Prevalence of Positive Effects on Body Fat Percentage, Cardiovascular Parameters, and Cardiorespiratory Fitness after 10-Week High-Intensity Interval Training in Adolescents
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Anthropometric Measurements
2.4. Fitness Index (FI) (Harvard Step Test)—Cardiorespiratory Fitness
2.5. Resting Blood Pressure Measurements
2.6. Intervention
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Högström, G.; Nordström, A.; Nordström, P. High aerobic fitness in late adolescence is associated with a reduced risk of myocardial infarction later in life: A Nationwide Cohort Study in Men. Eur. Heart J. 2014, 35, 3133–3140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortega, F.B.; Ruiz, J.R.; Castillo, M.J.; Sjöström, M. Physical fitness in childhood and adolescence: A Powerful Marker of Health. Int. J. Obes. 2008, 32, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, M.; Fleming, T.; Robinson, M.; Thomson, B.; Graetz, N.; Margono, C.; Mullany, E.C.; Biryukov, S.; Abbafati, C.; Abera, S.F.; et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: A Systematic Analysis for the Global Burden of Disease Study 2013. Lancet 2014, 384, 766–781. [Google Scholar] [CrossRef] [Green Version]
- Raghuveer, G.; Hartz, J.; Lubans, D.R.; Takken, T.; Wiltz, J.L.; Mietus-Snyder, M.; Perak, A.M.; Baker-Smith, C.; Pietris, N.; Edwards, N.M.; et al. Cardiorespiratory Fitness in Youth: An Important Marker of Health: A Scientific Statement from the American Heart Association. Circulation 2020, 142, e101–e118. [Google Scholar] [CrossRef] [PubMed]
- Tomkinson, G.R.; Lang, J.J.; Tremblay, M.S. Temporal trends in the cardiorespiratory fitness of children and adolescents representing 19 high-income and upper middle-income countries between 1981 and 2014. Br. J. Sports Med. 2019, 53, 478–486. [Google Scholar] [CrossRef] [Green Version]
- Falkner, B. Hypertension in children and adolescents: Epidemiology and Natural History. Pediatric Nephrol. 2010, 25, 1219–1224. [Google Scholar] [CrossRef] [Green Version]
- Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents, & National Heart, Lung, and Blood Institute. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: Summary Report. Pediatrics 2011, 128, S213–S256. [Google Scholar] [CrossRef] [Green Version]
- Hallal, P.C.; Andersen, L.B.; Bull, F.C.; Guthold, R.; Haskell, W.; Ekelund, U.; Lancet Physical Activity Series Working Group. Global physical activity levels: Surveillance Progress, Pitfalls, and Prospects. Lancet 2012, 380, 247–257. [Google Scholar] [CrossRef]
- World Health Organization. Global Recommendations on Physical Activity for Health; WHO: Geneva, Switzerland, 2010. [Google Scholar]
- Charzewski, J.; Lewandowska, J.; Piechaczek, H.; Syta, A.; Łukaszewska, L. Kontrasty społeczne rozwoju somatycznego i aktywności fizycznej dzieci 13–15-letnich. Studia I Monogr. AWF W Warszawie 2003, 97, 117. [Google Scholar]
