Universal Mitochondrial Multi-Locus Sequence Analysis (mtMLSA) to Characterise Populations of Unanticipated Plant Pest Biosecurity Detections
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Specimens
2.2. Choice of Loci and Universal PCR Primer Design
2.3. Molecular Analyses
2.4. Primer Universality
3. Results
3.1. Selection of Target Genes and Primers
3.1.1. Haplotype Analysis to Confirm Population-Level Variation
3.1.2. Ordinal-Level Universal Primer Design
3.2. Primer Screening
3.2.1. Diptera
3.2.2. Lepidoptera
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Simberloff, D.; Parker, I.M.; Windle, P.N. Introduced Species Policy, Management, and Future Research Needs. Front. Ecol. Environ. 2005, 3, 12. [Google Scholar] [CrossRef]
- Wilson, J.A.; Stephenson, B.P.; Gill, G.S.C.; Randall, J.L.; Vieglais, C.M.C. Principles of response to detections of new plant pest species and the effectiveness of surveillance. New Zeal. Plant Prot. 2004, 57, 156–160. [Google Scholar] [CrossRef]
- Barr, N.; Ruiz-Arce, R.; Armstrong, K. Using Molecules to Identify the Source of Fruit Fly Invasions. In Trapping and the Detection, Control, and Regulation of Tephritid Fruit Flies; Springer: Dordrecht, The Netherlands, 2014; pp. 321–378. [Google Scholar]
- Kim, K.S.; Sappington, T.W. Population genetics strategies to characterize long-distance dispersal of insects. J. Asia. Pac. Entomol. 2013, 16, 87–97. [Google Scholar] [CrossRef] [Green Version]
- Hulme, P.E. Trade, transport and trouble: Managing invasive species pathways in an era of globalization. J. Appl. Ecol. 2009, 46, 10–18. [Google Scholar] [CrossRef]
- Miao, J.; Wu, Y.-Q.; Gong, Z.-J.; He, Y.-Z.; Duan, Y.; Jiang, Y.-L. Long-Distance Wind-Borne Dispersal of Sitodiplosis mosellana Géhin (Diptera:Cecidomyiidae) in Northern China. J. Insect Behav. 2013, 26, 120–129. [Google Scholar] [CrossRef]
- Tobin, P.C.; Blackburn, L.M. Long-distance dispersal of the gypsy moth (Lepidoptera: Lymantriidae) facilitated its initial invasion of Wisconsin. Environ. Entomol. 2008, 37, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Estoup, A.; Guillemaud, T. Reconstructing routes of invasion using genetic data: Why, how and so what? Mol. Ecol. 2010, 19, 4113–4130. [Google Scholar] [CrossRef]
- Adrion, J.R.; Kousathanas, A.; Pascual, M.; Burrack, H.J.; Haddad, N.M.; Bergland, A.O.; Machado, H.; Sackton, T.B.; Schlenke, T.A.; Watada, M.; et al. Drosophila suzukii: The genetic footprint of a recent, worldwide invasion. Mol. Biol. Evol. 2014, 31, 3148–3163. [Google Scholar] [CrossRef] [Green Version]
- Barr, N.B. Pathway analysis of Ceratitis capitata (Diptera: Tephritidae) using mitochondrial DNA. J. Econ. Entomol. 2009, 102, 401–411. [Google Scholar] [CrossRef]
- Cao, L.J.; Wang, Z.H.; Gong, Y.J.; Zhu, L.; Hoffmann, A.A.; Wei, S.J. Low genetic diversity but strong population structure reflects multiple introductions of western flower thrips (Thysanoptera: Thripidae) into China followed by human-mediated spread. Evol. Appl. 2017, 10, 391–401. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Chen, Y.-D.; Jiang, Z.-L.; Nardi, F.; Yang, T.-Y.; Jin, J.; Zhang, Z.-K. Global haplotype analysis of the whitefly Bemisia tabaci cryptic species Asia I in Asia. Mitochondrial DNA 2015, 26, 232–241. [Google Scholar] [CrossRef]
- Keena, M.A.; Côté, M.J.; Grinberg, P.S.; Wallner, W.E. World distribution of female flight and genetic variation in Lymantria dispar (Lepidoptera: Lymantriidae). Env. Entomol 2008, 37, 636–649. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Fonseca, D.M.; Hamilton, G.C.; Hoelmer, K.A.; Nielsen, A.L. Tracing the origin of US brown marmorated stink bugs, Halyomorpha halys. Biol. Invasions 2014, 16, 153–166. [Google Scholar] [CrossRef]
- Ministry of Agriculture and Forestry. Policy for MAF’s Responses to Risk Organisms; Ministry of Agriculture and Forestry: Wellington, New Zealand, 2008; Volume 3, ISBN 9780478321593.
