Feasibility of Intravoxel Incoherent Motion (IVIM) and Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) in Differentiation of Benign Parotid Gland Tumors
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Group
2.2. Imaging Protocol
2.3. Image Analysis
2.3.1. Intravoxel Incoherent Motion (IVIM) Analysis
2.3.2. Quantitative DCE-MRI Analysis
2.3.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barnes, L.; Eveson, J.W.; Reichart, P.; Sidransky, D. World Health Organization Classification of Tumors—Pathology and Genetics of Head and Neck Tumors; IARC Press: Lyon, France, 2005; pp. 209–281. [Google Scholar]
- Witt, R.L.; Eisele, D.W.; Morton, R.P.; Nicolai, P.; Poorten, V.V.; Zbären, P. Etiology and management of recurrent parotid pleomorphic adenoma. Laryngoscope 2015, 125, 888–893. [Google Scholar] [CrossRef] [PubMed]
- Riad, M.A.; Abdel-Rahman, H.; Ezzat, W.F.; Adly, A.; Dessouky, O.; Shehata, M. Variables related to recurrence of pleomorphic adenomas: Outcome of parotid surgery in 182 cases. Laryngoscope 2011, 121, 1467–1472. [Google Scholar] [CrossRef]
- Faquin, W.C.; Rossi, E.D.; Baloch, Z.; Barkan, G.A.; Foschini, M.P.; Kurtycz, D.F.I.; Pusztaszeri, M.; Vielh, P. The Milan System for Reporting Salivary Gland Cytopathology; Springer International Publishing AG: Cham, Switzerland, 2018; pp. 1–10. [Google Scholar]
- Coudert, H.; Mirafzal, S.; Dissard, A.; Boyer, L.; Montoriol, P.F. Multiparametric magnetic resonance imaging of parotid tumors: A systematic review. Diagn. Interv. Imaging 2021, 102, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Noij, D.P.; Martens, R.M.; Marcus, J.T.; de Bree, R.; Leemans, C.R.; Castelijns, J.A.; de Jong, M.C.; de Graaf, P. Intravoxel incoherent motion magnetic resonance imaging in head and neck cancer: A systematic review of the diagnostic and prognostic value. Oral Oncol. 2017, 68, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.Y.; Xu, F.; Guo, Y.; Wang, J. Diagnostic accuracy of magnetic resonance imaging techniques for parotid tumors, a systematic review and meta-analysis. Clin. Imaging 2018, 52, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Mikaszewski, B.; Markiet, K.; Smugała, A.; Stodulski, D.; Szurowska, E.; Stankiewicz, C. Diffusion-weighted MRI in the differential diagnosis of parotid malignancies and pleomorphic adenomas: Can the accuracy of dynamic MRI be enhanced? Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2017, 124, 95–103. [Google Scholar] [CrossRef]
- Mikaszewski, B.; Markiet, K.; Smugała, A.; Stodulski, D.; Szurowska, E.; Stankiewicz, C. Clinical and demographic data improve diagnostic accuracy of dynamic contrast-enhanced and diffusion-weighted MRI in differential diagnostics of parotid gland tumors. Oral Oncol. 2020, 111, 104932. [Google Scholar] [CrossRef]
- Le Bihan, D.; Breton, E.; Lallemand, D.; Aubin, M.L.; Vignaud, J.; Laval-Jeantet, M. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 1988, 168, 497–505. [Google Scholar] [CrossRef]
- Le Bihan, D.; Turner, R. The capillary network: A link between IVIM and classical perfusion. Magn. Reason. Med. 1992, 27, 171–178. [Google Scholar] [CrossRef]
- Le Bihan, D. What can we see with IVIM MRI? Neuroimage 2019, 187, 56–67. [Google Scholar] [CrossRef]
