Application of Wearable Sensors Technology for Lumbar Spine Kinematic Measurements during Daily Activities following Microdiscectomy Due to Severe Sciatica
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Clinical Examination following Microdiscectomy
2.3. Instrumentation and Procedure
- BMI160 6-axis Accelerometer + Gyroscope
- BMP280 Temperature
- BMP280 Barometer/Pressure/Altimeter
- LTR-329ALS Luminosity/Ambient Light
- BMM150 3-axis Magnetometer
- BOSCH 9-axis Sensor Fusion
- 8 MB Memory
- Lithium-ion rechargeable battery
- Vibrating Coin motor
- Bluetooth Low Energy, CPU, button, LED, and GPIOs
2.3.1. 1st Step—Calibration
2.3.2. 2nd Step—Sensors Positioning
2.3.3. 3rd Step—Bluetooth Protocol and Data Transmission
2.3.4. 4th Step—Control of Test Measurements Trial Acquisition
2.3.5. 5th Step—Initial Data Interpretation
2.3.6. 6th Step—Daily Activities Acquisition
2.4. Data Collection–Data Analysis
Mode | Accelerometer | Gyroscope | Magnetometer |
NDoF | 100 Hz | 100 Hz | 25 Hz |
3. Results
3.1. Clinical Examination following Microdiscectomy:
The Japanese Orthopaedic Association (JOA) Score
3.2. Wearable Sensors–IMU Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ISOS | International Surgical Outcomes Study |
LSMs | Lumbar Spine Microdiscectomies |
rLDH | recurrence Lumbar Disc Herniation |
ROM | Range of Motion |
L5-S1 | Fifth Lumbar–First Sacral vertebrae |
MRC | Medical Research Council scale |
BMI | Body Mass Index |
JOA | Japanese Orthopaedic Association |
IMU | Inertial Measurement Units |
SD | Standard Deviation |
LSFs | Lumbar Spine Flexions |
N.S. | Normal Subjects |
PW | Postoperative Week |
References
- Davis, H. Increasing Rates of Cervical and Lumbar Spine Surgery in the United States, 1979–1990. Spine 1994, 19, 1117–1122. [Google Scholar] [CrossRef]
- Deyo, R.A.; Gray, D.T.; Kreuter, W.; Mirza, S.; Martin, B.I. United States Trends in Lumbar Fusion Surgery for Degenerative Conditions. Spine 2005, 30, 1441–1445. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, J.N.; Lurie, J.D.; Olson, P.R.; Bronner, K.K.; Fisher, E.S. United States’ trends and regional variations in lumbar spine surgery: 1992–2003. Spine 2006, 31, 2707–2714. [Google Scholar] [CrossRef] [PubMed]
- Deyo, R.A.; Mirza, S.K.; Martin, B.I.; Kreuter, W.; Goodman, D.C.; Jarvik, J.G. Trends, major medical complications, and charges associated with surgery for lumbar spinal stenosis in older adults. JAMA 2010, 303, 1259–1265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ugiliweneza, B.; Kong, M.; Nosova, K.; Huang, K.T.; Babu, R.; Lad, S.P.; Boakye, M. Spinal surgery: Variations in health care costs and implications for episode-based bundled payments. Spine 2014, 39, 1235–1242. [Google Scholar] [CrossRef] [PubMed]
- Rossi, V.J.; Ahn, J.; Bohl, D.; Tabaraee, E.; Singh, K. Economic factors in the future delivery of spinal healthcare. World J. Orthop. 2015, 6, 409–412. [Google Scholar] [CrossRef]
- Acosta, F.L.; Ames, C.; Hsieh, P.C.; McCarthy, I.M. Introduction: Costs and benefits of modern-day spine care. Neurosurg. Focus 2014, 36. [Google Scholar] [CrossRef]
- Borden, W.B.; Chiang, Y.-P.; Kronick, R. Bringing Patient-Centered Outcomes Research to Life. Value Health 2015, 18, 355–357. [Google Scholar] [CrossRef] [Green Version]
- Martin, B.I.; Deyo, R.A.; Lurie, J.D.; Carey, T.S.; Tosteson, A.N.A.; Mirza, S.K. Effects of a Commercial Insurance Policy Restriction on Lumbar Fusion in North Carolina and the Implications for National Adoption. Spine 2016, 41, 647–655. [Google Scholar] [CrossRef]