- Baker, R.; Cowley, J. Evaluation of the economic impact of newly introduced pests. New Zeal. J. For. Sci. 1989, 19, 330–334. [Google Scholar]
- Somerfield, K.G. Insects of economic significance recently recorded in New Zealand. New Zeal. J. Agric. Res. 1977, 20, 421–428. [Google Scholar] [CrossRef]
- Armstrong, K.; Ball, S. DNA barcodes for biosecurity: Invasive species identification. Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 1813–1823. [Google Scholar] [CrossRef] [Green Version]
- Darling, J.A.; Blum, M.J. DNA-based methods for monitoring invasive species: A review and prospectus. Biol. Invasions 2007, 9, 751–765. [Google Scholar] [CrossRef]
- Fraimout, A.; Loiseau, A.; Price, D.K.; Xuéreb, A.; Jean-François, M.; Vitalis, R.; Fellous, S.; Debat, V.; Estoup, A. New set of microsatellite markers for the spotted-wing Drosophila suzukii (Diptera: Drosophilidae): A promising molecular tool for inferring the invasion history of this major insect pest. Eur. J. Entomol. 2015, 112, 855–859. [Google Scholar] [CrossRef] [Green Version]
- Lemic, D.; Mikac, K.M.; Kozina, A.; Benitez, H.A.; Mclean, C.M.; Bažok, R. Monitoring techniques of the western corn rootworm are the precursor to effective IPM strategies. Pest Manag. Sci. 2016, 72, 405–417. [Google Scholar] [CrossRef]
- Margaritopoulos, J.T.; Kasprowicz, L.; Malloch, G.L.; Fenton, B. Tracking the global dispersal of a cosmopolitan insect pest, the peach potato aphid. BMC Ecol. 2009, 9, 13. [Google Scholar] [CrossRef] [Green Version]
- Putman, A.I.; Carbone, I. Challenges in analysis and interpretation of microsatellite data for population genetic studies. Ecol. Evol. 2014, 4, 4399–4428. [Google Scholar] [CrossRef]
- Sauné, L.; Auger, P.; Migeon, A.; Longueville, J.-E.; Fellous, S.; Navajas, M. Isolation, characterization and PCR multiplexing of microsatellite loci for a mite crop pest, Tetranychus urticae (Acari: Tetranychidae). BMC Res. Notes 2015, 8, 247. [Google Scholar] [CrossRef] [Green Version]
- Ellegren, H. Microsatellites: Simple sequences with complex evolution. Nat. Rev. Genet. 2004, 5, 435–445. [Google Scholar] [CrossRef]
- Selkoe, K.A.; Toonen, R.J. Microsatellites for ecologists: A practical guide to using and evaluating microsatellite markers. Ecol. Lett. 2006, 9, 615–629. [Google Scholar] [CrossRef]
- YUE, G.-H.; Balazs, K.; Laszlo, O. A New Problem with Cross-Species Amplification of Microsatellites: Generation of Non-Homologous Products. Zool. Res. 2010, 31, 131–140. [Google Scholar] [CrossRef]
- Haasl, R.J.; Payseur, B.A. Multi-locus inference of population structure: A comparison between single nucleotide polymorphisms and microsatellites. Heredity 2011, 106, 158–171. [Google Scholar] [CrossRef] [Green Version]
- Wahlberg, N.; Peña, C.; Ahola, M.; Wheat, C.W.; Rota, J. PCR primers for 30 novel gene regions in the nuclear genomes of Lepidoptera. Zookeys 2016, 596, 129–141. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Sinha, S. Towards realistic benchmarks for multiple alignments of non-coding sequences. BMC Bioinform. 2010, 11, 54. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.-X.; Hewitt, G.M. Nuclear DNA analyses in genetic studies of populations: Practice, problems and prospects. Mol. Ecol. 2003, 12, 563–584. [Google Scholar] [CrossRef]
- Benson, D.A.; Karsch-Mizrachi, I.; Lipman, D.J.; Ostell, J.; Wheeler, D.L. GenBank. Nucleic Acids Res. 2004, 33, D34–D38. [Google Scholar] [CrossRef] [Green Version]
