In-Season Quantification and Relationship of External and Internal Intensity, Sleep Quality, and Psychological or Physical Stressors of Semi-Professional Soccer Players
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. External Intensity Monitoring
2.4. Internal Intensity Monitoring
2.5. Well-Being Monitoring
2.6. Statistical Analysis
3. Results
3.1. External Intensity Monitoring
3.2. Internal Intensity Monitoring
3.3. Well-Being Monitoring
3.4. Correlations of All Measures for Each Period
3.5. Training Monotony and Training Strain Descriptions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gabbett, T.J.; Nassis, G.P.; Oetter, E.; Pretorius, J.; Johnston, N.; Medina, D.; Rodas, G.; Myslinski, T.; Howells, D.; Beard, A.; et al. The athlete monitoring cycle: A practical guide to interpreting and applying training monitoring data. Br. J. Sports Med. 2017, 51, 1451–1452. [Google Scholar] [CrossRef] [Green Version]
- Brink, M.S.; Visscher, C.; Arends, S.; Zwerver, J.; Post, W.J.; Lemmink, K.A. Monitoring stress and recovery: New insights for the prevention of injuries and illnesses in elite youth soccer players. Br. J. Sports Med. 2010, 44, 809–815. [Google Scholar] [CrossRef]
- Impellizzeri, F.M.; Marcora, S.M.; Coutts, A.J. Internal and External Training Load: 15 Years On. Int. J. Sports Physiol. Perform. 2019, 14, 270–273. [Google Scholar] [CrossRef]
- Impellizzeri, F.; Rampinini, E.; Marcora, S. Physiological assessment of aerobic training in soccer. J. Sports Sci. 2005, 23, 583–592. [Google Scholar] [CrossRef]
- Hooper, S.L.; MacKinnon, L.T. Monitoring Overtraining in Athletes. Sports Med. 1995, 20, 321–327. [Google Scholar] [CrossRef]
- Moalla, W.; Fessi, M.S.; Farhat, F.; Nouira, S.; Wong, D.P.; Dupont, G. Relationship between daily training load and psychometric status of professional soccer players. Res. Sports Med. 2016, 24, 387–394. [Google Scholar] [CrossRef]
- Manzi, V.; D’Ottavio, S.; Impellizzeri, F.M.; Chaouachi, A.; Chamari, K.; Castagna, C. Profile of Weekly Training Load in Elite Male Professional Basketball Players. J. Strength Cond. Res. 2010, 24, 1399–1406. [Google Scholar] [CrossRef] [Green Version]
- Foster, C. Monitoring training in athletes with reference to overtraining syndrome. Med. Sci. Sports Exerc. 1998, 30, 1164–1168. [Google Scholar] [CrossRef]
- Clemente, F.M.; Mendes, B.; Nikolaidis, P.; Calvete, F.; Carriço, S.; Owen, A.L. Internal training load and its longitudinal relationship with seasonal player wellness in elite professional soccer. Physiol. Behav. 2017, 179, 262–267. [Google Scholar] [CrossRef]
- Haddad, M.; Chaouachi, A.; Wong, D.P.; Castagna, C.; Hambli, M.; Hue, O.; Chamari, K. Influence of fatigue, stress, muscle soreness and sleep on perceived exertion during submaximal effort. Physiol. Behav. 2013, 119, 185–189. [Google Scholar] [CrossRef]
