. Sci. Sports 2015, 25, 543–551. [Google Scholar] [CrossRef]
- Vilagut, G.; Valderas, J.M.; Ferrer, M.; Garin, O.; López-García, E.; Alonso, J. Interpretation of SF-36 and SF-12 questionnaires in Spain: Physical and mental components. Med. Clin. Barc. 2008, 130, 726–735. [Google Scholar] [CrossRef] [Green Version]
- Abellán Perpiñán, J.M. Utilidades SF-6D Para España. Guía de Uso 2012/8. Sevilla: Cátedra de Economía de La Salud; Universidad Pablo de Olavide. Consejería de Salud de la Junta de Andalucía: Sevilla, Spain, 2012. [Google Scholar]
- Ferreira Kdos, S.; Oliver, G.Z.; Thomaz, D.C.; Teixeira, C.T.; Foss, M.P. Cognitive Deficits in Chronic Pain Patients, in a Brief Screening Test, Are Independent of Comorbidities and Medication Use. Arq. Neuro-Psiquiatr. 2016, 74, 361–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houry, D.; Florence, C.; Baldwin, G.; Stevens, J.; McClure, R. The CDC Injury Center’s Response to the Growing Public Health Problem of Falls among Older Adults. Am. J. Lifestyle Med. 2016, 10, 74–77. [Google Scholar] [CrossRef] [PubMed]
- Rolland, Y.; Czerwinski, S.; Abellan Van Kan, G.; Morley, J.E.; Cesari, M.; Onder, G.; Woo, J.; Baumgartner, R.; Pillard, F.; Boirie, Y.; et al. Sarcopenia: Its Assessment, Etiology, Pathogenesis, Consequences and Future Perspectives. J. Nutr. Health Aging 2008, 12, 433–450. [Google Scholar] [CrossRef] [Green Version]
- Chittrakul, J.; Siviroj, P.; Sungkarat, S.; Sapbamrer, R. Multi-System Physical Exercise Intervention for Fall Prevention and Quality of Life in Pre-Frail Older Adults: A Randomized Controlled Trial. Int J. Environ. Res. Public Health 2020, 17, 3102. [Google Scholar] [CrossRef] [PubMed]
- Arêas, F.; Nakamura-Palacios, E.M.; Boening, A.; Arêas, G.P.T.; Nascimento, L.R. Does Neuromodulation Transcranial Direct Current Stimulation (TDCS) Associated with Peripheral Stimulation through Exercise to Walk Have an Impact on Falls in People with Parkinson’s Disease? Med. Hypotheses 2020, 144, 109916. [Google Scholar] [CrossRef]
- Zhou, J.; Lo, O.Y.; Lipsitz, L.A.; Zhang, J.; Fang, J.; Manor, B. Transcranial Direct Current Stimulation Enhances Foot Sole Somatosensation When Standing in Older Adults. Exp. Brain Res. 2018, 236, 795–802. [Google Scholar] [CrossRef]
- Valentino, F.; Cosentino, G.; Brighina, F.; Pozzi, N.G.; Sandrini, G.; Fierro, B.; Savettieri, G.; D’Amelio, M.; Pacchetti, C. Transcranial Direct Current Stimulation for Treatment of Freezing of Gait: A Cross-over Study. Mov. Disord. 2014, 29, 1064–1069. [Google Scholar] [CrossRef]
Physical Ability | Examples |
---|---|
Balance | Exercises on one foot, tandem or semi-tandem position. Exercises in movement walking with heel to toe support. Line walking. Multidirectional movements with extra weights. Altering the base of support. Modified Tai Chi exercises. |
Strength | Free weights. weight-bearing exercises. Machines exercises. Pilates. |
Cardiorespiratory endurance | Walking indoors and outdoors. Treadmill walking. Stationary cling. Climbing steps/stairs. |
Flexibility | Stretches. Yoga. |
Measures | Week 0 | Week 6 | Week 12 |
---|---|---|---|
Sociodemographic data | √ | ||
Balance | √ | √ | √ |
Number of falls (a) last year (b) last 6 and (c) 3 months | √ | √ | √ |
Physical fitness | √ | √ | √ |
Fall Risk | √ | √ | √ |
Fear of falling | √ | √ | √ |
Health-related quality of life | √ | √ | √ |
Cognitive function | √ | √ | √ |
Security | √ | √ | |
Applicability | √ | √ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz-Bermejo, L.; Barrios-Fernandez, S.; Carlos-Vivas, J.; Mendoza-Muñoz, M.; Pastor-Cisneros, R.; Merellano-Navarro, E.; Gianikellis, K.; Adsuar, J.C. Effectiveness of a 12-Week Multi-Component Training Program with and without Transcranial Direct-Current Stimulation (tDCS) on Balance to Prevent Falls in Community-Dwelling Older Adults: A Study Protocol. Biology 2022, 11, 290. https://doi.org/10.3390/biology11020290
Muñoz-Bermejo L, Barrios-Fernandez S, Carlos-Vivas J, Mendoza-Muñoz M, Pastor-Cisneros R, Merellano-Navarro E, Gianikellis K, Adsuar JC. Effectiveness of a 12-Week Multi-Component Training Program with and without Transcranial Direct-Current Stimulation (tDCS) on Balance to Prevent Falls in Community-Dwelling Older Adults: A Study Protocol. Biology. 2022; 11(2):290. https://doi.org/10.3390/biology11020290
Chicago/Turabian StyleMuñoz-Bermejo, Laura, Sabina Barrios-Fernandez, Jorge Carlos-Vivas, María Mendoza-Muñoz, Raquel Pastor-Cisneros, Eugenio Merellano-Navarro, Konstantinos Gianikellis, and José Carmelo Adsuar. 2022. "Effectiveness of a 12-Week Multi-Component Training Program with and without Transcranial Direct-Current Stimulation (tDCS) on Balance to Prevent Falls in Community-Dwelling Older Adults: A Study Protocol" Biology 11, no. 2: 290. https://doi.org/10.3390/biology11020290
APA StyleMuñoz-Bermejo, L., Barrios-Fernandez, S., Carlos-Vivas, J., Mendoza-Muñoz, M., Pastor-Cisneros, R., Merellano-Navarro, E., Gianikellis, K., & Adsuar, J. C. (2022). Effectiveness of a 12-Week Multi-Component Training Program with and without Transcranial Direct-Current Stimulation (tDCS) on Balance to Prevent Falls in Community-Dwelling Older Adults: A Study Protocol. Biology, 11(2), 290. https://doi.org/10.3390/biology11020290