- Ratnasingham, S.; Hebert, P.D.N. BARCODING: Bold: The Barcode of Life Data System (http://www.barcodinglife.org). Mol. Ecol. Notes 2007, 7, 355–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cameron, S.L. Insect Mitochondrial Genomics: Implications for Evolution and Phylogeny. Annu. Rev. Entomol. 2014, 59, 95–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Djoumad, A.; Nisole, A.; Zahiri, R.; Freschi, L.; Picq, S.; Gundersen-Rindal, D.E.; Sparks, M.E.; Dewar, K.; Stewart, D.; Maaroufi, H.; et al. Comparative analysis of mitochondrial genomes of geographic variants of the gypsy moth, Lymantria dispar, reveals a previously undescribed genotypic entity. Sci. Rep. 2017, 7, 14245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Junqueira, A.C.M.; Azeredo-Espin, A.M.L.; Paulo, D.F.; Marinho, M.A.T.; Tomsho, L.P.; Drautz-Moses, D.I.; Purbojati, R.W.; Ratan, A.; Schuster, S.C. Large-scale mitogenomics enables insights into Schizophora (Diptera) radiation and population diversity. Sci. Rep. 2016, 6, 21762. [Google Scholar] [CrossRef] [Green Version]
- Galtier, N.; Nabholz, B.; Glémin, S.; Hurst, G.D.D. Mitochondrial DNA as a marker of molecular diversity: A reappraisal. Mol. Ecol. 2009, 18, 4541–4550. [Google Scholar] [CrossRef]
- Hurst, G.D.; Jiggins, F.M. Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: The effects of inherited symbionts. Proc. R. Soc. B Biol. Sci. 2005, 272, 1525–1534. [Google Scholar] [CrossRef]
- Zink, R.M.; Barrowclough, G.F. Mitochondrial DNA under siege in avian phylogeography. Mol. Ecol. 2008, 17, 2107–2121. [Google Scholar] [CrossRef]
- Gevers, D.; Cohan, F.M.; Lawrence, J.G.; Spratt, B.G.; Coenye, T.; Feil, E.J.; Stackebrandt, E.; Van de Peer, Y.; Vandamme, P.; Thompson, F.L.; et al. Re-evaluating prokaryotic species. Nat. Rev. Microbiol. 2005, 3, 733–739. [Google Scholar] [CrossRef]
- Margos, G.; Gatewood, A.G.; Aanensen, D.M.; Hanincova, K.; Terekhova, D.; Vollmer, S.A.; Cornet, M.; Piesman, J.; Donaghy, M.; Bormane, A.; et al. MLST of housekeeping genes captures geographic population structure and suggests a European origin of Borrelia burgdorferi. Proc. Natl. Acad. Sci. USA 2008, 105, 8730–8735. [Google Scholar] [CrossRef] [Green Version]
- Hosokawa, T.; Nikoh, N.; Fukatsu, T. Fine-scale geographical origin of an insect pest invading North America. PLoS ONE 2014, 9, e89107. [Google Scholar] [CrossRef] [Green Version]
- Kang, T.H.; Kim, S.; Hong, K.J.; Lee, H.S. DNA barcoding in quarantine inspection: A case study on quarantine insect monitoring for Lepidoptera obtained through quarantine inspection on foreign vessels. Mitochondrial DNA Part B Resour. 2019, 4, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Madden, M.J.L.; Young, R.G.; Brown, J.W.; Miller, S.E.; Frewin, A.J.; Hanner, R.H. Using DNA barcoding to improve invasive pest identification at U.S. Ports-of-entry. PLoS ONE 2019, 14, e222291. [Google Scholar] [CrossRef] [PubMed]
- Valle, G.E.; Lourenção, A.L.; Zucchi, M.I.; Pinheiro, J.B.; Abreu, A.G. MtDNA variability in whitefly (Bemisia tabaci) populations in Brazil. Genet. Mol. Res. 2011, 10, 2155–2164. [Google Scholar] [CrossRef] [PubMed]
- Van Zandt Brower, A.; Brower, A.V.Z. Phylogeny of Heliconius Butterflies Inferred from Mitochondrial DNA Sequences (Lepidoptera: Nymphalidae). Mol. Phylogenet. Evol. 1994, 3, 159–174. [Google Scholar] [CrossRef]
- Cameron, S.L.; Whiting, M.F. The complete mitochondrial genome of the tobacco hornworm, Manduca sexta, (Insecta: Lepidoptera: Sphingidae), and an examination of mitochondrial gene variability within butterflies and moths. Gene 2008, 408, 112–123. [Google Scholar] [CrossRef]