- Oliveira, R.; Brito, J.P.; Martins, A.; Mendes, B.; Marinho, D.A.; Ferraz, R.; Marques, M.C. In-season internal and external training load quantification of an elite European soccer team. PLoS ONE 2019, 14, e0209393. [Google Scholar] [CrossRef] [Green Version]
- Nobari, H.; Praça, G.M.; Clemente, F.M.; Pérez-Gómez, J.; Vivas, J.C.; Ahmadi, M. Comparisons of new body load and metabolic power average workload indices between starters and non-starters: A full-season study in professional soccer players. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2021, 235, 105–113. [Google Scholar] [CrossRef]
- Williams, J.; Tessaro, E. Validity and Reliability of a 15 Hz GPS Device for Court-Based Sports Movements 2018; Virginia Tech: Blacksburg, VA, USA, 2018. [Google Scholar]
- Borg, G. Perceived exertion as an indicator of somatic stress. Scand. J. Rehabil. Med. 1970, 2, 92–98. [Google Scholar] [PubMed]
- Foster, C.; Florhaug, J.A.; Franklin, J.; Gottschall, L.; Hrovatin, L.A.; Parker, S.; Doleshal, P.; Dodge, C. A new approach to monitoring exercise training. J. Strength Cond. Res. 2001, 15, 109–115. [Google Scholar] [PubMed]
- Simpson, M.J.; Jenkins, D.G.; Scanlan, A.T.; Kelly, V. Relationships between External- and Internal-Workload Variables in an Elite Female Netball Team and Between Playing Positions. Int. J. Sports Physiol. Perform. 2020, 15, 841–846. [Google Scholar] [CrossRef]
- Foster, C.; Hector, L.L.; Welsh, R.; Schrager, M.; Green, M.A.; Snyder, A.C. Effects of specific versus cross-training on running performance. Eur. J. Appl. Physiol. Occup. Physiol. 1995, 70, 367–372. [Google Scholar] [CrossRef]
- Clemente, F.M.; Silva, R.; Castillo, D.; Los Arcos, A.; Mendes, B.; Afonso, J. Weekly Load Variations of Distance-Based Variables in Professional Soccer Players: A Full-Season Study. Int. J. Environ. Res. Public Health 2020, 17, 3300. [Google Scholar] [CrossRef]
- Nobari, H.; Aquino, R.; Clemente, F.M.; Khalafi, M.; Adsuar, J.C.; Pérez-Gómez, J. Description of acute and chronic load, training monotony and strain over a season and its relationships with well-being status: A study in elite under-16 soccer players. Physiol. Behav. 2020, 225, 113117. [Google Scholar] [CrossRef]
- Clemente, F.M.; Silva, R.; Chen, Y.-S.; Aquino, R.; Praça, G.M.; Paulis, J.C.; Nobari, H.; Mendes, B.; Rosemann, T.; Knechtle, B. Accelerometry-Workload Indices Concerning Different Levels of Participation during Congested Fixture Periods in Professional Soccer: A Pilot Study Conducted over a Full Season. Int. J. Environ. Res. Public Health 2021, 18, 1137. [Google Scholar] [CrossRef]
- Meckel, Y.; Doron, O.; Eliakim, E.; Eliakim, A. Seasonal Variations in Physical Fitness and Performance Indices of Elite Soccer Players. Sports 2018, 6, 14. [Google Scholar] [CrossRef] [Green Version]
- Hedges, L.V. Distribution theory for Glass’s estimator of effect size and related estimators. J. Educ. Stat. 1981, 6, 107–128. [Google Scholar] [CrossRef]