- Halbert, J.A.; Silagy, C.A.; Finucane, P.; Withers, R.T.; Hamdorf, P.A.; Andrews, G.R. The effectiveness of exercise training in lowering blood pressure: A Meta-Analysis of Randomised Controlled Trials of 4 Weeks or Longer. J. Hum. Hypertens. 1997, 11, 641–649. [Google Scholar] [CrossRef] [Green Version]
- Filho, N.S.; Reuter, C.P.; Silveira, J.F.; Borfe, L.; Renner, J.D.; Pohl, H.H. Low performance-related physical fitness levels are associated with clustered cardiometabolic risk score in schoolchildren: A Cross-Sectional Study. Hum. Mov. 2022, 23, 113–119. [Google Scholar] [CrossRef]
- De Lima, T.R.; Silva, D.A.S. Association between sports practice and physical education classes and lifestyle among adolescents. Hum. Mov. 2019, 20, 48–55. [Google Scholar] [CrossRef] [Green Version]
- Costigan, S.A.; Eather, N.; Plotnikoff, R.C.; Taaffe, D.R.; Lubans, D.R. High-intensity interval training for improving health-related fitness in adolescents: A Systematic Review and Meta-Analysis. Br. J. Sports Med. 2015, 49, 1253–1261. [Google Scholar] [CrossRef] [PubMed]
- Heath, G.W.; Parra, D.C.; Sarmiento, O.L.; Andersen, L.B.; Owen, N.; Goenka, S.; Montes, F.; Brownson, R.C.; Lancet Physical Activity Series Working Group. Evidence-based intervention in physical activity: Lessons from Around the World. Lancet 2012, 380, 272–281. [Google Scholar] [CrossRef] [Green Version]
- Carson, V.; Rinaldi, R.L.; Torrance, B.; Maximova, K.; Ball, G.D.; Majumdar, S.R.; Plotnikoff, R.C.; Veugelers, P.; Boulé, N.G.; Wozny, P.; et al. Vigorous physical activity and longitudinal associations with cardiometabolic risk factors in youth. Int. J. Obes. 2014, 38, 16–21. [Google Scholar] [CrossRef]
- Hay, J.; Maximova, K.; Durksen, A.; Carson, V.; Rinaldi, R.L.; Torrance, B.; Ball, G.D.; Majumdar, S.R.; Plotnikoff, R.C.; Veugelers, P.; et al. Physical activity intensity and cardiometabolic risk in youth. Arch. Pediatrics Adolesc. Med. 2012, 166, 1022–1029. [Google Scholar] [CrossRef] [Green Version]
- Foster, C.; Farland, C.V.; Guidotti, F.; Harbin, M.; Roberts, B.; Schuette, J.; Tuuri, A.; Doberstein, S.T.; Porcari, J.P. The Effects of High Intensity Interval Training vs Steady State Training on Aerobic and Anaerobic Capacity. J. Sports Sci. Med. 2015, 14, 747–755. [Google Scholar]
- Camacho-Cardenosa, A.; Brazo-Sayavera, J.; Camacho-Cardenosa, M.; Marcos-Serrano, M.; Timón, R.; Olcina, G. Effects of High Intensity Interval Training on Fat Mass Parameters in Adolescents. Efectividad de un protocolo de entrenamiento interválico de alta intensidad en adolescentes sobre masa grasa corporal. Rev. Esp. De Salud Publica 2016, 90, e1–e9. [Google Scholar]
- Ouerghi, N.; Fradj, M.; Bezrati, I.; Khammassi, M.; Feki, M.; Kaabachi, N.; Bouassida, A. Effects of high-intensity interval training on body composition, aerobic and anaerobic performance and plasma lipids in overweight/obese and normal-weight young men. Biol. Sport 2017, 34, 385–392. [Google Scholar] [CrossRef]