- Ai, Q.Y.; King, A.D.; Chan, J.S.M.; Chen, W.; Chan, K.C.A.; Woo, J.K.S.; Zee, B.C.Y.; Chan, A.T.C.; Poon, D.M.C.; Ma, B.B.Y.; et al. Distinguishing early-stage nasopharyngeal carcinoma from benign hyperplasia using intravoxel incoherent motion diffusion-weighted MRI. Eur. Radiol. 2019, 29, 5627–5634. [Google Scholar] [CrossRef] [PubMed]
- Martínez Barbero, J.P.; Rodríquez Jiménez, I.; Martin Noguerol, T.; Luna Alcalá, A. Utility of MRI diffusion techniques in the evaluation of tumors of the head and neck. Cancers 2013, 5, 875–889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujima, N.; Yoshida, D.; Sakashita, T.; Homma, A.; Tsukahara, A.; Tha, K.K.; Kudo, K.; Shirato, H. Intravoxel incoherent motion diffusion-weighted imaging in head and neck squamous cell carcinoma: Assessment of perfusion-related parameters compared to dynamic contrast-enhanced MRI. Magn. Reason. Imaging 2014, 32, 1206–1213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marzi, S.; Piludu, F.; Vidiri, A. Assessment of diffusion parameters by intravoxel incoherent motion MRI in head and neck squamous cell carcinoma. NMR Biomed. 2013, 26, 1806–1814. [Google Scholar] [CrossRef] [PubMed]
- Fujima, N.; Yoshida, D.; Sakashita, T.; Homma, A.; Tsukahara, A.; Shimizu, Y.; Tha, K.K.; Kudo, K.; Shirato, H. Prediction of the treatment outcome using intravoxel incoherent motion and diffusional kurtosis imaging in nasal or sinonasal squamous cell carcinoma patients. Eur. Radiol. 2017, 27, 956–965. [Google Scholar] [CrossRef] [Green Version]
- Ma, G.; Xu, X.Q.; Zhu, L.N.; Jiang, J.S.; Su, G.Y.; Hu, H.; Bu, S.S.; Wu, F.Y. Intravoxel Incoherent Motion Magnetic Resonance Imaging for Assessing Parotid Gland Tumors: Correlation and Comparison with Arterial Spin Labeling Imaging. Korean J. Radiol. 2021, 22, 243–252. [Google Scholar] [CrossRef]
- Hauser, T.; Essig, M.; Jensen, A.; Laun, F.B.; Münter, M.; Maier-Hein, K.H.; Stieltjes, B. Prediction of treatment response in head and neck carcinomas using IVIM-DWI: Evaluation of lymph node metastasis. Eur. J. Radiol. 2014, 83, 783–787. [Google Scholar] [CrossRef]
- Hejduk, B.; Bobek-Billewicz, B.; Rutkowski, T.; Hebda, A.; Zawadzka, A.; Jurkowski, M.K. Application of Intravoxel Incoherent Motion (IVIM) Model for Differentiation Between Metastatic and Non-Metastatic Head and Neck Lymph Nodes. Pol. J. Radiol. 2017, 82, 506–510. [Google Scholar] [CrossRef] [Green Version]
- Marzi, S.; Piludu, F.; Forina, C.; Sanguineti, G.; Covello, R.; Spriano, G.; Vidiri, A. Correlation study between intravoxel incoherent motion MRI and dynamic contrast-enhanced MRI in head and neck squamous cell carcinoma: Evaluation in primary tumors and metastatic nodes. Magn. Reason. Imaging 2017, 37, 1–8. [Google Scholar] [CrossRef]
- Liang, L.; Luo, X.; Lian, Z.; Chen, W.; Zhang, B.; Dong, Y.; Liang, C.; Zhang, S. Lymph node metastasis in head and neck squamous carcinoma: Efficacy of intravoxel incoherent motion magnetic resonance imaging for the differential diagnosis. Eur. J. Radiol. 2017, 90, 159–165. [Google Scholar] [CrossRef]
- Paudyal, R.; Oh, J.H.; Riaz, N.; Venigalla, P.; Li, J.; Hatzoglou, V.; Leeman, J.; Nunez, D.A.; Lu, Y.; Deasy, J.O.; et al. Intravoxel incoherent motion diffusion-weighted MRI during chemoradiation therapy to characterize and monitor treatment response in human papillomavirus head and neck squamous cell carcinoma. J. Magn. Reason. Imaging 2017, 45, 1013–1023. [Google Scholar] [CrossRef]