- Cohen, J.; Cohen, P.; West, S.G.; Aiken, L.S. Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences; Routledge: London, UK, 2013. [Google Scholar]
- Batterham, A.M.; Hopkins, W.G. Making Meaningful Inferences about Magnitudes. Int. J. Sports Physiol. Perform. 2006, 1, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López, A.M.; Granero-Gil, P.; Ortega, J.P.; De Hoyo, M. The validity and reliability of a 5-hz GPS device for quantifying athletes’ sprints and movement demands specific to team sports. J. Hum. Sport Exerc. 2017, 12, 156–166. [Google Scholar] [CrossRef]
- Oliveira, R.; Brito, J.P.; Loureiro, N.; Padinha, V.; Ferreira, B.; Mendes, B. Does the distribution of the weekly training load account for the match results of elite professional soccer players? Physiol. Behav. 2020, 225, 113118. [Google Scholar] [CrossRef] [PubMed]
- Sobolewski, E.J. The Relationships between Internal and External Load Measures for Division I College Football Practice. Sports 2020, 8, 165. [Google Scholar] [CrossRef]
- Barrett, S.; McLaren, S.; Spears, I.; Ward, P.; Weston, M. The Influence of Playing Position and Contextual Factors on Soccer Players’ Match Differential Ratings of Perceived Exertion: A Preliminary Investigation. Sports 2018, 6, 13. [Google Scholar] [CrossRef] [Green Version]
- Borges, T.O.; Moreira, A.; Thiengo, C.R.; Medrado, R.G.S.D.; Titton, A.; Lima, M.R. Training intensity distribution of young elite soccer players. Rev. Bras. Cineantropometria Desempenho Hum. 2019, 21. [Google Scholar] [CrossRef]
- Clemente, F.; Afonso, J.; Costa, J.; Oliveira, R.; Pino-Ortega, J.; Rico-González, M. Relationships between Sleep, Athletic and Match Performance, Training Load, and Injuries: A Systematic Review of Soccer Players. Healthcare 2021, 9, 808. [Google Scholar] [CrossRef]
- Rabbani, A.; Baseri, M.K.; Reisi, J.; Clemente, F.M.; Kargarfard, M. Monitoring collegiate soccer players during a congested match schedule: Heart rate variability versus subjective wellness measures. Physiol. Behav. 2018, 194, 527–531. [Google Scholar] [CrossRef]
- Nobari, H.; Alves, A.; Haghighi, H.; Clemente, F.; Carlos-Vivas, J.; Pérez-Gómez, J.; Ardigò, L. Association between Training Load and Well-Being Measures in Young Soccer Players during a Season. Int. J. Environ. Res. Public Health 2021, 18, 4451. [Google Scholar] [CrossRef] [PubMed]
- Nobari, H.; Polito, L.F.T.; Clemente, F.M.; Pérez-Gómez, J.; Ahmadi, M.; Garcia-Gordillo, M.Á.; Silva, A.F.; Adsuar, J.C. Relationships Between Training Workload Parameters with Variations in Anaerobic Power and Change of Direction Status in Elite Youth Soccer Players. Int. J. Environ. Res. Public Health 2020, 17, 7934. [Google Scholar] [CrossRef] [PubMed]
- Rössler, R.; Junge, A.; Chomiak, J.; Dvorak, J.; Faude, O. Soccer injuries in players aged 7 to 12 years: A descriptive epidemiological study over 2 seasons. Am. J. Sports Med. 2016, 44, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Saw, A.E.; Main, L.C.; Gastin, P.B. Monitoring the athlete training response: Subjective self-reported measures trump commonly used objective measures: A systematic review. Br. J. Sports Med. 2016, 50, 281–291. [Google Scholar] [CrossRef]
