Analysis of the Use and Applicability of Different Variables for the Prescription of Relative Intensity in Bench Press Exercise
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Procedures
2.3.1. 1RM Test
2.3.2. Maximum Number of Repetitions (MNR) Test
2.3.3. Blood Lactate Concentrations
2.3.4. Measurement Equipment
2.3.5. Examined Variables
2.4. Statistical Analysis
3. Results
3.1. Mean Propulsive Velocity at 1RM
3.2. Maximum Number of Repetitions (MNR) at 70% Intensity
3.3. Mean Propulsive Velocity Attained during the Best Repetition at 70% Intensity
3.4. Mean Propulsive Velocity Loss at 70% Intensity
3.5. Blood Lactate Concentrations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Toigo, M.; Boutellier, U. New fundamental resistance exercise determinants of molecular and cellular muscle adaptations. Eur. J. Appl. Physiol. 2006, 97, 643–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steib, S.; Schoene, D.; Pfeifer, K. Dose-response relationship of resistance training in older adults. Med. Sci. Sports Exerc. 2010, 42, 902–914. [Google Scholar] [CrossRef] [PubMed]
- Borde, R.; Hortobágyi, T.; Granacher, U. Dose-response relationships of resistance training in healthy old adults: A systematic review and meta-analysis. Sports Med. 2015, 45, 1693–1720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kraemer, W.J.; Ratamess, N.A. Fundamentals of resistance training: Progression and exercise prescription. Med. Sci. Sports Exerc. 2004, 36, 674–688. [Google Scholar] [CrossRef]
- Bird, S.P.; Tarpenning, K.M.; Marino, F.E. Designing resistance training programmes to enhance muscular fitness: A review of the acute programme variables. Sports Med. 2005, 35, 841–851. [Google Scholar] [CrossRef]
- Scott, B.R.; Duthie, G.M.; Thornton, H.R.; Dascombe, B.J. Training monitoring for resistance exercise: Theory and applications. Sports Med. 2016, 46, 687–698. [Google Scholar] [CrossRef]
- Brzycki, M. Strength testing-predicting a one-rep max from reps-to-fatigue. J. Phys. Educ. Recreat. Dance 1993, 64, 88–90. [Google Scholar] [CrossRef]
- Hoeger, W.W.K.; Hopkins, D.R.; Barette, S.L.; Hale, D.F. Relationship between repetitions and selected percentages of one repetition maximum: A comparison between untrained and trained males and females. J. Strength Cond. Res. 1990, 4, 47–54. [Google Scholar] [CrossRef]
- Reynolds, J.M.; Gordon, T.J.; Robergs, R.A. Prediction of one repetition maximum strength from multiple repetition maximum testing and anthropometry. J. Strength Cond. Res. 2006, 20, 584–592. [Google Scholar]
- Gonzalez-Badillo, J.J.; Sánchez-Medina, L. Movement velocity as a measure of loading intensity in resistance training. Int. J. Sports Med. 2010, 31, 347–352. [Google Scholar] [CrossRef]
- Sánchez-Medina, L.; Pérez, C.E.; González-Badillo, J.J. Importance of the propulsive phase in strength assessment. Int. J. Sports Med. 2010, 31, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Richens, B.; Cleather, D.J. The relationship between the number of repetitions performed at given intensities is different in endurance and strength trained athletes. Biol. Sport 2014, 31, 157–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weakley, J.; Mann, B.; Banyard, H.; McLaren, S.; Scott, T.; Garcia-Ramos, A. Velocity-based training: From theory to application. Strength Cond. J. 2021, 43, 31–49. [Google Scholar] [CrossRef]