- Ding, Y.; Hazle, J.D.; Mohamed, A.S.; Frank, S.J.; Hobbs, B.P.; Colen, R.R.; Gunn, G.B.; Wang, J.; Kalpathy-Cramer, J.; Garden, A.S.; et al. Intravoxel incoherent motion imaging kinetics during chemoradiotherapy for human papillomavirus-associated squamous cell carcinoma of the oropharynx: Preliminary results from a prospective pilot study. NMR Biomed. 2015, 28, 1645–1654. [Google Scholar] [CrossRef] [PubMed]
- Marzi, S.; Farneti, A.; Vidiri, A.; Di Giuliano, F.; Marucci, L.; Spasiano, F.; Terrenato, I.; Sanguineti, G. Radiation-induced parotid changes in oropharyngeal cancer patients: The role of early functional imaging and patient-/treatment-related factors. Radiat Oncol. 2018, 13, 189. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.; Zhou, N.; Zhang, H.; Dou, X.; Li, M.; Liu, S.; Zhu, Y.; Chen, W.; Chan, Q.; He, J.; et al. Correlation between intravoxel incoherent motion MR parameters and MR nodular grade of parotid glands in patients with Sjögren’s syndrome: A pilot study. Eur. J. Radiol. 2017, 86, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Su, G.Y.; Xu, X.Q.; Wang, Y.Y.; Hu, H.; Shen, J.; Hong, X.N.; Shi, H.B.; Wu, F.Y. Feasibility study of using intravoxel incoherent motion mri to detect parotid gland abnormalities in early-stage Sjögren syndrome patients. J. Magn. Reason. Imaging 2016, 43, 1455–1461. [Google Scholar] [CrossRef] [PubMed]
- Yabuuchi, H.; Fukuya, T.; Tajima, T.; Hachitanda, Y.; Tomita, K.; Koga, M. Salivary gland tumors: Diagnostic value of gadolinium-enhanced dynamic MR imaging with histopathologic correlation. Radiology 2003, 226, 345–354, Erratum in Radiology 2003, 227, 909. [Google Scholar] [CrossRef]
- Sumi, M.; Nakamura, T. Head and neck tumors: Assessment of perfusion-related parameters and diffusion coefficients based on the intravoxel incoherent motion model. AJNR Am. J. Neuroradiol. 2013, 34, 410–416. [Google Scholar] [CrossRef] [Green Version]
- Yabuuchi, H.; Kamitani, T.; Sagiyama, K.; Yamasaki, Y.; Hida, T.; Matsuura, Y.; Hino, T.; Murayama, Y.; Yasumatsu, R.; Yamamoto, H. Characterization of parotid gland tumors: Added value of permeability MR imaging to DWI and DCE-MRI. Eur. Radiol. 2020, 30, 6402–6412. [Google Scholar] [CrossRef]
- Xu, X.Q.; Choi, Y.J.; Sung, Y.S.; Yoon, R.G.; Jang, S.W.; Park, J.E.; Heo, Y.J.; Baek, J.H.; Lee, J.H. Intravoxel Incoherent Motion MR Imaging in the Head and Neck: Correlation with Dynamic Contrast-Enhanced MR Imaging and Diffusion-Weighted Imaging. Korean J. Radiol. 2016, 17, 641–649. [Google Scholar] [CrossRef] [Green Version]
- Sumi, M.; Nakamura, T. Head and neck tumours: Combined MRI assessment based on IVIM and TIC analyses for the differentiation of tumors of different histological types. Eur. Radiol. 2014, 24, 223–231. [Google Scholar] [CrossRef]
- Patella, F.; Franceschelli, G.; Petrillo, M.; Sansone, M.; Fusco, R.; Pesapane, F.; Pompili, G.; Ierardi, A.M.; Saibene, A.M.; Moneghini, L.; et al. A multiparametric analysis combining DCE-MRI- and IVIM -derived parameters to improve differentiation of parotid tumors: A pilot study. Future Oncol. 2018, 14, 2893–2903. [Google Scholar] [CrossRef] [PubMed]
- ITIS Foundation. Available online: https://itis.swiss/virtual-population/tissue-properties/database/relaxation-times/ (accessed on 1 November 2021).