- Tomar, R.; Allen, J.A. The Relationship of Training Parameters with Incidence of Injury, Sleep and Well Being of Young University Swimmers. Int. J. Pharm. Res. Allied Sci. 2019, 8, 47–60. [Google Scholar]
- Nobari, H.; Kharatzadeh, M.; Khalili, S.M.; Pérez-Gómez, J.; Ardigò, L.P. Fluctuations of Training Load Variables in Elite Soccer Players U-14 throughout the Competition Season. Healthcare 2021, 9, 1418. [Google Scholar] [CrossRef]
Measure | EarS (Mean ± SD) | MidS (Mean ± SD) | EndS (Mean ± SD) | p | Hedges’ g (95% CI) |
---|---|---|---|---|---|
RPE (AU) | 3.68 ± 0.62 | 3.65 ± 0.61 | 4.27 ± 0.60 | EarS vs. MidS: 1.000 | - |
EarS vs. EndS: 0.009 | −1.75 [−2.56, −0.99] large | ||||
MidS vs. EndS: 0.002 | −1.87 [−2.70, −1.11] large | ||||
Avg TDur (Min) | 58.91 ± 7.62 | 71.99 ± 3.72 | 77.44 ± 3.67 | EarS vs. MidS: <0.01 | −2.13 [−3.00, −1.34] very large |
EarS vs. EndS: <0.01 | −3.03 [−4.07, −2.11] very large | ||||
MidS vs. EndS: <0.01 | −1.44 [−2.21, −0.73] large | ||||
Total TDur (Min) | 989.61 ± 136.89 | 1180.22 ± 136.96 | 1846.77 ± 177.11 | EarS vs. MidS: 0.001 | −1.36 [−2.12, −0.65] large |
EarS vs. EndS: <0.01 | −5.29 [−6.84, −3.96] nearly perfect | ||||
MidS vs. EndS: <0.01 | −4.11 [−5.39, −3.01] nearly perfect | ||||
s-RPE (AU) | 235.89 ± 35.19 | 285.87 ± 26.96 | 333.27 ± 58.41 | EarS vs. MidS: <0.01 | −1.56 [−2.34, −0.83] large |
EarS vs. EndS: <0.01 | −1.97 [−2.82, −1.20] large | ||||
MidS vs. EndS: 0.028 | −1.02 [−1.73, −0.34] moderate | ||||
Sleep | 2.30 ± 0.75 | 2.13 ± 0.38 | 2.18 ± 0.44 | EarS vs. MidS: 1.000 | - |
EarS vs. EndS: 1.000 | - | ||||
MidS vs. EndS: 1.000 | - | ||||
Stress | 1.81 ± 0.49 | 1.50 ± 0.27 | 1.39 ± 0.29 | EarS vs. MidS: 0.086 | - |
EarS vs. EndS: 0.032 | 0.77 [0.09, 1.46] small | ||||
MidS vs. EndS: 0.489 | - | ||||
DOMS | 2.18 ± 0.71 | 2.12 ± 0.31 | 2.18 ± 0.36 | EarS vs. MidS: 1.000 | - |
EarS vs. EndS: 1.000 | - | ||||
MidS vs. EndS: 1.000 | - | ||||
TM (AU) | 3.88 ± 2.44 | 6.14 ± 3.86 | 3.93 ± 0.69 | EarS vs. MidS: 0.120 | - |
EarS vs. EndS: 1.000 | - | ||||
MidS vs. EndS: 0.087 | - | ||||
TS (AU) | 1988.93 ± 1210.84 | 4405.95 ± 2935.36 | 3948.96 ± 647.78 | EarS vs. MidS: 0.011 | −1.05 [−1.78, −0.37] moderate |
EarS vs. EndS: <0.01 | −1.97 [−2.82, −1.20] large | ||||
MidS vs. EndS: 1.000 | - | ||||
Avg TD (Km) | 5.62 ± 0.86 | 5.24 ± 0.86 | 5.14 ± 0.51 | EarS vs. MidS: 0.165 | - |
EarS vs. EndS: 0.039 | 0.66 [0.001, 1.35] moderate | ||||
MidS vs. EndS: 1.000 | - | ||||
Total TD (Km) | 108.30 ± 29.52 | 99.82 ± 0.86 | 133.86 ± 39.43 | EarS vs. MidS: 0.493 | - |
EarS vs. EndS: 0.022 | −0.71 [−1.40, −0,05] moderate | ||||
MidS vs. EndS: 0.003 | −1.19 [−1.93, −0.49] moderate | ||||
Avg HSRD (Km) | 0.72 ± 0.23 | 1.53 ± 0.29 | 3.07 ± 0.48 | EarS vs. MidS: <0.01 | −3.03 [−4.07, −2.10] very large |