- Heydari, M.; Freund, J.; Boutcher, S.H. The effect of high-intensity intermittent exercise on body composition of overweight young males. J. Obes. 2012, 12, 480467. [Google Scholar] [CrossRef] [Green Version]
- Joyner, M.J.; Wallin, B.G.; Charkoudian, N. Sex differences and blood pressure regulation in humans. Exp. Physiol. 2016, 101, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Domaradzki, J.; Cichy, I.; Rokita, A.; Popowczak, M. Effects of Tabata Training During Physical Education Classes on Body Composition, Aerobic Capacity, and Anaerobic Performance of Under-, Normal- and Overweight Adolescents. Int. J. Environ. Res. Public Health 2020, 17, 876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eddolls, W.; McNarry, M.A.; Stratton, G.; Winn, C.; Mackintosh, K.A. High-Intensity Interval Training Interventions in Children and Adolescents: A Systematic Review. Sports Med. 2017, 47, 2363–2374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin-Smith, R.; Cox, A.; Buchan, D.S.; Baker, J.S.; Grace, F.; Sculthorpe, N. High Intensity Interval Training (HIIT) Improves Cardiorespiratory Fitness (CRF) in Healthy, Overweight and Obese Adolescents: A Systematic Review and Meta-Analysis of Controlled Studies. Int. J. Environ. Res. Public Health 2020, 17, 2955. [Google Scholar] [CrossRef]
- Buchan, D.S.; Ollis, S.; Young, J.D.; Cooper, S.M.; Shield, J.P.; Baker, J.S. High intensity interval running enhances measures of physical fitness but not metabolic measures of cardiovascular disease risk in healthy adolescents. BMC Public Health 2013, 13, 498. [Google Scholar] [CrossRef] [Green Version]
- Cvetković, N.; Stojanović, E.; Stojiljković, N.; Nikolić, D.; Scanlan, A.T.; Milanović, Z. Exercise training in overweight and obese children: Recreational football and high-intensity interval training provide similar benefits to physical fitness. Scand. J. Med. Sci. Sports 2018, 28, 18–32. [Google Scholar] [CrossRef]
- Delgado-Floody, P.; Latorre-Román, P.; Jerez-Mayorga, D.; Caamaño-Navarrete, F.; García-Pinillos, F. Feasibility of incorporating high-intensity interval training into physical education programs to improve body composition and cardiorespiratory capacity of overweight and obese children: A Systematic Review. J. Exerc. Sci. Fit. 2019, 17, 35–40. [Google Scholar] [CrossRef]
- McLester, C.N.; Nickerson, B.S.; Kliszczewicz, B.M.; McLester, J.R. Reliability and Agreement of Various InBody Body Composition Analyzers as Compared to Dual-Energy X-Ray Absorptiometry in Healthy Men and Women. J. Clin. Densitom. 2020, 23, 443–450. [Google Scholar] [CrossRef]
- Bajaj, A.; Appadoo, S.; Bector, C.; Chandra, S. Measuring physical fitness and cardiovascular efficiency using harvard step test approach under fuzzy environment. ASAC 2008, 29, 114. [Google Scholar]
- Burnstein, B.D.; Steele, R.J.; Shrier, I. Reliability of fitness tests using methods and time periods common in sport and occupational management. J. Athl. Train. 2011, 46, 505–513. [Google Scholar] [CrossRef] [Green Version]
- Dobosz, M. Computer aided statistical analysis of test results. Akad. Oficyna Wydawnicza ELIT 2004, 11, 364–375. [Google Scholar]