- Jancuska, J.M.; Hutzler, L.; Protopsaltis, T.S.; Bendo, J.A.; Bosco, J. Utilization of lumbar spinal fusion in New York state: Trends and disparities. Spine 2016, 41, 1508–1514. [Google Scholar] [CrossRef]
- Kim, K.-T.; Park, S.-W.; Kim, Y.-B. Disc Height and Segmental Motion as Risk Factors for Recurrent Lumbar Disc Herniation. Spine 2009, 34, 2674–2678. [Google Scholar] [CrossRef]
- Gatton, M.L.; Pearcy, M. Kinematics and movement sequencing during flexion of the lumbar spine. Clin. Biomech. 1999, 14, 376–383. [Google Scholar] [CrossRef]
- Colombel, J.; Bonnet, V.; Daney, D.; Dumas, R.; Seilles, A.; Charpillet, F. Physically Consistent Whole-Body Kinematics Assessment Based on an RGB-D Sensor. Application to Simple Rehabilitation Exercises. Sensors 2020, 20, 2848. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Wuerz, T.H.; DeFrate, L.E. Feasibility of Using Orthogonal Fluoroscopic Images to Measure In Vivo Joint Kinematics. J. Biomech. Eng. 2004, 126, 313–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Triantafyllou, A.; Papagiannis, G.; Nikolaou, V.S.; Papagelopoulos, P.J.; Babis, G.C. Similar Biomechanical Behavior in Gait Analysis between Ceramic-on-Ceramic and Ceramic-on-XLPE Total Hip Arthroplasties. Life 2021, 11, 1366. [Google Scholar] [CrossRef] [PubMed]
- Papagiannis, G.; Triantafyllou, A.; Konstantina, Y.G.; Koulouvaris, P.; Anastasiou, A.; Papadopoulos, E.C.; Papagelopoulos, P.J.; Babis, G.C. Biomechanical Factors could Affect Lumbar Disc Reherniation after Microdiscectomy. J. Orthop. Sports Med. 2019, 1, 46–50. [Google Scholar] [CrossRef]
- Tsakanikas, V.D.; Gatsios, D.; Dimopoulos, D.; Pardalis, A.; Pavlou, M.; Liston, M.B.; Fotiadis, D.I. Evaluating the Performance of Balance Physiotherapy Exercises Using a Sensory Platform: The Basis for a Persuasive Balance Rehabilitation Virtual Coaching System. Front. Digit. Health 2020, 2. [Google Scholar] [CrossRef]
- Kato, S.; Oshima, Y.; Oka, H.; Chikuda, H.; Takeshita, Y.; Miyoshi, K.; Kawamura, N.; Masuda, K.; Kunogi, J.; Okazaki, R.; et al. Comparison of the Japanese Orthopaedic Association (JOA) Score and Modified JOA (mJOA) Score for the Assessment of Cervical Myelopathy: A Multicenter Observational Study. PLoS ONE 2015, 10, e0123022. [Google Scholar] [CrossRef]
- Cafolla, D.; Chen, I.-M.; Ceccarelli, M. An experimental characterization of human torso motion. Front. Mech. Eng. 2015, 10, 311–325. [Google Scholar] [CrossRef]
- Chaparro-Rico, B.D.M.; Cafolla, D. Test-Retest, Inter-Rater and Intra-Rater Reliability for Spatiotemporal Gait Parameters Using SANE (an eaSy gAte aNalysis systEm) as Measuring Instrument. Appl. Sci. 2020, 10, 5781. [Google Scholar] [CrossRef]
- Ludwig, S.A.; Burnham, K.D. Comparison of Euler estimate using extended Kalman filter, Madgwick and Mahony on quadcopter flight data. In Proceedings of the 2018 International Conference on Unmanned Aircraft Systems, Dallas, TX, USA, 12–15 June 2018. [Google Scholar]
- Zhou, Q.; Li, Z.; Yu, G.; Li, H.; Zhang, N. A novel adaptive Kalman filter for Euler-angle-based MEMS IMU/magnetometer attitude estimation. Meas. Sci. Technol. 2021, 32, 045104. [Google Scholar] [CrossRef]
- Bakhshi, S.; Mahoor, M.H.; Davidson, B.S. Development of a body joint angle measurement system using IMU sensors. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011. [Google Scholar]