EarS vs. EndS: <0.01 | −6.11 [−7.85, −4.62] nearly perfect | ||||
MidS vs. EndS: <0.01 | −3.79 [−5.00, −2.75] very large | ||||
Total HSRD (Km) | 14.06 ± 5.52 | 28.20 ± 9.47 | 77.95 ± 21.90 | EarS vs. MidS: <0.01 | −1.78 [−2.59, −1.03] large |
EarS vs. EndS: <0.01 | −3.91 [−5.14, −2.84] very large | ||||
MidS vs. EndS: <0.01 | −2.88 [−3.89, −1.98] very large | ||||
Avg SD (Km) | 0.61 ± 0.05 | 0.51 ± 0.03 | 0.56 ± 0.04 | EarS vs. MidS: 0.079 | - |
EarS vs. EndS: 1.000 | - | ||||
MidS vs. EndS: 0.638 | - | ||||
Total SD (Km) | 11.63 ± 4.14 | 9.55 ± 4.07 | 14.01 ± 4.00 | EarS vs. MidS: 0.061 | - |
EarS vs. EndS: 0.202 | - | ||||
MidS vs. EndS:0.002 | −1.08 [−1.80, −0.39] moderate | ||||
HRavg (bpm) | 137 ± 2 | 140 ± 9 | 135 ± 2 | EarS vs. MidS: 1.000 | - |
EarS vs. EndS: 1.000 | - | ||||
MidS vs. EndS: 1.000 | - |
Measure | β0 | β1 | β2 | β3 | β4 | β5 | β6 | β7 | β8 | β9 | β10 | β11 | β12 | β13 | β14 | β15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RPE (β0) | 1.00 | |||||||||||||||
Avg TDur (β1) | 0.687 # | 1.00 | ||||||||||||||
Total TDur (β2) | 0.707 § | 0.985 £ | 1.00 | |||||||||||||
s-RPE (β3) | 0.783 § | 0.528 # | 0.542 # | 1.00 | ||||||||||||
Sleep (β4) | 0.519 # | 0.388 | 0.374 | 0.347 | 1.00 | |||||||||||
Stress (β5) | −0.235 | −0.120 | −0.126 | −0.371 | 0.270 | 1.00 | ||||||||||
DOMS (β6) | 0.338 | 0.263 | 0.234 | 0.364 | 0.465 | 0.051 | 1.00 | |||||||||
TM (β7) | 0.047 | 0.109 | 0.129 | −0.026 | −0.088 | 0.175 | 0.117 | 1.00 | ||||||||
TS (β8) | 0.136 | 0.200 | 0.215 | 0.132 | 0.007 | 0.157 | 0.244 | 0.975 £ | 1.00 | |||||||
Avg TD (β9) | −0.047 | −0.029 | 0.018 | −0.080 | −0.312 | 0.063 | −0.482 * | −0.191 | −0.267 | 1.00 | ||||||
Total TD (β10) | −0.001 | 0.087 | 0.124 | 0.063 | −0.248 | 0.103 | −0.333 | −0.065 | −0.094 | 0.930 £ | 1.00 | |||||
Avg HSRD (β11) | −0.236 | −0.314 | −0.289 | −0.295 | −0.485 * | 0.060 | 0.010 | 0.139 | 0.051 | 0.613 # | 0.586 # | 1.00 | ||||
Total HSRD (β12) | −0.179 | −0.244 | −0.215 | −0.192 | −0.430 | 0.112 | −0.013 | 0.146 | 0.078 | 0.701 § | 0.733 § | 0.970 £ | 1.00 | |||
Avg SD (β13) | 0.027 | 0.020 | −0.002 | −0.052 | −0.014 | −0.231 | 0.036 | −0.161 | −0.164 | 0.425 | 0.339 | 0.530 # | 0.482 * | 1.00 | ||
Total SD (β14) | 0.061 | 0.067 | 0.066 | 0.027 | −0.005 | −0.097 | 0.032 | −0.085 | −0.079 | 0.601 # | 0.614 # | 0.634 # | 0.668 # | 0.920 £ | 1.00 | |
HRavg (β15) | −0.281 | 0.010 | 0.054 | −0.150 | −0.334 | 0.016 | −0.331 | −0.060 | −0.098 | 0.461 | 0.441 | 0.154 | 0.209 | 0.076 | 0.154 | 1.00 |
Measure | β0 | β1 | β2 | β3 | β4 | β5 | β6 | β7 | β8 | β9 | β10 | β11 | β12 | β13 | β14 | β15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RPE (β0) | 1.00 | |||||||||||||||
Avg TDur (β1) | 0.457 | 1.00 | ||||||||||||||
Total TDur (β2) | 0.520 # | 0.439 | 1.00 | |||||||||||||
s-RPE (β3) | 0.391 | 0.050 | −0.005 | 1.00 | ||||||||||||
Sleep (β4) | 0.491 * | 0.404 | 0.523 # | −0.149 | 1.00 | |||||||||||