- Silva-Brandão, K.L.; Lyra, M.L.; Santos, T.V.; Seraphim, N.; Albernaz, K.C.; Pavinato, V.A.C.; Martinelli, S.; Cônsoli, F.L.; Omoto, C. Exploitation of mitochondrial nad6 as a complementary marker for studying population variability in Lepidoptera. Genet. Mol. Biol. 2011, 34, 719–725. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.K.; Mendki, M.J.; Tikar, S.N.; Kulkarni, G.; Veer, V.; Prakash, S.; Shouche, Y.S.; Parashar, B.D. Molecular phylogenetic study of Culex quinquefasciatus mosquito from different geographical regions of India using 16S rRNA gene sequences. Acta Trop. 2010, 116, 89–94. [Google Scholar] [CrossRef]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef]
- Hebert, P.D.N.; Cywinska, A.; Ball, S.L.; DeWaard, J.R. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2003, 270, 313–321. [Google Scholar] [CrossRef] [Green Version]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar]
- Nunn, G.B. Nematode Molecular Evolution; University of Nottingham: Nothingham, UK, 1992. [Google Scholar]
- Kumari, S.; Subbotin, S.A. Molecular characterization and diagnostics of stubby root and virus vector nematodes of the family Trichodoridae (Nematoda: Triplonchida) using ribosomal RNA genes. Plant Pathol. 2012, 61, 1021–1031. [Google Scholar] [CrossRef]
- Nelson, L.; Batterham, P.; Wallman, J.F.; Dowton, M.P. Beyond barcoding: A mitochondrial genomics approach to molecular phylogenetics and diagnostics of blowflies (Diptera: Calliphoridae) Beyond barcoding: A mitochondrial genomics approach to molecular. Gene 2012, 511, 131–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Llopart, A.; Herrig, D.; Brud, E.; Stecklein, Z. Sequential adaptive introgression of the mitochondrial genome in Drosophila yakuba and Drosophila santomea. Mol. Ecol. 2014, 23, 1124–1136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolff, J.N.; Camus, M.F.; Clancy, D.J.; Dowling, D.K. Complete mitochondrial genome sequences of thirteen globally sourced strains of fruit fly (Drosophila melanogaster) form a powerful model for mitochondrial research. Mitochondrial DNA Part A 2016, 27, 4672–4674. [Google Scholar] [CrossRef]
- Li, D.; Guo, Y.; Shao, H.; Tellier, L.C.; Wang, J.; Xiang, Z.; Xia, Q. Genetic diversity, molecular phylogeny and selection evidence of the silkworm mitochondria implicated by complete resequencing of 41 genomes. BMC Evol. Biol. 2010, 10, 81. [Google Scholar] [CrossRef] [Green Version]
- Cheng, R.; Xue, D.; Galsworthy, A.; Han, H. Complete mitochondrial genomes throw light on budding speciation in three Biston species (Lepidoptera, Geometridae). Zool. Scr. 2017, 46, 73–84. [Google Scholar] [CrossRef]
- Simon, C.; Frati, F.; Beckenbach, A.; Crespi, B.; Liu, H.; Flook, P. Evolution, Weighting, and Phylogenetic Utility of Mitochondrial Gene Sequences and a Compilation of Conserved Polymerase Chain Reaction Primers. Ann. Entomol. Soc. Am. 1994, 87, 651–701. [Google Scholar] [CrossRef]
- Lewis, R.L.; Beckenbach, A.T.; Mooers, A. The phylogeny of the subgroups within the melanogaster species group: Likelihood tests on COI and COII sequences and a Bayesian estimate of phylogeny. Mol. Phylogenet. Evol. 2005, 37, 15–24. [Google Scholar] [CrossRef]
- Roehrdanz, R.L. An improved primer for PCR amplification of mitochondrial DNA in a variety of insect species. Insect Mol. Biol. 1993, 2, 89–91. [Google Scholar] [CrossRef]