- Sakaura, H.; Ikegami, D.; Fujimori, T.; Sugiura, T.; Owaki, H.; Fuji, T. Abdominal Aortic Calcification Is a Significant Poor Prognostic Factor for Clinical Outcomes After Decompressive Laminotomy for Lumbar Spinal Canal Stenosis. Glob. Spine J. 2019, 9, 724–728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, G.; Wang, S.; Passias, P.; Xia, Q.; Li, G.; Wood, K. Segmental in vivo vertebral motion during functional human lumbar spine activities. Eur. Spine J. 2009, 18, 1013–1021. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Yang, H.; Liu, M.; Lu, M.; Chu, J.; Hou, S.; Hou, T. Clinical Characteristics and Risk Factors of Recurrent Lumbar Disk Herniation: A Retrospective Analysis of Three Hundred Twenty-One Cases. Spine 2018, 43, 1463–1469. [Google Scholar] [CrossRef] [PubMed]
- Mijailovic, N.; Peulic, A.; Filipovic, N.; Jovanov, E. Implementation of wireless sensor system in rehabilitation after back spine surgery. Serb. J. Electr. Eng. 2012, 9, 63–70. [Google Scholar] [CrossRef]
- Shin, B.-J. Risk Factors for Recurrent Lumbar Disc Herniations. Asian Spine J. 2014, 8, 211–215. [Google Scholar] [CrossRef] [Green Version]
- Sadat, B.E.; Habibi, B.; Habibzadeh, A.; Shimia, M.; Babaei-Ghazani, A. Risk factors of recurrent lumbar disk herniation. Asian J. Neurosurg. 2013, 8, 93–96. [Google Scholar] [CrossRef] [Green Version]
- Carragee, E.J.; Han, M.Y.; Suen, P.W.; Kim, D. Clinical outcomes after lumbar discectomy for sciatica: The effects of fragment type and anular competence. J. Bone Jt. Surg. 2003, 85, 102–108. [Google Scholar] [CrossRef] [Green Version]
- Matsui, H.; Terahata, N.; Tsuji, H.; Hirano, N.; Naruse, Y. Familial Predisposition and Clustering for Juvenile Lumbar Disc Herniation. Spine 1992, 17, 1323–1328. [Google Scholar] [CrossRef]
- An, H.S.; Silveri, C.P.; Simpson, J.M.; File, P.; Simmons, C.; Simeone, F.A.; Balderston, R.A. Comparison of Smoking Habits Between Patients with Surgically Confirmed Herniated Lumbar and Cervical Disc Disease and Controls. J. Spinal Disord. 1994, 7, 369–373. [Google Scholar] [CrossRef]
- Kelsey, J.L.; Githens, P.B.; O’conner, T.; Weil, U.; Calogero, J.A.; Holford, T.R.; White, A.A.; Walter, S.D.; Ostfeld, A.M.; Southwick, W.O. Acute Prolapsed Lumbar Intervertebral Disc An Epidemiologic Study with Special Reference to Driving Automobiles and Cigarette Smoking. Spine 1984, 9, 608–613. [Google Scholar] [CrossRef]
- Mundt, D.J.; Kelsey, J.L.; Golden, A.L.; Pastides, H.; Berg, A.T.; Sklar, J.; Hosea, T.; Panjabi, M.M. An Epidemiologic Study of Non-Occupational Lifting as a Risk Factor for Herniated Lumbar Intervertebral Disc. Spine 1993, 18, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Wade, K.R.; Robertson, P.A.; Thambyah, A.; Broom, N.D. How healthy discs herniate: A biomechanical and microstructural study investigating the combined effects of compression rate and flexion. Spine 2014, 39, 1018–1028. [Google Scholar] [CrossRef] [PubMed]
- Kuai, S.; Liu, W.; Ji, R.; Zhou, W. The Effect of Lumbar Disc Herniation on Spine Loading Characteristics during Trunk Flexion and Two Types of Picking Up Activities. J. Health Eng. 2017, 2017, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costi, J.; Heinze, K.; Lawless, I.; Stanley, R.; Freeman, B. Do combined compression, flexion and axial rotation place degenerated discs at risk of posterolateral herniation? measurement of 3d lumbar intervertebral disc internal strains during repetitive loading. Orthop. Proc. 2018, 96-B, 219. [Google Scholar]
- Eun, S.S.; Lee, S.-H.; Sabal, L.A. Long-term Follow-up Results of Percutaneous Endoscopic Lumbar Discectomy. Pain Physician 2016, 18, E1161–E1166. [Google Scholar]