- Daniel, A.; Freeman, J. Applied Categorical Data Analysis; Marcel Decker: New York, NY, USA, 1987. [Google Scholar]
- Burke, P.J.; Knoke, D. Log-Linear Models, Sage University Paper Series on Quantitative Applications in Social Sciences; no. 07-020; Sage Publications: Beverly Hills, CA, USA; London, UK, 1986. [Google Scholar]
- Stanisz, A. Przystępny kurs statystyki z zastosowaniem Statistica PL na przykładach z medycyny, Analizy wielowymiarowe; StatSoft: Kraków, Poland, 2007. [Google Scholar]
- Van der Heijden, P.; De Falguerolles, A.; De Leeuw, J. A combined approach to contingency table analysis using correspondence analysis and log-linear analysis. App. Stat. 1989, 38, 249–292. [Google Scholar] [CrossRef] [Green Version]
- Greenacre, M.J. Correspondence Analysis in Practice; Academic Press: London, UK, 1993. [Google Scholar]
- Greenacre, M.J.; Blasius, J. (Eds.) Multiple Correspondence Analysis and Related Methods; Chapman and Hall/CRC: Boca-Raton, FL, USA, 2006. [Google Scholar]
- Nyman, H.; Pensar, J.; Koski, T.; Corander, J. Context-specific independence in graphical log-linear models. Comput. Stat. 2016, 31, 1493–1512. [Google Scholar] [CrossRef] [Green Version]
- Bogataj, Š.; Trajković, N.; Cadenas-Sanchez, C.; Sember, V. Effects of School-Based Exercise and Nutrition Intervention on Body Composition and Physical Fitness in Overweight Adolescent Girls. Nutrients 2021, 13, 238. [Google Scholar] [CrossRef]
- Da Silva, M.R.; Waclawovsky, G.; Perin, L.; Camboim, I.; Eibel, B.; Lehnen, A.M. Effects of high-intensity interval training on endothelial function, lipid profile, body composition and physical fitness in normal-weight and overweight-obese adolescents: A Clinical Trial. Physiol. Behav. 2020, 213, 112728. [Google Scholar] [CrossRef]
- Tjønna, A.E.; Stølen, T.O.; Bye, A.; Volden, M.; Slørdahl, S.A.; Odegård, R.; Skogvoll, E.; Wisløff, U. Aerobic interval training reduces cardiovascular risk factors more than a multitreatment approach in overweight adolescents. Clin. Sci. 2009, 116, 317–326. [Google Scholar] [CrossRef] [Green Version]
- Farah, B.Q.; Ritti-Dias, R.M.; Balagopal, P.B.; Hill, J.O.; Prado, W.L. Does exercise intensity affect blood pressure and heart rate in obese adolescents? A 6-month multidisciplinary randomized intervention study. Pediatric Obes. 2014, 9, 111–120. [Google Scholar] [CrossRef]
- Martínez-Vizcaíno, V.; Sánchez-López, M.; Notario-Pacheco, B.; Salcedo-Aguilar, F.; Solera-Martínez, M.; Franquelo-Morales, P.; López-Martínez, S.; García-Prieto, J.C.; Arias-Palencia, N.; Torrijos-Niño, C.; et al. Gender differences on effectiveness of a school-based physical activity intervention for reducing cardiometabolic risk: A Cluster Randomized Trial. Int. J. Behav. Nutr. Phys. Act. 2014, 11, 154. [Google Scholar] [CrossRef] [Green Version]