- Balsalobre-Fernández, C.; Marchante, D.; Muñoz-López, M.; Jiménez, S.L. Validity and reliability of a novel iPhone app for the measurement of barbell velocity and 1RM on the bench-press exercise. J. Sports Sci. 2018, 36, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Loturco, I.; Pereira, L.A.; Cal Abad, C.C.; Gil, S.; Kitamura, K.; Kobal, R.; Nakamura, F.Y. Using bar velocity to predict the maximum dynamic strength in the half-squat exercise. Int. J. Sports Physiol. Perform. 2016, 11, 697–700. [Google Scholar] [CrossRef] [PubMed]
- Rontu, J.P.; Hannula, M.I.; Leskinen, S.; Linnamo, V.; Salmi, J.A. One-repetition maximum bench press performance estimated with a new accelerometer method. J. Strength Cond. Res. 2010, 24, 2018–2025. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Moreno, M.; Rendeiro-Pinho, G.; Mil-Homens, P.V.; Pareja-Blanco, F. Monitoring training volume through maximal number of repetitions or velocity-based approach. Int. J. Sports Physiol. Perform. 2021, 16, 527–534. [Google Scholar] [CrossRef]
- González-Badillo, J.J.; Yáñez-García, J.M.; Mora-Custodio, R.; Rodríguez-Rosell, D. Velocity loss as a variable for monitoring resistance exercise. Int. J. Sports Med. 2017, 38, 217–225. [Google Scholar] [CrossRef]
- Rodríguez-Rosell, D.; Yáñez-García, J.M.; Sánchez-Medina, L.; Mora-Custodio, R.; González-Badillo, J.J. Relationship between velocity loss and repetitions in reserve in the bench press and back squat exercises. J. Strength Cond. Res. 2020, 34, 2537–2547. [Google Scholar] [CrossRef]
- Hernández-Belmonte, A.; Courel-Ibáñez, J.; Conesa-Ros, E.; Martínez-Cava, A.; Pallarés, J.G. Level of effort: A reliable and practical alternative to the velocity-based approach for monitoring resistance training. J. Strength Cond. Res. 2021, in press. [Google Scholar] [CrossRef]
- Association, W.M. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar]
- Pallarés, J.G.; Sánchez-Medina, L.; Pérez, C.E.; de la Cruz-Sánchez, E.; Mora-Rodríguez, R. Imposing a pause between the eccentric and concentric phases increases the reliability of isoinertial strength assessments. J. Sports Sci. 2014, 32, 1165–1175. [Google Scholar] [CrossRef] [PubMed]
- Pallarés, J.G.; López-Samanes, A.; Fernández-Elías, V.E.; Aguado-Jiménez, R.; Ortega, J.F.; Gómez, C.; Ventura, R.; Segura, J.; Mora-Rodríguez, R. Pseudoephedrine and circadian rhythm interaction on neuromuscular performance. Scand. J. Med. Sci. Sport 2015, 25, e603–e612. [Google Scholar] [CrossRef] [PubMed]
- Peña García-Orea, G.; Belando-Pedreño, N.; Merino-Barrero, J.A.; Heredia-Elvar, J.R. Validation of an opto-electronic instrument for the measurement of execution velocity in squat exercise. Sports Biomech. 2021, 6, 706–719. [Google Scholar] [CrossRef] [PubMed]
- McNaughton, L.R.; Thompson, D.; Philips, G.; Backx, K.; Crickmore, L. A comparison of the Lactate Pro, Accusport, Analox GM7 and Kodak Ektachem lactate analysers in normal, hot and humid conditions. Int. J. Sports Med. 2002, 23, 130–135. [Google Scholar] [CrossRef] [PubMed]
- McLean, S.R.; Norris, S.R.; Smith, D.J. Comparison of the Lactate Pro and the YSI 1500 Sport Blood Lactate analyzers. Int. J. Appl. Sports Sci. 2004, 16, 22–30. [Google Scholar]
- Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 327, 307–310. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Schabort, E.J.; Hawley, J.A. Reliability of power in physical performance tests. Sports Med. 2001, 31, 211–234. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [Green Version]
