Central and Peripheral Thermal Signatures of Brain-Derived Fatigue during Unilateral Resistance Exercise: A Preliminary Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Protocol
2.3. Thermal Imaging Measurements
2.4. Thermal Imaging Data Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vardasca, R.; Simoes, R. Current Issues in Medical Thermography. In Topics in Medical Image Processing and Computational Vision; Springer: Berlin/Heidelberg, Germany, 2013; pp. 223–237. [Google Scholar]
- Cardone, D.; Merla, A. New Frontiers for Applications of Thermal Infrared Imaging Devices: Computational Psychopshysiology in the Neurosciences. Sensors 2017, 17, 1042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Genno, H.; Ishikawa, K.; Kanbara, O.; Kikumoto, M.; Fujiwara, Y.; Suzuki, R.; Osumi, M. Using Facial Skin Temperature to Objectively Evaluate Sensations. Int. J. Ind. Ergon. 1997, 19, 161–171. [Google Scholar] [CrossRef] [Green Version]
- Eysenck, M.W.; Calvo, M.G. Anxiety and Performance: The Processing Efficiency Theory. Cogn. Emot. 1992, 6, 409–434. [Google Scholar] [CrossRef]
- Cardone, D.; Perpetuini, D.; Filippini, C.; Spadolini, E.; Mancini, L.; Chiarelli, A.M.; Merla, A. Driver Stress State Evaluation by Means of Thermal Imaging: A Supervised Machine Learning Approach Based on ECG Signal. Appl. Sci. 2020, 10, 5673. [Google Scholar] [CrossRef]
- Clay-Warner, J.; Robinson, D.T. Infrared Thermography as a Measure of Emotion Response. Emot. Rev. 2015, 7, 157–162. [Google Scholar] [CrossRef]
- Hadžić, V.; Širok, B.; Malneršič, A.; Čoh, M. Can Infrared Thermography Be Used to Monitor Fatigue during Exercise? A Case Study. J. Sport Health Sci. 2019, 8, 89–92. [Google Scholar] [CrossRef] [PubMed]
- Perpetuini, D.; Cardone, D.; Bucco, R.; Zito, M.; Merla, A. Assessment of the Autonomic Response in Alzheimer’s Patients During the Execution of Memory Tasks: A Functional Thermal Imaging Study. Curr. Alzheimer Res. 2018, 15, 951–958. [Google Scholar] [CrossRef]
- Anbar, M. Assessment of Physiologic and Pathologic Radiative Heat Dissipation Using Dynamic Infrared Imaging. Ann. N. Y. Acad. Sci. 2002, 972, 111–118. [Google Scholar] [CrossRef]
- Perpetuini, D.; Cardone, D.; Filippini, C.; Chiarelli, A.M.; Merla, A. Modelling Impulse Response Function of Functional Infrared Imaging for General Linear Model Analysis of Autonomic Activity. Sensors 2019, 19, 849. [Google Scholar] [CrossRef] [Green Version]
- del Estal, A.; Brito, C.-J.; Galindo, V.-E.; Lopez Diaz de Durana, A.; Franchini, E.; Sillero-Quintana, M. Thermal Asymmetries in Striking Combat Sports Athletes Measured by Infrared Thermography. Sci. Sports 2017, 32, e61–e67. [Google Scholar] [CrossRef]
- Merla, A.; Mattei, P.A.; Di Donato, L.; Romani, G.L. Thermal Imaging of Cutaneous Temperature Modifications in Runners during Graded Exercise. Ann. Biomed. Eng. 2010, 38, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Priego-Quesada, J.I.; Machado, A.S.; Gil-Calvo, M.; Jimenez-Perez, I.; Cibrian Ortiz de Anda, R.M.; Salvador Palmer, R.; Perez-Soriano, P. A Methodology to Assess the Effect of Sweat on Infrared Thermography Data after Running: Preliminary Study. Infrared Phys. Technol. 2020, 109, 103382. [Google Scholar] [CrossRef]
- Johnson, J.M. 3: Exercise and the Cutaneous Circulation. Exerc. Sport Sci. Rev. 1992, 20, 59–98. [Google Scholar] [CrossRef] [PubMed]
- Wendt, D.; van Loon, L.J.; Lichtenbelt, W.D.M. Thermoregulation during Exercise in the Heat. Sports Med. 2007, 37, 669–682. [Google Scholar] [CrossRef]
- Noakes, T.D.O. Fatigue Is a Brain-Derived Emotion That Regulates the Exercise Behavior to Ensure the Protection of Whole Body Homeostasis. Front. Physiol. 2012, 3, 82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibson, A.S.C.; Baden, D.A.; Lambert, M.I.; Lambert, E.V.; Harley, Y.X.; Hampson, D.; Russell, V.A.; Noakes, T.D. The Conscious Perception of the Sensation of Fatigue. Sports Med. 2003, 33, 167–176. [Google Scholar] [CrossRef]