- Pescatello, L.S.; MacDonald, H.V.; Lamberti, L.; Johnson, B.T. Exercise for Hypertension: A Prescription Update Integrating Existing Recommendations with Emerging Research. Curr. Hypertens. Rep. 2015, 17, 87. [Google Scholar] [CrossRef] [Green Version]
- Olea, M.A.; Mancilla, R.; Martínez, S.; Díaz, E. Entrenamiento interválico de alta intensidad contribuye a la normalización de la hipertensión arterial. Rev. Méd. Chile 2017, 145, 1154–1159. [Google Scholar] [CrossRef] [Green Version]
- Ramírez-Vélez, R.; Hernández-Quiñones, P.A.; Tordecilla-Sanders, A.; Álvarez, C.; Ramírez-Campillo, R.; Izquierdo, M.; Correa-Bautista, J.E.; Garcia-Hermoso, A.; Garcia , R.G. Effectiveness of HIIT compared to moderate continuous training in improving vascular parameters in inactive adults. Lipids Health Dis. 2019, 18, 981. [Google Scholar] [CrossRef] [Green Version]
- Lewington, S.; Clarke, R.; Qizilbash, N.; Peto, R.; Collins, R.; Prospective Studies Collaboration. Age-specific relevance of usual blood pressure to vascular mortality: A Meta-Analysis of Individual Data for One Million Adults in 61 Prospective Studies. Lancet 2002, 360, 1903–1913. [Google Scholar] [CrossRef]
- Kodama, S.; Saito, K.; Tanaka, S.; Maki, M.; Yachi, Y.; Asumi, M.; Sugawara, A.; Totsuka, K.; Shimano, H.; Ohashi, Y.; et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: A Meta-Analysis. JAMA 2009, 301, 2024–2035. [Google Scholar] [CrossRef] [Green Version]
- Burgomaster, K.A.; Howarth, K.R.; Phillips, S.M.; Rakobowchuk, M.; Macdonald, M.J.; McGee, S.L.; Gibala, M.J. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J. Physiol. 2008, 586, 151–160. [Google Scholar] [CrossRef]
- Thorstensson, A.; Sjödin, B.; Karlsson, J. Enzyme activities and muscle strength after "sprint training" in man. Acta Physiol. Scand. 1975, 94, 313–318. [Google Scholar] [CrossRef]
- Talanian, J.L.; Galloway, S.D.; Heigenhauser, G.J.; Bonen, A.; Spriet, L.L. Two weeks of high-intensity aerobic interval training increases the capacity for fat oxidation during exercise in women. J. Appl. Physiol. 2007, 102, 1439–1447. [Google Scholar] [CrossRef]
- Astorino, T.A.; Allen, R.P.; Roberson, D.W.; Jurancich, M. Effect of high-intensity interval training on cardiovascular function, VO2max, and muscular force. J. Strength Cond. Res. 2012, 26, 138–145. [Google Scholar] [CrossRef]
- Harriss, D.J.; Atkinson, G. Ethical Standards in Sport and Exercise Science Research: 2016 Update. Int. J. Sports Med. 2015, 36, 1121–1124. [Google Scholar] [CrossRef] [Green Version]
Factors | Outcomes | ||||||
---|---|---|---|---|---|---|---|
INT | SEX | BMIstatus | BFP | SBP | DBP | FI | |
Category | Mean ± SD 95%CI | Mean ± SD 95%CI | Mean ± SD 95%CI | Mean ± SD 95%CI | Mean ± SD 95%CI | ||
EG | M | L | 18.36 ± 1.35 17.61–19.11 | 11.53 ± 2.93 9.90–13.15 | 121.40 ± 14.96 113.11–129.68 | 76.46 ± 5.93 73.17–79.75 | 44.81 ± 4.30 42.43–47.19 |
M | 21.00 ± 0.98 20.33–21.66 | 15.87 ± 4.60 12.77–18.96 | 123.63 ± 13.33 114.67–132.59 | 69.90 ± 6.93 65.25–74.56 | 45.14 ± 2.30 43.59–46.69 | ||
H | 28.26 ± 3.80 23.53–32.98 | 27.62 ± 6.67 19.32–35.91 | 128.40 ± 4.21 123.16–133.63 | 76.20 ± 9.49 64.40–87.99 | 42.65 ± 2.80 39.16–46.14 | ||
