Boron Delivery to Brain Cells via Cerebrospinal Fluid (CSF) Circulation for BNCT in a Rat Melanoma Model
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Excretion Time Profile of Boron Based on Concentration in the Brain Cells of Normal Rats
2.2. Boron Uptake into Brain Tumor Cells and T/N Ratio by the CSF and IV Administration Methods
2.3. Proof of Proper Ventricular Injection
3. Results
3.1. Excretion Time Profile Based on Boron Concentration in the Brain Cells of Normal Rats
3.2. Boron Uptake into Brain Tumor Cells and T/N Ratio by the CSF and IV Administration Methods
4. Discussion
4.1. T/N Ratio with Tumor Model Rats by the CSF Administration Method
4.2. Boron Uptake into Tumor Cells of Rats by the CSF Administration Method
4.3. Species Differences in Transporter Expression in the BBB and Boron Uptake into Brain Tumors
4.4. Future of the CSF Administration Method
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pulgar, V.M. Transcytosis to Cross the Blood Brain Barrier, New Advancements and Challenges. Front. Neurosci. 2019, 12, 1019. [Google Scholar] [CrossRef] [PubMed]
- Nigam, K.; Kaur, A.; Tyagi, A.; Nematullah, M.; Khan, F.; Gabrani, R.; Dang, S. Nose-to-brain delivery of lamotrigine-loaded PLGA nanoparticles. Drug Deliv. Transl. Res. 2019, 9, 879–890. [Google Scholar] [CrossRef] [PubMed]
- Charx, H.; Kumar, S.; Patel, S.; Piemontese, D.; Iqbal, K.; Malick, A.W.; Salvador, R.A.; Behl, C.R. Nasal delivery of [14C] dextromethorphan hydrochloride in rats: Levels in plasma and brain. J. Pharm. Sci. 1992, 81, 750–752. [Google Scholar] [CrossRef] [PubMed]
- Mehta, A.M.; Sonabend, A.M.; Bruce, J.N. Convection-Enhanced Delivery. Neurotherapeutics 2017, 14, 358–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukuo, Y.; Hattori, Y.; Kawabata, S.; Kashiwagi, H.; Kanemitsu, T.; Takeuchi, K.; Futamura, G.; Hiramatsu, R.; Watanabe, T.; Hu, N.; et al. The Therapeutic Effects of Dodecaborate Containing Boronophenylalanine for Boron Neutron Capture Therapy in a Rat Brain Tumor Model. Biology 2020, 9, 437. [Google Scholar] [CrossRef]
- Kouzehgarani, G.N.; Feldsien, T.; Engelhard, H.H.; Mirakhur, K.K.; Phipps, C.; Nimmrich, V.; Clausznitzer, D.; Lefevbre, D.R. Harnessing cerebrospinal fluid circulation for drug delivery to brain tissues. Adv. Drug Deliv. Rev. 2021, 173, 20–59. [Google Scholar] [CrossRef]
- Blasberg, R.G.; Patlak, C.; Fenstermacher, J.D. Intrathecal chemotherapy: Brain tissue profiles after ventricle cisternal perfusion. J. Pharmacol. Exp. Ther. 1975, 195, 73–83. [Google Scholar]
- Abbott, N.J.; Pizzo, M.E.; Preston, J.E.; Janigro, D.; Thorne, R.G. The role of brain barriers in fluid movement in the CNS: Is there a ‘glymphatic’ system? Acta Neuropathol. 2018, 135, 387–407. [Google Scholar] [CrossRef] [Green Version]
- Pardridge, W.M. Blood-Brain Barrier and Delivery of Protein and Gene Therapeutics to Brain. Front. Aging Neurosci. 2020, 11, 373. [Google Scholar] [CrossRef]
- Calias, P.; Banks, W.A.; Begley, D.; Scarpa, M.; Dickson, P. Intrathecal delivery of protein therapeutics to the brain: A critical reassessment. Pharmacol. Ther. 2014, 144, 114–122. [Google Scholar] [CrossRef]