- Rand, D.M.; Kann, L.M. Excess amino acid polymorphism in mitochondrial DNA: Contrasts among genes from Drosophila, mice, and humans. Mol. Biol. Evol. 1996, 13, 735–748. [Google Scholar] [CrossRef] [Green Version]
- Barr, N.B.; McPheron, B.A. Molecular phylogenetics of the genus Ceratitis (Diptera: Tephritidae). Mol. Phylogenet. Evol. 2006, 38, 216–230. [Google Scholar] [CrossRef] [PubMed]
- Bourke, B.P.; Foster, P.G.; Bergo, E.S.; Calado, D.C.; Sallum, M.A.M. Phylogenetic relationships among species of Anopheles (Nyssorhynchus) (Diptera, Culicidae) based on nuclear and mitochondrial gene sequences. Acta Trop. 2010, 114, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Cha, R.S.; Thilly, W.G. Specificity, efficiency, and fidelity of PCR. Genome Res. 1993, 3, S18–S29. [Google Scholar] [CrossRef] [PubMed]
- Gibson, J.F.; Kelso, S.; Jackson, M.D.; Kits, J.H.; Miranda, G.F.G.; Skevington, J.H. Diptera-Specific Polymerase Chain Reaction Amplification Primers of Use in Molecular Phylogenetic Research. Ann. Entomol. Soc. Am. 2011, 104, 976–997. [Google Scholar] [CrossRef] [Green Version]
- Simon, C.; Buckley, T.R.; Frati, F.; Stewart, J.B.; Beckenbach, A.T. Incorporating Molecular Evolution into Phylogenetic Analysis, and a New Compilation of Conserved Polymerase Chain Reaction Primers for Animal Mitochondrial DNA. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 545–579. [Google Scholar] [CrossRef] [Green Version]
- Kambhampati, S.; Smith, P.T. PCR primers for the amplification of four insect mitochondrial gene fragments. Insect Mol. Biol. 1995, 4, 233–236. [Google Scholar] [CrossRef]
- Roehrdanz, R.L.; Degrugillier, M.E. Long Sections of Mitochondrial Dna Amplified from Fourteen Orders of Insects Using Conserved Polymerase Chain Reaction Primers. Ann. Entomol. Soc. Am. 1998, 91, 771–778. [Google Scholar] [CrossRef]
- Cunnington, J. Novel primers developed from mitochondrial intergenic spacers are useful for multi-locus sequence typing of Fusarium oxysporum strains. Eur. J. Plant Pathol. 2006, 116, 77–80. [Google Scholar] [CrossRef]
- Dinnis, R.E.; Seelig, F.; Bormane, A.; Donaghy, M.; Vollmer, S.A.; Feil, E.J.; Kurtenbach, K.; Margos, G. Multilocus sequence typing using mitochondrial genes (mtMLST) reveals geographic population structure of Ixodes ricinus ticks. Ticks Tick. Borne. Dis. 2014, 5, 152–160. [Google Scholar] [CrossRef]
- Lanzavecchia, S.B.; Cladera, J.L.; Faccio, P.; Marty, N.P.; Vilardi, J.C.; Zandomeni, R.O. Origin and distribution of Ceratitis capitata mitochondrial DNA haplotypes in Argentina. Ann. Entomol. Soc. Am. 2008, 101, 627–638. [Google Scholar] [CrossRef] [Green Version]
- Najafabadi, H.; Torabi, N.; Chamankhah, M. Designing multiple degenerate primers via consecutive pairwise alignments. BMC Bioinform. 2008, 9, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bensasson, D.; Zhang, D.; Hartl, D.L.; Hewitt, G.M. Mitochondrial pseudogenes: Evolution’s misplaced witnesses. Trends Ecol. Evol. 2001, 16, 314–321. [Google Scholar] [CrossRef]
- Arthofer, W.; Avtzis, D.; Riegler, M.; Stauffer, C. Mitochondrial phylogenies in the light of pseudogenes and Wolbachia: Re-assessment of a bark beetle dataset. Zookeys 2010, 56, 269–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beckenbach, A.T.; Joy, J.B. Evolution of the mitochondrial genomes of gall midges (Diptera: Cecidomyiidae): Rearrangement and severe truncation of tRNA genes. Genome Biol. Evol. 2009, 1, 278–287. [Google Scholar] [CrossRef] [Green Version]