F | L | 18.62 ± 1.01 18.08–19.16 | 23.90 ± 2.88 22.37–25.44 | 116.87 ± 10.06 111.51–122.23 | 73.43 ± 8.81 68.73–78.13 | 42.28 ± 2.60 40.90–43.67 | |
M | 21.47 ± 0.96 21.06–21.89 | 28.12 ± 5.32 25.82–30.43 | 116.69 ± 7.87 113.28–120.10 | 70.26 ± 6.46 67.46–73.05 | 44.32 ± 5.35 42.01–46.64 | ||
H | 23.97 ± 0.81 21.95–25.99 | 30.96 ± 3.00 23.51–38.42 | 117.01 ± 6.24 101.48–132.51 | 73.00 ± 6.08 57.88–88.11 | 42.64 ± 7.19 24.77–60.51 | ||
CG | M | L | 18.43 ± 0.98 17.67–19.19 | 11.75 ± 3.17 9.31–14.19 | 116.00 ± 8.30 109.61–122.38 | 74.77 ± 5.51 70.53–79.01 | 43.21 ± 2.89 40.99–45.43 |
M | 21.30 ± 0.86 20.58–22.02 | 13.43 ± 3.14 10.80–16.06 | 122.25 ± 11.20 112.87–131.62 | 77.12 ± 5.74 72.32–81.92 | 45.36 ± 3.59 42.35–48.36 | ||
H | 25.55 ± 2.58 21.43–29.66 | 24.27 ± 10.00 8.34–40.20 | 128.75 ± 3.30 123.49–134.00 | 79.25 ± 10.71 62.19–96.30 | 41.93 ± 2.96 37.21–46.66 | ||
F | L | 18.41 ± 0.95 17.97–18.84 | 24.55 ± 3.86 22.79–26.31 | 113.28 ± 6.39 110.37–116.19 | 70.19 ± 5.52 67.67–72.70 | 44.08 ± 3.63 42.43–45.73 | |
M | 21.57 ± 1.05 20.98–22.15 | 29.40 ± 3.31 27.56–31.24 | 116.46 ± 9.22 111.35–121.57 | 68.60 ± 7.64 64.36–72.83 | 44.44 ± 3.49 42.50–46.37 | ||
H | 26.21 ± 4.45 23.22–29.20 | 35.93 ± 5.83 32.01–39.85 | 117.72 ± 9.76 111.16–124.28 | 72.27 ± 9.33 65.99–78.54 | 45.79 ± 5.13 42.34–49.24 |
FACTOR | DV | ||||||||
---|---|---|---|---|---|---|---|---|---|
BFP | SBP | DBP | FI | ||||||
− | + | − | +o | − | + | − | + | ||
N (%) | N (%) | N (%) | N (%) | N (%) | N (%) | N (%) | N (%) | ||
INT | EG | 29 (39.73) | 44 (60.27) | 12 (16.44) | 61 (83.56) | 26 (35.62) | 47 (64.38) | 19 (26.03) | 54 (73.97) |
CG | 20 (29.41) | 48 (70.59) | 42 (61.76) | 26 (38.24) | 20 (29.41) | 48 (70.59) | 32 (47.06) | 36 (52.94) | |
SEX | M | 18 (34.62) | 31 (65.38) | 18 (34.62) | 34 (65.38) | 21 (40.38) | 31 (59.62) | 16 (30.77) | 36 (69.23) |
F | 31 (34.83) | 58 (65.17) | 36 (40.45) | 53 (59.55) | 42 (47.19) | 47 (52.81) | 35 (39.33) | 54 (60.67) | |
BMIstatus | L | 23 (37.70) | 38 (62.30) | 24 (39.34) | 37 (60.66) | 22 (36.07) | 39 (63.93) | 20 (32.79) | 41 (67.21) |
M | 20 (35.09) | 37 (64.91) | 19 (33.33) | 38 (66.67) | 32 (56.14) | 25 (43.86) | 21 (36.84) | 36 (63.16) | |
H | 6 (26.09) | 17 (73.91) | 11 (47.83) | 12 (52.17) | 9 (39.13) | 14 (60.87) | 10 (43.48) | 13 (56.52) |
k-Factors | INT(1)*SEX(2) | INT(1)*BMIstatus(2) | ||||
---|---|---|---|---|---|---|
df | χ2 | p | df | χ2 | p | |
1 | 6 | 53.30 | 0.0000 | 7 | 66.28 | 0.0000 |
2 | 15 | 43.00 | 0.0002 | 20 | 48.21 | 0.0004 |
BFP | 20 | 22.39 | 0.3197 | 30 | 17.47 | 0.9666 |
SBP | 15 | 10.60 | 0.7807 | 25 | 16.32 | 0.9049 |
DBP | 6 | 3.12 | 0.7952 | 11 | 6.84 | 0.8116 |
FI | 1 | 0.94 | 0.3317 | 2 | 0.26 | 0.8777 |
Effect | INT(1)*SEX(2) | INT(1)*BMIstatus(2) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
df | χ2part | p | χ2marg | p | df | χ2part | p | χ2marg | p | |
1 | 1 | 0.14 | 0.7038 | 1 | 0.13 | 0.7160 | ||||
2 | 1 | 7.97 | 0.0047 | 2 | 15.01 | 0.0006 | ||||