Stress (β5) | 0.241 | −0.158 | 0.091 | 0.151 | 0.263 | 1.00 | ||||||||||
DOMS (β6) | 0.320 | 0.008 | 0.499 * | 0.032 | 0.518 # | 0.343 | 1.00 | |||||||||
TM (β7) | 0.226 | 0.049 | 0.082 | 0.065 | 0.347 | −0.229 | 0.022 | 1.00 | ||||||||
TS (β8) | 0.285 | 0.039 | 0.093 | 0.234 | 0.300 | −0.159 | 0.040 | 0.969 £ | 1.00 | |||||||
Avg TD (β9) | 0.320 | 0.444 | −0.009 | 0.090 | 0.098 | −0.284 | −0.014 | 0.390 | 0.333 | 1.00 | ||||||
Total TD (β10) | 0.151 | 0.338 | 0.002 | 0.118 | 0.004 | −0.542 # | −0.070 | 0.355 | 0.327 | 0.852 § | 1.00 | |||||
Avg HSRD (β11) | 0.263 | 0.104 | 0.080 | 0.122 | 0.096 | −0.159 | −0.019 | −0.069 | −0.128 | 0.403 | 0.378 | 1.00 | ||||
Total HSRD (β12) | 0.184 | 0.270 | 0.082 | 0.255 | −0.021 | −0.543 # | −0.100 | 0.115 | 0.089 | 0.646 # | 0.839 § | 0.725 § | 1.00 | |||
Avg SD (β13) | 0.280 | 0.326 | −0.089 | 0.275 | −0.148 | −0.319 | 0.013 | 0.096 | 0.052 | 0.533 # | 0.423 | 0.472 * | 0.537 # | 1.00 | ||
Total SD (β14) | 0.171 | 0.331 | −0.038 | 0.309 | −0.143 | −0.562 # | −0.052 | 0.191 | 0.171 | 0.671 # | 0.825 § | 0.507 # | 0.878 § | 0.790 § | 1.00 | |
HRavg (β15) | 0.175 | 0.081 | −0.146 | 0.272 | 0.151 | −0.183 | −0.194 | 0.853 § | 0.886§ | 0.367 | 0.337 | −0.020 | 0.132 | 0.189 | 0.239 | 1.00 |
Measure | β0 | β1 | β2 | β3 | β4 | β5 | β6 | β7 | β8 | β9 | β10 | β11 | β12 | β13 | β14 | β15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RPE (β0) | 1.00 | |||||||||||||||
Avg TDur (β1) | 0.005 | 1.00 | ||||||||||||||
Total TDur (β2) | 0.210 | 0.082 | 1.00 | |||||||||||||
s-RPE (β3) | 0.843 § | −0.034 | 0.483 * | 1.00 | ||||||||||||
Sleep (β4) | 0.398 | −0.264 | 0.168 | 0.298 | 1.00 | |||||||||||
Stress (β5) | 0.309 | −0.137 | 0.328 | 0.483 * | 0.418 | 1.00 | ||||||||||
DOMS (β6) | 0.342 | −0.467 | 0.247 | 0.167 | 0.656 # | 0.429 | 1.00 | |||||||||
TM (β7) | −0.312 | 0.103 | 0.221 | −0.189 | −0.402 | −0.287 | −0.285 | 1.00 | ||||||||
TS (β8) | 0.085 | 0.204 | 0.592 # | 0.256 | −0.315 | −0.152 | −0.172 | 0.711 § | 1.00 | |||||||
Avg TD (β9) | 0.404 | −0.326 | −0.299 | 0.236 | 0.153 | −0.083 | 0.269 | −0.361 | −0.257 | 1.00 | ||||||
Total TD (β10) | 0.061 | −0.361 | −0.459 | −0.054 | −0.073 | −0.244 | 0.029 | −0.320 | −0.527 # | 0.786 § | 1.00 | |||||
Avg HSRD (β11) | 0.456 | −0.346 | −0.102 | 0.431 | 0.225 | 0.151 | 0.245 | −0.456 | −0.075 | 0.706 § | 0.378 | 1.00 | ||||
Total HSRD (β12) | 0.230 | −0.363 | −0.297 | 0.179 | 0.020 | −0.057 | 0.109 | 0.499 * | −0.415 | 0.841 § | 0.867 § | 0.751 § | 1.00 | |||
Avg SD (β13) | 0.233 | −0.283 | −0.080 | 0.144 | 0.284 | 0.097 | 0.223 | 0.038 | 0.187 | 0.073 | −0.211 | 0.495 * | 0.052 | 1.00 | ||
Total SD (β14) | 0.186 | −0.521 # | −0.381 | 0.038 | 0.084 | −0.064 | 0.252 | −0.308 | −0.339 | 0.668 # | 0.688 # | 0.645 # | 0.785 § | 0.510 # | 1.00 | |
HRavg (β15) | 0.249 | 0.121 | −0.253 | 0.201 | −0.066 | 0.169 | −0.149 | 0.093 | 0.028 | −0.017 | −0.226 | −0.104 | −0.313 | 0.048 | −0.275 | 1.00 |