- Pareja-Blanco, F.; Walker, S.; Häkkinen, K. Validity of using velocity to estimate intensity in resistance exercises in men and women. Int. J. Sports Med. 2020, 41, 1047–1055. [Google Scholar] [CrossRef]
- Gonzalez-Badillo, J.J.; Rodríguez-Rosell, D.; Sánchez-Medina, L.; Gorostiaga, E.M.; Pareja-Blanco, F. Maximal intended velocity training induces greater gains in bench press performance than deliberately slower half-velocity training. Eur. J. Sport Sci. 2014, 14, 772–781. [Google Scholar] [CrossRef] [PubMed]
- Pestaña-Melero, F.L.; Haff, G.G.; Rojas, F.J.; Pérez-Castilla, A.; García-Ramos, A. Reliability of the load–velocity relationship obtained through linear and polynomial regression models to predict the 1-repetition maximum load. J. Appl. Biomech. 2018, 34, 184–190. [Google Scholar] [CrossRef] [PubMed]
- García-Ramos, A.; Haff, G.G.; Pestaña-Melero, F.L.; Pérez-Castilla, A.; Rojas, F.J.; Balsalobre-Fernández, C.; Jaric, S. Feasibility of the 2-point method for determining the 1-repetition maximum in the bench press exercise. Int. J. Sports. Physiol. Perform. 2018, 13, 474–481. [Google Scholar] [CrossRef] [PubMed]
- González-Badillo, J.J.; Rodríguez-Rosell, D.; Sánchez-Medina, L.; Ribas-Serna, J.; López-López, C.; Mora-Custodio, R.; Yáñez-García, J.M.; Pareja-Blanco, F. Short-term recovery following resistance exercise leading or not to failure. Int. J. Sports Med. 2016, 37, 295–304. [Google Scholar] [CrossRef] [Green Version]
- Pareja-Blanco, F.; Rodríguez-Rosell, D.; Sánchez-Medina, L.; Ribas-Serna, J.; López-López, C.; Mora-Custodio, R.; Yáñez-García, J.M.; González-Badillo, J.J. Acute and delayed response to resistance exercise leading or not leading to muscle failure. Clin. Physiol. Funct. Imaging 2017, 37, 630–639. [Google Scholar] [CrossRef]
- Morán-Navarro, R.; Pérez, C.E.; Mora-Rodríguez, R.; de la Cruz-Sánchez, E.; González-Badillo, J.J.; Sánchez-Medina, L.; Pallarés, J.G. Time course of recovery following resistance training leading or not to failure. Eur. J. Appl. Physiol. 2017, 117, 2387–2399. [Google Scholar] [CrossRef]
- Pareja-Blanco, F.; Rodríguez-Rosell, D.; González-Badillo, J.J. Time course of recovery from resistance exercise before and after a training program. J. Sports Med. Phys. Fit. 2019, 59, 1458–1465. [Google Scholar] [CrossRef]
- García-Ramos, A.; Pestaña-Melero, F.L.; Perez-Castilla, A.; Rojas, F.J.; Haff, G.G. Differences in the load-velocity profile between 4 bench-press variants. Int. J. Sports Physiol. Perform. 2018, 13, 326–331. [Google Scholar] [CrossRef]
- López, P.; Radaelli, R.; Taaffe, D.R.; Newton, R.U.; Galvao, D.A.; Trajano, G.S.; Teodoro, J.L.; Kraemer, W.J.; Häkkinen, K.; Pinto, R.S. Resistance training load effects on muscle hypertrophy and strength gain: Systematic review and network meta-analysis. Med. Sci. Sports Exerc. 2021, 53, 1206–1216. [Google Scholar] [CrossRef]
- American College of Sports Medicine. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med. Sci. Sports Exerc. 2009, 41, 687–708. [Google Scholar] [CrossRef]
- Pelliccia, A.; Sharma, S.; Gati, S.; Bäck, M.; Börjesson, M.; Caselli, S.; Collet, J.P.; Corrado, D.; Drezner, J.A.; Halle, M.; et al. ESC guidelines on sports cardiology and exercise in patients with cardiovascular disease. Eur. Heart J. 2021, 42, 17–96, Erratum in Eur. Heart J. 2021, 42, 548–549. [Google Scholar] [CrossRef] [PubMed]