- Fujiwara, A.; An, H.S.; Lim, T.H.; Haughton, V.M. Morphologic changes in the lumbar intervertebral foramen due to flexionextension, lateral bending, and axial rotation: An in vitro anatomic and biomechanical study. Spine 2001, 26, 876–882. [Google Scholar] [CrossRef]
- Shin, J.-H.; Wang, S.; Yao, Q.; Wood, K.B.; Li, G. Investigation of coupled bending of the lumbar spine during dynamic axial rotation of the body. Eur. Spine J. 2013, 22, 2671–2677. [Google Scholar] [CrossRef] [Green Version]
- Sudo, H.; Ito, M.; Kaneda, K.; Shono, Y.; Takahata, M.; Abumi, K. Long-term Outcomes of Anterior Spinal Fusion for Treating Thoracic Adolescent Idiopathic Scoliosis Curves Average 15-Year Follow-up Analysis. Spine 2012, 38, 10. [Google Scholar]
- Hernandez, A.; Gross, K.; Gombatto, S. Differences in lumbar spine and lower extremity kinematics during a step down functional task in people with and people without low back pain. Clin. Biomech. 2017, 47, 46–52. [Google Scholar] [CrossRef]
- Mitchell, T.; O’Sullivan, P.B.; Burnett, A.F.; Straker, L.; Smith, A. Regional differences in lumbar spinal posture and the influence of low back pain. BMC Musculoskelet. Disord. 2008, 9, 152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Dillen, L.R.; Gombatto, S.P.; Collins, D.R.; Engsberg, J.R.; Sahrmann, S.A. Symmetry of Timing of Hip and Lumbopelvic Rotation Motion in 2 Different Subgroups of People With Low Back Pain. Arch. Phys. Med. Rehabil. 2007, 88, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Ratcliffe, E.; Pickering, S.; McLean, S.; Lewis, J. Is there a relationship between subacromial impingement syndrome and scapular orientation? A systematic review. Br. J. Sports Med. 2014, 48, 1251–1256. [Google Scholar] [CrossRef] [PubMed]
- Chiang, C.-Y.; Chen, K.-H.; Liu, K.-C.; Hsu, S.J.-P.; Chan, C.-T. Data Collection and Analysis Using Wearable Sensors for Monitoring Knee Range of Motion after Total Knee Arthroplasty. Sensors 2017, 17, 418. [Google Scholar] [CrossRef] [PubMed]
- Boocock, M.G.; Jackson, J.A.; Burton, A.K.; Tillotson, K.M. Continuous measurement of lumbar posture using flexible electrogoniometers. Ergonomics 1994, 37, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Morlock, M.; Bonin, V.; Deuretzbacher, G.; Müller, G.; Honl, M.; Schneider, E. Determination of the in vivo loading of the lumbar spine with a new approach directly at the workplace—First results for nurses. Clin. Biomech. 2000, 15, 549–558. [Google Scholar] [CrossRef]
- Thoumie, P.; Drape, J.-L.; Aymard, C.; Bedoiseau, M. Effects of a lumbar support on spine posture and motion assessed by electrogoniometer and continuous recording. Clin. Biomech. 1998, 13, 18–26. [Google Scholar] [CrossRef]
- Nevins, R.J.; Durdle, N.G.; Raso, V.J. A posture monitoring system using accelerometers. In Proceedings of the IEEE CCECE2002, Canadian Conference on Electrical and Computer Engineering, Winnipeg, MB, Canada, 12–15 May 2002; IEEE: New York, NY, USA, 2002; pp. 1087–1092. [Google Scholar]
- Wong, W.Y.; Wong, M.S. Smart garment for trunk posture monitoring: A preliminary study. Scoliosis 2008, 3, 7. [Google Scholar] [CrossRef] [Green Version]
- Wong, W.Y.; Wong, M.S. Trunk posture monitoring with inertial sensors. Eur. Spine J. 2008, 17, 743–753. [Google Scholar] [CrossRef] [Green Version]
- Kerr, M.S.; Frank, J.W.; Shannon, H.S.; Norman, R.W.; Wells, R.P.; Neumann, W.P.; Bombardier, C.; Ontario Universities Back Pain Study Group. Biomechanical and psychosocial risk factors for low back pain at work. Am. J. Public Health 2001, 91, 1069–1075. [Google Scholar] [CrossRef] [Green Version]