- Winer, L.; Srinivasan, D.; Chun, S.; Lacomis, D.; Jaffa, M.; Fagan, A.; Holtzman, D.M.; Wancewicz, E.; Bennett, C.F.; Bowser, R.; et al. SOD1 in Cerebral Spinal Fluid as a Pharmacodynamic Marker for Antisense Oligonucleotide Therapy. JAMA Neurol. 2013, 70, 201–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rigo, F.; Chun, S.J.; Norris, D.A.; Hung, G.; Lee, S.; Matson, J.; Fey, R.A.; Gaus, H.; Hua, Y.; Grundy, J.S.; et al. Pharmacology of a Central Nervous System Delivered 2′-O-Methoxyethyl–Modified Survival of Motor Neuron Splicing Oligonucleotide in Mice and Nonhuman Primates. J. Pharmacol. Exp. Ther. 2014, 350, 46–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geary, R.S.; Norris, D.; Yu, R.; Bennett, C.F. Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides. Adv. Drug Deliv. Rev. 2015, 87, 46–51. [Google Scholar] [CrossRef] [Green Version]
- Gray, S.J.; Kalburgi, S.N.; McCown, T.J.; Samulski, R.J. Global CNS gene delivery and evasion of anti-AAV-neutralizing antibodies by intrathecal AAV administration in non-human primates. Gene Ther. 2013, 20, 450–459. [Google Scholar] [CrossRef] [Green Version]
- Barth, R.F.; Vicente, H.M.; Harling, O.K.; Kiger, W.S., III; Riley, K.J.; Binns, P.J.; Wagner, F.M.; Suzuki, M.; Aihara, T.; Kato, I.; et al. Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer. Radiat. Oncol. 2012, 7, 146. [Google Scholar] [CrossRef] [Green Version]
- Locher, G.L. Biological effects and therapeutic possibilities of neutron. Am. J. Roentgenol. 1936, 36, 1–13. [Google Scholar]
- Nakamura, H. Boron Neutron Capture Therapy Historical Development and Current Status of Boron Delivery Agents for Boron Neutron Capture Therapy. Radioisotopes 2015, 64, 47–58. [Google Scholar] [CrossRef] [Green Version]
- Fukuda, H. Boron Neutron Capture Therapy for Cancer (BNCT) using Boron Compounds. J. Tohoku Pharm. Univ. 2015, 62, 1–11. [Google Scholar]
- Kumada, H.; Takada, K. Treatment planning system and patient positioning for boron neutron capture therapy. Ther. Radiol. Oncol. 2018, 2, 50. [Google Scholar] [CrossRef]
- Kusaka, S.; Morizane, Y.; Tokumaru, Y.; Tamaki, S.; Indah, R.M.; Akiyama, Y.; Sato, F.; Murata, I. Boron delivery using cerebrospinal fluid (CSF) to brain cells of normal rat for veterinary BNCT. Res. Vet. Sci. 2021; submitted. [Google Scholar]
- Ishikuro, M.; Wagatsuma, K. Determination of Trace Smounts of Boron in silicon and Germanium by Curcumin Spectrophotometry after Methyl Borate Distillation. Bunseki Kagaku 2009, 58, 373–377. [Google Scholar] [CrossRef] [Green Version]
- Yan, R.; Zhao, X.; Lei, J.; Zhou, Q. Structure of the human LAT1–4F2hc heteromeric amino acid transporter complex substances. Nature 2019, 568, 127–130. [Google Scholar] [CrossRef] [PubMed]
- Nagamori, S.; Kanai, Y. Amino acid transporters in cancer. Biochemistry 2014, 86, 338–344. [Google Scholar]
- Pardridge, W.M. The Blood-Brain Barrier: Bottleneck in Brain Drug Development. NeuroRX 2005, 2, 3–14. [Google Scholar] [CrossRef]
- Yankova, G.; Bogomyakova, O.; Tulupov, A. The glymphatic system and meningeal lymphatics of the brain: New understanding of brain clearance. Rev. Neurosci. 2021, 32, 693–705. [Google Scholar] [CrossRef] [PubMed]
- Wardlaw, J.M.; Benveniste, H.; Nedergaard, M.; Zlokovic, B.V.; Mestre, H.; Lee, H.; Doubal, F.N.; Brown, R.; Ramirez, J.; MacIntosh, B.J.; et al. Perivascular spaces in the brain: Anatomy, physiology and pathology. Nat. Rev. Neurol. 2020, 16, 137–153. [Google Scholar] [CrossRef]
- Romanov, V.; Isohashi, K.; Alobthani, G.; Beshr, R.; Horitsugi, G.; Kanai, Y.; Naka, S.; Watabe, T.; Shimosegawa, E.; Hatazawa, J. Evaluation of the total distribution volume of 18F-FBPA in normal tissues of healthy volunteers by non-compartmental kinetic modeling. Ann. Nucl. Med. 2020, 34, 155–162. [Google Scholar] [CrossRef] [Green Version]
- Zimm, S.; Collins, J.M.; Miser, J.; Chatterji, D.; Poplack, D.G. Cytosine arabinoside cerebrospinal fluid kinetics. Clin. Pharmacol. Ther. 1984, 35, 826–830. [Google Scholar] [CrossRef]