3 (BFP) | 1 | 10.80 | 0.0010 | 1 | 9.87 | 0.0017 | ||||
4 (SBP) | 1 | 6.33 | 0.0118 | 1 | 5.79 | 0.0161 | ||||
5 (DBP) | 1 | 1.30 | 0.2538 | 1 | 1.19 | 0.2750 | ||||
6 (FI) | 1 | 8.87 | 0.0029 | 1 | 8.11 | 0.0044 | ||||
12 | 1 | 0.97 | 0.3240 | 1.57 | 0.2103 | 2 | 2.19 | 0.3341 | 2.81 | 0.2456 |
13 | 1 | 1.73 | 0.1888 | 1.25 | 0.2628 | 1 | 1.54 | 0.2144 | 1.12 | 0.2904 |
14 | 1 | 22.86 | 0.0000 | 25.27 | 0.0000 | 1 | 19.72 | 0.0000 | 22.94 | 0.0000 |
15 | 1 | 2.01 | 0.1561 | 4.13 | 0.0422 | 1 | 2.59 | 0.1075 | 3.78 | 0.0518 |
16 | 1 | 4.57 | 0.0324 | 5.47 | 0.0194 | 1 | 4.15 | 0.0416 | 4.99 | 0.0255 |
23 | 1 | 0.01 | 0.9345 | 0.02 | 0.8848 | 2 | 0.24 | 0.8862 | 0.21 | 0.8994 |
24 | 1 | 0.00 | 0.9840 | 0.23 | 0.6306 | 2 | 0.61 | 0.7388 | 1.44 | 0.4863 |
25 | 1 | 0.19 | 0.6599 | 0.41 | 0.5210 | 2 | 4.83 | 0.0894 | 3.91 | 0.1417 |
26 | 1 | 0.28 | 0.5971 | 0.56 | 0.4545 | 2 | 0.83 | 0.6610 | 1.03 | 0.5975 |
34 | 1 | 0.13 | 0.7204 | 0.01 | 0.9235 | 1 | 0.12 | 0.7284 | 0.00 | 0.9695 |
35 | 1 | 0.01 | 0.9210 | 0.05 | 0.8298 | 1 | 0.00 | 0.9568 | 0.03 | 0.8564 |
36 | 1 | 1.29 | 0.2560 | 0.83 | 0.3634 | 1 | 1.31 | 0.2530 | 0.85 | 0.3554 |
45 | 1 | 0.76 | 0.3829 | 2.45 | 0.1174 | 1 | 0.97 | 0.3254 | 2.28 | 0.1309 |
46 | 1 | 0.00 | 0.9882 | 0.84 | 0.3588 | 1 | 0.01 | 0.9293 | 0.85 | 0.3579 |
56 | 1 | 0.15 | 0.6955 | 0.57 | 0.4514 | 1 | 0.14 | 0.7073 | 0.55 | 0.4603 |
INT*SEX | INT*BMIstatus | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
INT*SBP | INT*FI | INT*SBP | INT*FI | BMIstatus*DBP | |||||||
EG | CG | E | CG | EG | CG | EG | CG | L | M | H | |
0 | 20 | 50 | 27 | 40 | 24 | 54 | 31 | 44 | 30 | 40 | 17 |
1 | 69 | 34 | 62 | 44 | 73 | 38 | 66 | 48 | 47 | 33 | 22 |
all | 89 | 84 | 89 | 84 | 97 | 92 | 97 | 92 | 77 | 73 | 39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domaradzki, J.; Koźlenia, D.; Popowczak, M. Prevalence of Positive Effects on Body Fat Percentage, Cardiovascular Parameters, and Cardiorespiratory Fitness after 10-Week High-Intensity Interval Training in Adolescents. Biology 2022, 11, 424. https://doi.org/10.3390/biology11030424
Domaradzki J, Koźlenia D, Popowczak M. Prevalence of Positive Effects on Body Fat Percentage, Cardiovascular Parameters, and Cardiorespiratory Fitness after 10-Week High-Intensity Interval Training in Adolescents. Biology. 2022; 11(3):424. https://doi.org/10.3390/biology11030424
Chicago/Turabian StyleDomaradzki, Jarosław, Dawid Koźlenia, and Marek Popowczak. 2022. "Prevalence of Positive Effects on Body Fat Percentage, Cardiovascular Parameters, and Cardiorespiratory Fitness after 10-Week High-Intensity Interval Training in Adolescents" Biology 11, no. 3: 424. https://doi.org/10.3390/biology11030424
APA StyleDomaradzki, J., Koźlenia, D., & Popowczak, M. (2022). Prevalence of Positive Effects on Body Fat Percentage, Cardiovascular Parameters, and Cardiorespiratory Fitness after 10-Week High-Intensity Interval Training in Adolescents. Biology, 11(3), 424. https://doi.org/10.3390/biology11030424