- Parker, G.J.; Roberts, C.; Macdonald, A.; Buonaccorsi, G.A.; Cheung, S.; Buckley, D.L.; Jackson, A.; Watson, Y.; Davies, K.; Jayson, G.C. Experimentally-derived functional form for a population-averaged high-temporal-resolution arterial input function for dynamic contrast-enhanced MRI. Magn. Reason. Med. 2006, 56, 993–1000. [Google Scholar] [CrossRef] [PubMed]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2017, 15, 155–163, Erratum in J. Chiropr. Med. 2017, 16, 346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedman, E.; Patino, M.O.; Abdel Razek, A.A.K. MR Imaging of Salivary Gland Tumors. Magn. Reson. Imaging Clin. N. Am. 2022, 30, 135–149. [Google Scholar] [CrossRef]
- Mikaszewski, B.; Markiet, K.; Smugała, A.; Stodulski, D.; Szurowska, E.; Stankiewicz, C. An algorithm for preoperative differential diagnostics of parotid tumours on the basis of their dynamic and diffusion-weighted magnetic resonance images: A retrospective analysis of 158 cases. Folia Morphol. 2018, 77, 29–35. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Chen, M.; Zheng, S.; Chen, S.; Xiao, J.; Hu, Z.; Lu, L.; Yang, Z.; Lin, D. Differential diagnosis of parotid gland tumours: Application of SWI combined with DWI and DCE-MRI. Eur. J. Radiol. 2022, 146, 110094. [Google Scholar] [CrossRef]
- Matsusue, E.; Fujihara, Y.; Matsuda, E.; Tokuyasu, Y.; Nakamoto, S.; Nakamura, K.; Ogawa, T. Differentiating parotid tumors by quantitative signal intensity evaluation on MR imaging. Clin. Imaging 2017, 46, 37–43. [Google Scholar] [CrossRef]
- Elmokadem, A.H.; Abdel Khalek, A.M.; Abdel Wahab, R.M.; Tharwat, N.; Gaballa, G.M.; Elata, M.A.; Amer, T. Diagnostic Accuracy of Multiparametric Magnetic Resonance Imaging for Differentiation Between Parotid Neoplasms. Can. Assoc. Radiol. J. 2019, 70, 264–272. [Google Scholar] [CrossRef] [Green Version]
- Nada, A.A.; Youssef, A.A.; Basmy, A.E.; Amin, A.W.; Shokry, A.M. Diffusion-weighted imaging of the parotid gland: Can the apparent diffusion coefficient discrim- inate between normal and abnormal parotid gland tissues? Erciyes Med. J. 2017, 39, 125–130. [Google Scholar] [CrossRef] [Green Version]
- Sumi, M.; Van Cauteren, M.; Sumi, T.; Obara, M.; Ichikawa, Y.; Nakamura, T. Salivary gland tumors: Use of intravoxel incoherent motion MR imaging for assessment of diffusion and perfusion for the differentiation of benign from malignant tumors. Radiology 2012, 263, 770–777. [Google Scholar] [CrossRef]
Warthin Tumors | Pleomorphic Adenomas | Myoepitheliomas | Basal Cell Adenomas | ||