- Beckenbach, A.T. Mitochondrial Genome Sequences of Nematocera (Lower Diptera): Evidence of Rearrangement following a Complete Genome Duplication in a Winter Crane Fly. Genome Biol. Evol. 2012, 4, 89–101. [Google Scholar] [CrossRef] [Green Version]
- Park, J.S.; Kim, M.J.; Jeong, S.Y.; Kim, S.S.; Kim, I. Complete mitochondrial genomes of two gelechioids, Mesophleps albilinella and Dichomeris ustalella (Lepidoptera: Gelechiidae), with a description of gene rearrangement in Lepidoptera. Curr. Genet. 2016, 62, 809–826. [Google Scholar] [CrossRef]
- Xin, Z.-Z.; Liu, Y.; Zhu, X.-Y.; Wang, Y.; Zhang, H.-B.; Zhang, D.-Z.; Zhou, C.-L.; Tang, B.-P.; Liu, Q.-N. Mitochondrial Genomes of Two Bombycoidea Insects and Implications for Their Phylogeny. Sci. Rep. 2017, 7, 6544. [Google Scholar] [CrossRef] [Green Version]
- Ramírez-Ríos, V.; Alvarez, J.C.; Villanueva-Mejia, D. Mitochondrial Genomes of Lepidopteran Insects Considered Crop Pests. In Lepidoptera; IntechOpen: London, UK, 2017; pp. 103–122. [Google Scholar]
- Tang, M.; Tan, M.; Meng, G.; Yang, S.; Su, X.; Liu, S.; Song, W.; Li, Y.; Wu, Q.; Zhang, A.; et al. Multiplex sequencing of pooled mitochondrial genomes-a crucial step toward biodiversity analysis using mito-metagenomics. Nucleic Acids Res. 2014, 42, e166. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.T.; Hong, G.Y.; Yu, M.; Li, N.; Yang, Y.; Liu, Y.Q.; Wei, Z.J. Characterization of the complete mitochondrial genome of the giant silkworm moth, Eriogyna pyretorum (Lepidoptera: Saturniidae). Int. J. Biol. Sci. 2009, 5, 351–365. [Google Scholar] [CrossRef]
- Li, W.; Zhang, X.; Fan, Z.; Yue, B.; Huang, F.; King, E.; Ran, J. Structural Characteristics and Phylogenetic Analysis of the Mitochondrial Genome of the Sugarcane Borer, Diatraea saccharalis (Lepidoptera: Crambidae). DNA Cell Biol. 2011, 30, 3–8. [Google Scholar] [CrossRef]
- Wu, Y.-P.; Zhao, J.-L.; Su, T.-J.; Luo, A.-R.; Zhu, C.-D. The complete mitochondrial genome of Choristoneura longicellana (Lepidoptera: Tortricidae) and phylogenetic analysis of Lepidoptera. Gene 2016, 591, 161–176. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.; Jeong, S.Y.; Kim, M.J.; Choi, S.-W. Complete mitochondrial genome of Zeuzera multistrigata Moore, 1881 (Lepidoptera: Cossidae). Mitochondrial DNA Part B 2017, 2, 502–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, S.; Jia, W.; Huang, Z.; Wang, Y.; Li, Y.; Huang, Z.; Zhang, Y.; Zhang, X.; Ding, J.; Geng, X.; et al. Complete mitochondrial genome of Histia rhodope Cramer (Lepidoptera: Zygaenidae). Mitochondrial DNA Part B 2017, 2, 636–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Q.N.; Xin, Z.Z.; Zhu, X.Y.; Chai, X.Y.; Zhao, X.M.; Zhou, C.L.; Tang, B.P. A transfer RNA gene rearrangement in the lepidopteran mitochondrial genome. Biochem. Biophys. Res. Commun. 2017, 489, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-C.; Wang, C.-T.; Lees, D.C.; Wu, L.-W. Higher DNA insert fragment sizes improve mitogenomic assemblies from metagenomic pyrosequencing datasets: An example using Limenitidinae butterflies (Lepidoptera, Nymphalidae). Mitochondrial DNA Part A 2018, 29, 840–845. [Google Scholar] [CrossRef]
- Wachi, N.; Matsubayashi, K.W.; Maeto, K. Application of next-generation sequencing to the study of non-model insects. Entomol. Sci. 2018, 21, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Coates, B.S.; Bayles, D.O.; Wanner, K.W.; Robertson, H.M.; Hellmich, R.L.; Sappington, T.W. The Application and Performance of Single Nucleotide Polymorphism Markers for Population Genetic Analyses of Lepidoptera. Front. Genet. 2011, 2, 38. [Google Scholar] [CrossRef] [Green Version]