- Pardridge, W.M. Drug transport in brain via the cerebrospinal fluid. Fluids Barriers CNS 2011, 8, 7. [Google Scholar] [CrossRef] [Green Version]
- Pardridge, W.M. CSF, blood-brain barrier, and brain drug delivery. Expert Opin. Drug Deliv. 2016, 13, 963–975. [Google Scholar] [CrossRef]
- Stine, C.A.; Munson, J.M. Convection-Enhanced Delivery: Connection to and Impact of Interstitial Fluid Flow. Front. Oncol. 2019, 9, 966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mestre, H.; Mori, Y.; Nedergaard, M. The Brain’s Glymphatic System: Current Controversies. Trends Neurosci. 2020, 43, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Pizzo, M.E.; Wolak, D.J.; Kumar, N.N.; Brunette, E.; Brunnquell, C.L.; Hannocks, M.; Abbott, N.J.; Meyerand, M.E.; Sorokin, L.; Stanimirovic, D.B.; et al. Intrathecal antibody distribution in the rat brain: Surface diffusion, perivascular transport and osmotic enhancement of delivery. J. Physiol. 2018, 596, 445–475. [Google Scholar] [CrossRef] [Green Version]
- Hoshi, Y.; Uchida, Y.; Tachikawa, M.; Inoue, T.; Ohtsuki, S.; Terasaki, T. Quantitative Atlas of Blood-Brain Barrier Transporters, Receptors, and Tight Junction Proteins in Rats and Common Marmoset. J. Pharm. Sci. 2013, 102, 3343–3355. [Google Scholar] [CrossRef] [PubMed]
CSF Administration Method | IV Administration Method | |
---|---|---|
Infusion rate (mg/kg/h) | 4 | 350 |
Number of animals | 3 for each sampling time | 3 for each sampling time |
Infusion time (min) | 60 | 60 |
Collected sample | CSF, Brain Part I, Brain Part II | CSF, Brain |
Sampling time (min) after end of infusion | 60, 120, 180, and 240 min | 60, 120, 180, 240, 300, and 360 min |
CSF Administration Method | IV Administration Method | |
---|---|---|
Infusion rate (mg/kg/h) | 4 | 350 |
Animal case number | Nos. 1–5 | Nos. 6 and 7 |
Infusion time (min) | 360 | 60 |
Collected sample | CSF, tumor cell, normal cell | CSF, tumor cell, normal cell |
Sampling time (min) after end of infusion | 120 min | 240 min |
Animal Case Number | Boron Concentration in Tumor Cells (µg/g) | Boron Concentration in Normal Cells (µg/g) | T/N Ratio |
---|---|---|---|
No. 1 | 23.7 | 13.2 | 1.8 |
No. 2 | 9.4 | 8.1 | 1.2 |
No. 3 | 12.4 | 3.7 | 3.4 |
No. 4 | 62.1 | 25.7 | 2.4 |
No. 5 | 19.5 | 4.4 | 4.4 |
No. 6 | 33.2 | 9.5 | 2.6 |
No. 7 | 10.2 | 6.3 | 1.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kusaka, S.; Morizane, Y.; Tokumaru, Y.; Tamaki, S.; Maemunah, I.R.; Akiyama, Y.; Sato, F.; Murata, I. Boron Delivery to Brain Cells via Cerebrospinal Fluid (CSF) Circulation for BNCT in a Rat Melanoma Model. Biology 2022, 11, 397. https://doi.org/10.3390/biology11030397
Kusaka S, Morizane Y, Tokumaru Y, Tamaki S, Maemunah IR, Akiyama Y, Sato F, Murata I. Boron Delivery to Brain Cells via Cerebrospinal Fluid (CSF) Circulation for BNCT in a Rat Melanoma Model. Biology. 2022; 11(3):397. https://doi.org/10.3390/biology11030397
Chicago/Turabian StyleKusaka, Sachie, Yuri Morizane, Yugo Tokumaru, Shingo Tamaki, Indah Rosidah Maemunah, Yoko Akiyama, Fuminobu Sato, and Isao Murata. 2022. "Boron Delivery to Brain Cells via Cerebrospinal Fluid (CSF) Circulation for BNCT in a Rat Melanoma Model" Biology 11, no. 3: 397. https://doi.org/10.3390/biology11030397
APA StyleKusaka, S., Morizane, Y., Tokumaru, Y., Tamaki, S., Maemunah, I. R., Akiyama, Y., Sato, F., & Murata, I. (2022). Boron Delivery to Brain Cells via Cerebrospinal Fluid (CSF) Circulation for BNCT in a Rat Melanoma Model. Biology, 11(3), 397. https://doi.org/10.3390/biology11030397