---|---|---|---|---|---|
Sex | Females | 17 | 19 | 3 | 2 |
Males | 14 | 8 | 0 | 1 | |
Total number of lesions | 31 | 27 | 3 | 3 | |
Mean BMI | Females | 29.2 | 26.3 | 25.3 | 24.9 |
Males | 32.4 | 23.7 | - | 26.5 | |
Side | Right | 15 | 18 | - | 1 |
Left | 16 | 9 | 3 | 2 | |
Location | Superficial lobe | 25 | 15 | - | 2 |
Deep lobe | 6 | 10 | 3 | - | |
Accessory lobe | - | 2 | - | 1 | |
Size * (mm) | Females | 17 | 17 | 38 | 8 |
Males | 20 | 15 | - | 19 | |
Lymphadenopathy | Females | 6 | 1 | 1 | 1 |
Males | 7 | 2 | - | 1 | |
Facial nerve palsy | Females | 0 | 0 | 0 | 0 |
Males | 0 | 1 (post-operative) | 0 | 0 |
Sequence | Orientation | TR (ms) | TE (ms) | SL/SPC | FOV | Matrix |
---|---|---|---|---|---|---|
T2 Blade | Sagittal | 4070 | 144 | 3.0/3.6 | 250∗250 | 320∗320 |
T2 TIRM | Coronal | 6000 | 100 | 3.0/3.6 | 229∗271 | 540∗640 |
T1 TSE | Transverse | 555 | 11 | 3.0/3.6 | 195∗240 | 416∗512 |
T2 TSE DIXON | Transverse | 3050 | 75 | 3.5/4.0 | 218∗240 | 442∗608 |
ep2d_DWI | Transverse | 8130 | 65 | 4.0 | 236∗250 | 208∗220 |
ep2d_DWI ADC | Transverse | 8130 | 65 | 4.0 | 236∗250 | 208∗220 |
T1 Vibe DIXON | Transverse | 7.7 | 2.4 | 1.0i | 189∗220 | 163∗224 |
T1 Vibe CM Dyn 1–36 | Transverse | 4.2 | 1.6 | 3.5i | 260∗260 | 154∗192 |
T1 Vibe DIXON CM | Transverse | 7.7 | 2.4 | 1.0i | 189∗220 | 163∗224 |
IVIM | Permeability | ||||||||
---|---|---|---|---|---|---|---|---|---|
D | D* | FP | ROI | Ktrans | Kep | Ve | iAUC | ROI | |
ICC | 0.963 | 0.827 | 0.925 | 0.997 | 0.963 | 0.990 | 0.940 | 0.967 | 0.995 |
95% CI | 0.957–0.984 | 0.715–0.895 | 0.876–0.955 | 0.995–0.998 | 0.940–0.978 | 0.984–0.994 | 0.901–0.963 | 0.946–0.980 | 0.991–0.998 |
Warthin Tumors | Pleomorphic Adenomas | Contralateral Parotid | |||||
---|---|---|---|---|---|---|---|
Magnetic Resonance Parameters | Median | Interquartile Range | Median | Interquartile Range | Median | Interquartile Range | |
ADC 10−3 mm2/s | 0.68 | 0.1 | 1.32 | 0.25 | 0.84 | 0.21 | |
IVIM | D 10−3 mm2/s | 0.63 | 0.17 | 1.19 | 0.53 | 0.71 | 0.12 |
D*10−3 mm2/s | 135.9 | 145.5 | 47.05 | 20.7 | 117.76 | 41.89 | |
FP % | 24.8 | 8.5 | 34.4 | 14.5 | 23.6 | 8.3 | |
Permeability | Ktrans min−1 | 0.41 | 0.29 | 0.17 | 0.34 | 0.13 | 0.14 |
Kep min−1 | 2.49 | 1.04 | 0.31 | 0.81 | 1.22 | 0.49 | |
Ve | 0.16 | 0.1 | 0.62 | 0.76 | 0.12 | 0.09 | |
iAUC | 0.27 | 0.11 | 0.24 | 0.38 | 0.14 | 0.15 | |
No of lesions | No of lesions | ||||||
TIC | Type A | 0 | 19 | ||||
Type B | 29 | 1 | |||||
Type C | 2 | 7 |
Sample 1/Sample 2 | Pleomorphic Adenomas vs. Warthin Tumors | Pleomorphic Adenomas vs. Healthy Parotids | Warthin Tumors vs. Healthy Parotids | |