- Dagenais, S.; Caro, J.; Haldeman, S. A systematic review of low back pain cost of illness studies in the United States and internationally. Spine J. 2008, 8, 8–20. [Google Scholar] [CrossRef]
- Bonato, P. Wearable sensors and systems. IEEE Eng. Med. Biol. Mag. 2010, 29, 25–36. [Google Scholar] [CrossRef]
- Yang, C.C.; Hsu, Y.L. A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors 2010, 10, 7772–7788. [Google Scholar] [CrossRef] [PubMed]
- Goodvin, C.; Park, E.J.; Huang, K.; Sakaki, K. Development of a real-time three-dimensional spinal motion measurement system for clinical practice. Med Biol. Eng. Comput. 2006, 44, 1061–1075. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, K.; O’Sullivan, L.; Campbell, A.; O’Sullivan, P.; Dankaerts, W. Towards monitoring lumbo-pelvic posture in real-life situations: Concurrent validity of a novel posture monitor and a traditional laboratory-based motion analysis system. Man. Ther. 2012, 17, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Wang, S.; Driscoll, S.J.; Cha, T.D.; Wood, K.B.; Li, G. Dynamic motion characteristics of the lower lumbar spine: Implication to lumbar pathology and surgical treatment. Eur. Spine J. 2014, 23, 2350–2358. [Google Scholar] [CrossRef]
Item | Average (±Standard Deviation) | ||
---|---|---|---|
Healthy | Operated | ||
Total number | 43 | 69 | |
Gender | Male | 24 | 43 |
Female | 19 | 26 | |
MRC test | 5 | 3 (±1) | |
Age | 49.1 ± 11.7 | 52.3 ± 13.2 | |
BMI | 22 ± 2.1 | 23.2 ± 2.6 | |
Level | L5-S1 | ||
JOA Score | Preoperative | 14.3 ± 2.8 | |
Postoperative | 25.8 ± 4.2 |
Item Evaluated | Score Range |
---|---|
Subjective Symptoms (9 points) | |
|
|
Objective symptoms (6 points) | |
|
|
Restriction of daily activities (14 points) | |
|
|
Urinary bladder function | |
| |
Total Score |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Triantafyllou, A.; Papagiannis, G.; Stasi, S.; Bakalidou, D.; Kyriakidou, M.; Papathanasiou, G.; Papadopoulos, E.C.; Papagelopoulos, P.J.; Koulouvaris, P. Application of Wearable Sensors Technology for Lumbar Spine Kinematic Measurements during Daily Activities following Microdiscectomy Due to Severe Sciatica. Biology 2022, 11, 398. https://doi.org/10.3390/biology11030398
Triantafyllou A, Papagiannis G, Stasi S, Bakalidou D, Kyriakidou M, Papathanasiou G, Papadopoulos EC, Papagelopoulos PJ, Koulouvaris P. Application of Wearable Sensors Technology for Lumbar Spine Kinematic Measurements during Daily Activities following Microdiscectomy Due to Severe Sciatica. Biology. 2022; 11(3):398. https://doi.org/10.3390/biology11030398
Chicago/Turabian StyleTriantafyllou, Athanasios, Georgios Papagiannis, Sophia Stasi, Daphne Bakalidou, Maria Kyriakidou, George Papathanasiou, Elias C. Papadopoulos, Panayiotis J. Papagelopoulos, and Panayiotis Koulouvaris. 2022. "Application of Wearable Sensors Technology for Lumbar Spine Kinematic Measurements during Daily Activities following Microdiscectomy Due to Severe Sciatica" Biology 11, no. 3: 398. https://doi.org/10.3390/biology11030398
APA StyleTriantafyllou, A., Papagiannis, G., Stasi, S., Bakalidou, D., Kyriakidou, M., Papathanasiou, G., Papadopoulos, E. C., Papagelopoulos, P. J., & Koulouvaris, P. (2022). Application of Wearable Sensors Technology for Lumbar Spine Kinematic Measurements during Daily Activities following Microdiscectomy Due to Severe Sciatica. Biology, 11(3), 398. https://doi.org/10.3390/biology11030398