- Hunter, G.; Fisher, G.; Neumeier, W.H.; Carter, S.J.; Plaisance, E.P. Exercise training and energy expenditure following weight loss. Med. Sci. Sports Exerc. 2015, 47, 1950–1957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atkinson, G.; Nevill, A.M. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med. 1998, 26, 217–238. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Medina, L.; González-Badillo, J.J. Velocity loss as an indicator of neuromuscular fatigue during resistance training. Med. Sci. Sports Exerc. 2011, 43, 1725–1734. [Google Scholar] [CrossRef] [PubMed]
MPV 1 RM (m·s−1) | 70% Load (kg) | MNR 70% Rep (nº) | % Loss MPV Test | MPVrep Best (m·s−1) | MPVrep Last (m·s−1) | Lactate PRE (mmol·L−1) | Lactate POST (mmol·L−1) | |
---|---|---|---|---|---|---|---|---|
(n = 50) | ||||||||
M ± SD | 0.16 ± 0.05 | 54.98 ± 13.12 | 12.38 ± 2.51 | −73.64 ± 7.43 | 0.60 ± 0.07 | 0.16 ± 0.04 | 1.42 ± 0.33 | 5.72 ± 1.50 |
95%CI | 0.14–0.17 | 51.25–58.71 | 11.67–13.09 | −71.53–−75.75 | 0.58–0.62 | 0.14–0.17 | 1.32–1.51 | 5.30–6.1550 |
Min–Max | 0.05–0.30 | 31–88 | 5–19 | 54.21–87.5 | 0.47–0.76 | 0.08–0.28 | 0.90–2.20 | 3.20–9.80 |
CV | 31% | 24% | 20% | 10% | 12% | 25% | 23% | 26% |
High RSR (n = 11) | ||||||||
M ± SD | 0.12 ± 0.03 † | 71.73 ± 10.00 * | 12.82 ± 1.72 | −72.86 ± 7.22 | 0.52 ± 0.04 * | 0.14 ± 0.03 | 1.35 ± 0.38 | 6.14 ± 1.18 |
95%CI | 0.10–0.14 | 65.02–78.43 | 11.66–13.97 | −68.01–−77.71 | 0.49–0.55 | 0.12–0.16 | 1.10–1.61 | 5.34–6.93 |
Min–Max | 0.05–0.17 | 60–88 | 10–15 | 61.70–86.44 | 0.47–0.60 | 0.08–0.18 | 0.90–2.20 | 3.80–7.70 |
CV | 25% | 14% | 13% | 10% | 8% | 21% | 28% | 19% |
Medium RSR (n = 14) | ||||||||
M ± SD | 0.16 ± 0.04 | 58.50 ± 6.39 £ | 13.14 ± 2.03 | −73.96 ± 7.29 | 0.62 ± 0.06 | 0.15 ± 0.03 | 1.39 ± 0.31 | 6.27 ± 1.38 ‡ |
95%CI | 0.14–0.18 | 54.81–62.19 | 11.97–14.32 | −69.75–−78.17 | 0.58–0.65 | 0.13–0.17 | 1.21–1.57 | 5.47–7.07 |
Min–Max | 0.09–0.25 | 48–71 | 8–17 | 54.21–83.30 | 0.51–0.73 | 0.10–0.22 | 0.90–1.80 | 4–8.80 |
CV | 25% | 11% | 15% | 10% | 10% | 20% | 22% | 22% |
Low RSR (n = 14) | ||||||||
M ± SD | 0.17 ± 0.06 | 47.21 ± 7.85 | 12.21 ± 2.72 | −74.09 ± 7.39 | 0.63 ± 0.05 | 0.16 ± 0.05 | 1.42 ± 0.32 | 5.51 ± 1.63 |
95%CI | 0.13–0.21 | 42.68–51.74 | 10.64–13.79 | −69.83–−78.35 | 0.60–0.66 | 0.13–0.19 | 1.24–1.60 | 4.57–6.46 |
Min–Max | 0.08–0.26 | 38–61 | 9–19 | 62.90–87.50 | 0.54–0.71 | 0.08–0.27 | 1.00–2.10 | 3.70–9.80 |
CV | 35% | 17% | 22% | 10% | 8% | 31% | 23% | 30% |
Very low RSR (n = 11) | ||||||||
M ± SD | 0.18 ± 0.06 | 43.64 ± 7.65 | 11.18 ± 3.22 | −73.44 ± 8.78 | 0.64 ± 0.07 | 0.17 ± 0.05 | 1.52 ± 0.35 | 4.77 ± 1.37 |
95%CI | 0.14–0.22 | 38.50–48.77 | 9.02–13.34 | −67.54–−79.34 | 0.59–0.69 | 0.13–0.21 | 1.29–1.75 | 3.86–5.69 |
Min–Max | 0.10–0.30 | 31–53 | 5–15 | 61.70–85.25 | 0.54–0.76 | 0.09–0.28 | 1.00–2.10 | 3.20–8 |
CV | 33% | 18% | 29% | 12% | 11% | 29% | 23% | 29% |
MNR 70% Rep (nº) | MPVrep Best (m·s−1) | MPVrep Last (m·s−1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T2 | T3 | SEM | CV | T2 | T3 | SEM | CV | T2 | T3 | SEM | CV | |
(n = 50) | 12.38 ± 2.51 | 12.94 ± 2.36 | 1.165 | 9.2% | 0.60 ± 0.07 | 0.62 ± 0.11 | 0.048 | 7.9% | 0.16 ± 0.04 | 0.15 ± 0.05 | 0.035 | 22.5% |
High RSR (n = 11) | 12.82 ± 1.72 | 13.09 ± 1.7 | 0.671 | 5.2% | 0.52 ± 0.04 | 0.53 ± 0.07 | 0.031 | 5.8% | 0.14 ± 0.03 | 0.12 ± 0.04 | 0.033 | 25% |