---|---|---|---|---|
ADC | <0.001 | <0.001 | <0.001 | |
IVIM | D | <0.001 | <0.001 | 0.049 |
D* | <0.001 | <0.001 | 0.922 | |
FP | <0.001 | <0.001 | 0.52 | |
Permeability | Ktrans | 0.004 | 0.042 | <0.001 |
Kep | <0.001 | <0.001 | <0.001 | |
Ve | <0.001 | <0.001 | 0.004 | |
iAUC | 0.319 | <0.001 | <0.001 |
Sensitivity % | 95% CI | Specificity % | 95% CI | PPV % | 95% CI | NPV % | 95% CI | Accuracy % | 95% CI | ||
---|---|---|---|---|---|---|---|---|---|---|---|
ADC | 88.9 | 79.8–97.7 | 100 | 88.8–100 | 100 | NA | 91.0 | 77.7–96.7 | 94.8 | 85.6–98.9 | |
IVIM | D | 81.5 | 61.9–93.7 | 87.1 | 70.2–96.4 | 84.9 | 68.8–93.4 | 84.1 | 70.4–92.2 | 84.5 | 72.6–92.6 |
D* | 85.2 | 66.3–95.8 | 70.9 | 52.0–85.8 | 72.24 | 59.5–82.2 | 84.4 | 68.0–93.2 | 77.7 | 64.8–87.5 | |
FP | 48.2 | 28.7–68.1 | 93.6 | 78.6–99.2 | 86.9 | 62.1–96.4 | 67.1 | 58.3–74.8 | 72.2 | 58.9–83.2 | |
Permeability | Ktrans | 44.4 | 25.5–64.7 | 100 | 88.8–100 | 100 | NA | 66.9 | 59.2–73.9 | 73.9 | 60.7–84.5 |
Kep | 88.9 | 70.8–97.7 | 96.8 | 83.3–99.9 | 96.1 | 77.9–99.4 | 90.1 | 77.1–96.6 | 93.1 | 83.2–98.1 | |
Ve | 85.2 | 66.3–95.8 | 100 | 88.8–100 | 100 | NA | 88.4 | 75.5–94.9 | 93.1 | 83.2–98.1 | |
iAUC | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Markiet, K.; Glinska, A.; Nowicki, T.; Szurowska, E.; Mikaszewski, B. Feasibility of Intravoxel Incoherent Motion (IVIM) and Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) in Differentiation of Benign Parotid Gland Tumors. Biology 2022, 11, 399. https://doi.org/10.3390/biology11030399
Markiet K, Glinska A, Nowicki T, Szurowska E, Mikaszewski B. Feasibility of Intravoxel Incoherent Motion (IVIM) and Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) in Differentiation of Benign Parotid Gland Tumors. Biology. 2022; 11(3):399. https://doi.org/10.3390/biology11030399
Chicago/Turabian StyleMarkiet, Karolina, Anna Glinska, Tomasz Nowicki, Edyta Szurowska, and Boguslaw Mikaszewski. 2022. "Feasibility of Intravoxel Incoherent Motion (IVIM) and Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) in Differentiation of Benign Parotid Gland Tumors" Biology 11, no. 3: 399. https://doi.org/10.3390/biology11030399
APA StyleMarkiet, K., Glinska, A., Nowicki, T., Szurowska, E., & Mikaszewski, B. (2022). Feasibility of Intravoxel Incoherent Motion (IVIM) and Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) in Differentiation of Benign Parotid Gland Tumors. Biology, 11(3), 399. https://doi.org/10.3390/biology11030399