Measure | β0 | β1 | β2 | β3 | β4 | β5 | β6 | β7 | β8 | β9 | β10 | β11 | β12 | β13 | β14 | β15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RPE (β0) | 1.00 | |||||||||||||||
Avg TDur (β1) | 0.219 | 1.00 | ||||||||||||||
Total TDur (β2) | 0.355 | 0.454 | 1.00 | |||||||||||||
s-RPE (β3) | 0.772 § | 0.106 | 0.428 | 1.00 | ||||||||||||
Sleep (β4) | 0.322 | 0.258 | 0.433 | 0.211 | 1.00 | |||||||||||
Stress (β5) | −0.111 | 0.048 | 0.281 | −0.008 | 0.426 | 1.00 | ||||||||||
DOMS (β6) | 0.161 | 0.031 | 0.375 | 0.250 | 0.373 | 0.090 | 1.00 | |||||||||
TM (β7) | 0.088 | −0.017 | 0.248 | 0.011 | −0.373 | −0.112 | −0.003 | 1.00 | ||||||||
TS (β8) | 0.202 | 0.079 | 0.350 | 0.197 | −0.384 | −0.157 | 0.073 | 0.958 £ | 1.00 | |||||||
Avg TD (β9) | 0.385 | 0.122 | −0.127 | 0.086 | −0.165 | −0.357 | −0.285 | 0.150 | 0.173 | 1.00 | ||||||
Total TD (β10) | 0.142 | −0.036 | −0.186 | 0.017 | −0.326 | −0.425 | −0.316 | 0.151 | 0.143 | 0.887 § | 1.00 | |||||
Avg HSRD (β11) | 0.496 * | −0.312 | −0.275 | 0.280 | −0.175 | −0.316 | −0.048 | −0.165 | −0.111 | 0.522 # | 0.466 | 1.00 | ||||
Total HSRD (β12) | 0.275 | −0.263 | −0.291 | 0.181 | −0.328 | −0.500 * | −0.240 | −0.069 | −0.041 | 0.671 # | 0.814 § | 0.813 § | 1.00 | |||
Avg SD (β13) | 0.390 | 0.059 | −0.387 | 0.074 | −0.126 | −0.528 # | 0.077 | −0.116 | −0.131 | 0.252 | 0.138 | 0.400 | 0.289 | 1.00 | ||
Total SD (β14) | 0.253 | −0.022 | −0.347 | 0.071 | −0.324 | −0.640 # | −0.062 | −0.008 | −0.024 | 0.607 # | 0.721 § | 0.524 # | 0.746 § | 0.721 § | 1.00 | |
HRavg (β15) | 0.154 | 0.149 | −0.046 | 0.088 | −0.394 | −0.141 | −0.189 | 0.617 # | 0.667 # | 0.405 | 0.279 | 0.088 | 0.084 | 0.030 | 0.098 | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nobari, H.; Gholizadeh, R.; Martins, A.D.; Badicu, G.; Oliveira, R. In-Season Quantification and Relationship of External and Internal Intensity, Sleep Quality, and Psychological or Physical Stressors of Semi-Professional Soccer Players. Biology 2022, 11, 467. https://doi.org/10.3390/biology11030467
Nobari H, Gholizadeh R, Martins AD, Badicu G, Oliveira R. In-Season Quantification and Relationship of External and Internal Intensity, Sleep Quality, and Psychological or Physical Stressors of Semi-Professional Soccer Players. Biology. 2022; 11(3):467. https://doi.org/10.3390/biology11030467
Chicago/Turabian StyleNobari, Hadi, Roghayyeh Gholizadeh, Alexandre Duarte Martins, Georgian Badicu, and Rafael Oliveira. 2022. "In-Season Quantification and Relationship of External and Internal Intensity, Sleep Quality, and Psychological or Physical Stressors of Semi-Professional Soccer Players" Biology 11, no. 3: 467. https://doi.org/10.3390/biology11030467
APA StyleNobari, H., Gholizadeh, R., Martins, A. D., Badicu, G., & Oliveira, R. (2022). In-Season Quantification and Relationship of External and Internal Intensity, Sleep Quality, and Psychological or Physical Stressors of Semi-Professional Soccer Players. Biology, 11(3), 467. https://doi.org/10.3390/biology11030467