Medium RSR (n = 14) | 13.14 ± 2.03 | 13.64 ± 2.20 | 0.631 | 4.7% | 0.62 ± 0.06 | 0.63 ± 0.09 | 0.034 | 5.4% | 0.15 ± 0.03 | 0.15 ± 0.06 | 0.049 | 32.7% |
Low RSR (n = 14) | 12.21 ± 2.72 | 12.57 ± 2.03 | 0.911 | 7.4% | 0.63 ± 0.05 | 0.66 ± 0.08 | 0.055 | 8.5% | 0.16 ± 0.05 | 0.16 ± 0.05 | 0.028 | 17.5% |
Very Low RSR (n = 11) | 11.18 ± 3.22 | 12.36 ± 3.38 | 2.18 | 18.5% | 0.64 ± 0.07 | 0.66 ± 0.13 | 0.076 | 11.7% | 0.17 ± 0.05 | 0.19 ± 0.05 | 0.051 | 28.3% |
MNR 70% Rep (nº) | MPVrep Best (m·s−1) | MPVrep Last (m·s−1) | |||||||
---|---|---|---|---|---|---|---|---|---|
Systematic Bias | Random Error | CI (95%) | Systematic Bias | Random Error | CI (95%) | Systematic Bias | Random Error | CI (95%) | |
High RSR (n = 11) | 0.27 | 1.27 | 2.82 to −2.27 | 0.010 | 0.056 | 0.122 to −0.102 | −0.021 | 0.047 | 0.073 to −0.115 |
Medium RSR (n = 14) | 0.50 | 1.16 | 2.82 to −1.82 | 0.018 | 0.063 | 0.143 to −0.107 | 0.006 | 0.066 | 0.125 to −0.138 |
Low RSR (n = 14) | 0.36 | 1.74 | 3.83 to −3.12 | 0.030 | 0.087 | 0.203 to −0.143 | 0.006 | 0.051 | 0.096 to −0.109 |
Very Low RSR (n = 11) | 1.18 | 3.63 | 8.44 to −6.07 | 0.025 | 0.128 | 0.282 to −0.231 | 0.019 | 0.073 | 0.166 to −0.127 |
Pearson’s Correlation Coefficient | ||
---|---|---|
R | p | |
All RSR (n = 50) | ||
Repetitions 70%–% MPV loss test Repetitions 70%–Lactate POST | 0.247 0.131 | 0.364 0.083 |
High RSR (n = 11) | ||
Repetitions 70%–% MPV loss test Repetitions 70%–Lactate POST | 0.493 0.141 | 0.123 0.679 |
Medium RSR (n = 14) | ||
Repetitions 70%–% MPV loss test Repetitions 70%–Lactate POST | 0.100 0.144 | 0.733 0.623 |
Low RSR (n = 14) | ||
Repetitions 70%–% MPV loss test Repetitions 70%–Lactate POST | 0.158 −0.307 | 0.590 0.285 |
Very Low RSR (n = 11) | ||
Repetitions 70%–% MPV loss test Repetitions 70%–Lactate POST | 0.365 0.274 | 0.270 0.414 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maté-Muñoz, J.L.; Garnacho-Castaño, M.V.; Hernández-Lougedo, J.; Maicas-Pérez, L.; Notario-Alonso, R.; Da Silva-Grigoletto, M.E.; García-Fernández, P.; Heredia-Elvar, J.R. Analysis of the Use and Applicability of Different Variables for the Prescription of Relative Intensity in Bench Press Exercise. Biology 2022, 11, 336. https://doi.org/10.3390/biology11020336
Maté-Muñoz JL, Garnacho-Castaño MV, Hernández-Lougedo J, Maicas-Pérez L, Notario-Alonso R, Da Silva-Grigoletto ME, García-Fernández P, Heredia-Elvar JR. Analysis of the Use and Applicability of Different Variables for the Prescription of Relative Intensity in Bench Press Exercise. Biology. 2022; 11(2):336. https://doi.org/10.3390/biology11020336
Chicago/Turabian StyleMaté-Muñoz, José Luis, Manuel Vicente Garnacho-Castaño, Juan Hernández-Lougedo, Luis Maicas-Pérez, Raúl Notario-Alonso, Marzo Edir Da Silva-Grigoletto, Pablo García-Fernández, and Juan Ramón Heredia-Elvar. 2022. "Analysis of the Use and Applicability of Different Variables for the Prescription of Relative Intensity in Bench Press Exercise" Biology 11, no. 2: 336. https://doi.org/10.3390/biology11020336
APA StyleMaté-Muñoz, J. L., Garnacho-Castaño, M. V., Hernández-Lougedo, J., Maicas-Pérez, L., Notario-Alonso, R., Da Silva-Grigoletto, M. E., García-Fernández, P., & Heredia-Elvar, J. R. (2022). Analysis of the Use and Applicability of Different Variables for the Prescription of Relative Intensity in Bench Press Exercise. Biology, 11(2), 336. https://doi.org/10.3390/biology11020336