- Puri, C.; Olson, L.; Pavlidis, I.; Levine, J.; Starren, J. StressCam: Non-Contact Measurement of Users’ Emotional States through Thermal Imaging. In Proceedings of the CHI’05 Extended Abstracts on Human Factors in Computing Systems, Portland, OR, USA, 2–7 April 2005; pp. 1725–1728. [Google Scholar]
- Topalidou, A.; Ali, N. “Infrared Emotions and Behaviours”: Thermal Imaging in Psychology. Int. J. Prenat. Life Sci. 2017, 1, 65–70. [Google Scholar] [CrossRef]
- Borg, G. Borg’s Perceived Exertion and Pain Scales; Human Kinetics: Champaign, IL, USA, 1998; ISBN 0-88011-623-4. [Google Scholar]
- Gamberale, F. Perceived Exertion, Heart Rate, Oxygen Uptake and Blood Lactate in Different Work Operations. Ergonomics 1972, 15, 545–554. [Google Scholar] [CrossRef]
- Kang, J.; Babski-Reeves, K. Detecting Mental Workload Fluctuation during Learning of a Novel Task Using Thermography. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, New York, NY, USA, 22–26 September 2008; SAGE Publications: Los Angeles, CA, USA, 2008; Volume 52, pp. 1527–1531. [Google Scholar]
- Lee, M.; Carroll, T.J. Cross Education. Sports Med. 2007, 37, 1–14. [Google Scholar] [CrossRef]
- Eklund, B.; Kaijser, L.; Knutsson, E. Blood Flow in Resting (Contralateral) Arm and Leg during Isometric Contraction. J. Physiol. 1974, 240, 111–124. [Google Scholar] [CrossRef]
- Eklund, B.; Kaijser, L. Effect of Regional Alpha-and Beta-adrenergic Blockade on Blood Flow in the Resting Forearm during Contralateral Isometric Handgrip. J. Physiol. 1976, 262, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Escamilla-Galindo, V.L.; Estal-Martínez, A.; Adamczyk, J.G.; Brito, C.J.; Arnaiz-Lastras, J.; Sillero-Quintana, M. Skin Temperature Response to Unilateral Training Measured with Infrared Thermography. J. Exerc. Rehabil. 2017, 13, 526–534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ioannou, S.; Gallese, V.; Merla, A. Thermal Infrared Imaging in Psychophysiology: Potentialities and Limits. Psychophysiology 2014, 51, 951–963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreira, D.G.; Costello, J.T.; Brito, C.J.; Adamczyk, J.G.; Ammer, K.; Bach, A.J.E.; Costa, C.M.A.; Eglin, C.; Fernandes, A.A.; Fernández-Cuevas, I.; et al. Thermographic Imaging in Sports and Exercise Medicine: A Delphi Study and Consensus Statement on the Measurement of Human Skin Temperature. J. Therm. Biol. 2017, 69, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Formenti, D.; Perpetuini, D.; Iodice, P.; Cardone, D.; Michielon, G.; Scurati, R.; Alberti, G.; Merla, A. Effects of Knee Extension with Different Speeds of Movement on Muscle and Cerebral Oxygenation. PeerJ 2018, 6, e5704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Day, M.L.; McGuigan, M.R.; Brice, G.; Foster, C. Monitoring Exercise Intensity during Resistance Training Using the Session RPE Scale. J. Strength Cond. Res. 2004, 18, 353–358. [Google Scholar]
- Perpetuini, D.; Cardone, D.; Filippini, C.; Chiarelli, A.M.; Merla, A. A Motion Artifact Correction Procedure for FNIRS Signals Based on Wavelet Transform and Infrared Thermography Video Tracking. Sensors 2021, 21, 5117. [Google Scholar] [CrossRef]
- Geyer, M.J.; Jan, Y.-K.; Brienza, D.M.; Boninger, M.L. Using Wavelet Analysis to Characterize the Thermoregulatory Mechanisms of Sacral Skin Blood Flow. J. Rehabil. Res. Dev. 2004, 41, 797. [Google Scholar] [CrossRef]
- Quesada, J.P.; Lucas-Cuevas, A.G.; Gil-Calvo, M.; Giménez, J.V.; Aparicio, I.; de Anda, R.C.O.; Palmer, R.S.; Llana-Belloch, S.; Pérez-Soriano, P. Effects of Graduated Compression Stockings on Skin Temperature after Running. J. Therm. Biol. 2015, 52, 130–136. [Google Scholar] [CrossRef]
- Lopez, M.B.; del-Blanco, C.R.; Garcia, N. Detecting Exercise-Induced Fatigue Using Thermal Imaging and Deep Learning. In Proceedings of the 2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA), Montreal, QC, Canada, 28 November–1 December 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–6. [Google Scholar]
- Perpetuini, D.; Formenti, D.; Cardone, D.; Filippini, C.; Merla, A. Regions of Interest Selection and Thermal Imaging Data Analysis in Sports and Exercise Science: A Narrative Review. Physiol. Meas. 2021, 42, 08TR01. [Google Scholar] [CrossRef]
- Urquhart, E.L.; Wang, X.; Liu, H.; Fadel, P.J.; Alexandrakis, G. Differences in Net Information Flow and Dynamic Connectivity Metrics Between Physically Active and Inactive Subjects Measured by Functional Near-Infrared Spectroscopy (FNIRS) During a Fatiguing Handgrip Task. Front. Neurosci. 2020, 14, 167. [Google Scholar] [CrossRef] [PubMed]
- Kapilevich, L.V.; Kologrivova, V.V.; Zakharova, A.N.; Mourot, L. Post-Exercise Endothelium-Dependent Vasodilation Is Dependent on Training Status. Front. Physiol. 2020, 11, 11. [Google Scholar] [CrossRef]
- Thomas, K.N.; Kissling, L.S.; Gibbons, T.D.; Akerman, A.P.; van Rij, A.M.; Cotter, J.D. The Acute Effect of Resistance Exercise on Limb Blood Flow. Exp. Physiol. 2020, 105, 2099–2109. [Google Scholar] [CrossRef] [PubMed]
- Harris, K.F.; Matthews, K.A. Interactions between Autonomic Nervous System Activity and Endothelial Function: A Model for the Development of Cardiovascular Disease. Psychosom. Med. 2004, 66, 153–164. [Google Scholar] [CrossRef] [PubMed]
- Carroll, T.J.; Herbert, R.D.; Munn, J.; Lee, M.; Gandevia, S.C. Contralateral Effects of Unilateral Strength Training: Evidence and Possible Mechanisms. J. Appl. Physiol. 2006, 101, 1514–1522. [Google Scholar] [CrossRef] [PubMed]
- Vieira, S.G.; Sillero-Quintana, M.; da Silva, A.G.; Marins, K.O.; Marins, J.C.B. Thermographic Response Resulting from Strength Training: A Preliminary Study. Apunt. Sports Med. 2020, 55, 120–127. [Google Scholar] [CrossRef]
- Sampaio, L.; Bezerra, E.; Paladino, K.; dos Santos, J.O.L.; Quesada, J.I.P.; Rossato, M. Effect of Training Level and Blood Flow Restriction on Thermal Parameters: Preliminary Study. Infrared Phys. Technol. 2016, 79, 25–31. [Google Scholar] [CrossRef]
Exercised Leg | Nonexercised Leg | Nose Tip | Corrugator | |
---|---|---|---|---|
RPE vs. ∆TROI | −0.84 ** | −0.21 | −0.16 | −0.39 |
RPE vs. ∆PSD Metabolic | 0.54 | 0.49 | −0.52 | −0.43 |
RPE vs. ∆PSD Cardiac | 0.20 | 0.41 | 0.42 | 0.57 |
RPE vs. ∆PSD Respiratory | 0.30 | 0.32 | 0.26 | 0.44 |
RPE vs. ∆PSD Neurogenic | 0.51 | 0.51 | 0.75 * | 0.29 |
RPE vs. ∆PSD Myogenic | −0.41 | −0.22 | −0.71 * | −0.80 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perpetuini, D.; Formenti, D.; Iodice, P.; Cardone, D.; Filippini, C.; Chiarelli, A.M.; Michielon, G.; Trecroci, A.; Alberti, G.; Merla, A. Central and Peripheral Thermal Signatures of Brain-Derived Fatigue during Unilateral Resistance Exercise: A Preliminary Study. Biology 2022, 11, 322. https://doi.org/10.3390/biology11020322
Perpetuini D, Formenti D, Iodice P, Cardone D, Filippini C, Chiarelli AM, Michielon G, Trecroci A, Alberti G, Merla A. Central and Peripheral Thermal Signatures of Brain-Derived Fatigue during Unilateral Resistance Exercise: A Preliminary Study. Biology. 2022; 11(2):322. https://doi.org/10.3390/biology11020322
Chicago/Turabian StylePerpetuini, David, Damiano Formenti, Pierpaolo Iodice, Daniela Cardone, Chiara Filippini, Antonio Maria Chiarelli, Giovanni Michielon, Athos Trecroci, Giampietro Alberti, and Arcangelo Merla. 2022. "Central and Peripheral Thermal Signatures of Brain-Derived Fatigue during Unilateral Resistance Exercise: A Preliminary Study" Biology 11, no. 2: 322. https://doi.org/10.3390/biology11020322
APA StylePerpetuini, D., Formenti, D., Iodice, P., Cardone, D., Filippini, C., Chiarelli, A. M., Michielon, G., Trecroci, A., Alberti, G., & Merla, A. (2022). Central and Peripheral Thermal Signatures of Brain-Derived Fatigue during Unilateral Resistance Exercise: A Preliminary Study. Biology, 11(2), 322. https://doi.org/10.3390/biology11020322