- Silva-Brandão, K.L.; Santos, T.V.; Cônsoli, F.L.; Omoto, C. Genetic diversity and structure of brazilian populations of diatraea saccharalis (Lepidoptera: Crambidae): Implications for pest management. J. Econ. Entomol. 2015, 108, 307–316. [Google Scholar] [CrossRef]
- Srivathsan, A.; Lee, L.; Katoh, K.; Hartop, E.; Kutty, S.N.; Wong, J.; Yeo, D.; Meier, R. ONTbarcoder and MinION barcodes aid biodiversity discovery and identification by everyone, for everyone. BMC Biol. 2021, 19, 217. [Google Scholar] [CrossRef]
- Fitzpatrick, B.M.; Fordyce, J.A.; Niemiller, M.L.; Reynolds, R.G. What can DNA tell us about biological invasions? Biol. Invasions 2012, 14, 245–253. [Google Scholar] [CrossRef]
- Muirhead, J.R.; Gray, D.K.; Kelly, D.W.; Ellis, S.M.; Heath, D.D.; MacIsaac, H.J. Identifying the source of species invasions: Sampling intensity vs. genetic diversity. Mol. Ecol. 2008, 17, 1020–1035. [Google Scholar] [CrossRef] [PubMed]
- Craft, K.J.; Pauls, S.U.; Darrow, K.; Miller, S.E.; Hebert, P.D.N.; Helgen, L.E.; Novotny, V.; Weiblen, G.D. Population genetics of ecological communities with DNA barcodes: An example from New Guinea Lepidoptera. Proc. Natl. Acad. Sci. USA 2010, 107, 5041–5046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashfaq, M.; Hebert, P.D.N. DNA barcodes for bio-surveillance: Regulated and economically important arthropod plant pests. Genome 2016, 59, 933–945. [Google Scholar] [CrossRef] [Green Version]
- Hodgetts, J.; Ostojá-Starzewski, J.C.; Prior, T.; Lawson, R.; Hall, J.; Boonham, N.; Wilson, J.-J. DNA barcoding for biosecurity: Case studies from the UK plant protection program. Genome 2016, 59, 1033–1048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiszczynska-Sawicka, E.; Phillips, C.B. Mitochondrial cytochrome c oxidase subunit I sequence variation in New Zealand and overseas specimens of Pieris brassicae (Lepidoptera: Pieridae). New Zeal. Plant Prot. 2014, 67, 8–12. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Gentekaki, E.; Yi, Z.; Lin, X. Genetic differentiation of the mitochondrial cytochrome oxidase C subunit I gene in genus Paramecium (Protista, Ciliophora). PLoS ONE 2013, 8, e77044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, D.; Waite, D.W.; Fan, Q.-H.; George, S.; Semeraro, L.; Blacket, M.J. Molecular detection of small hive beetle Aethina tumida Murray (Coleoptera: Nitidulidae): DNA barcoding and development of a real-time PCR assay. Sci. Rep. 2018, 8, 9623. [Google Scholar] [CrossRef]
- Stringham, O.C.; Lockwood, J.L. Managing propagule pressure to prevent invasive species establishments: Propagule size, number, and risk–release curve. Ecol. Appl. 2021, 31, e02314. [Google Scholar] [CrossRef]
- Westbrook, J.; Fleischer, S.; Jairam, S.; Meagher, R.; Nagoshi, R. Multigenerational migration of fall armyworm, a pest insect. Ecosphere 2019, 10, e02919. [Google Scholar] [CrossRef] [Green Version]
- Garnas, J.R.; Auger-Rozenberg, M.-A.; Roques, A.; Bertelsmeier, C.; Wingfield, M.J.; Saccaggi, D.L.; Roy, H.E.; Slippers, B. Complex patterns of global spread in invasive insects: Eco-evolutionary and management consequences. Biol. Invasions 2016, 18, 935–952. [Google Scholar] [CrossRef] [Green Version]
- Taylor, B.L.; Dizon, A.E. First policy then science: Why a management unit based solely on genetic criteria cannot work. Mol. Ecol. 1999, 8, S11–S16. [Google Scholar] [CrossRef] [PubMed]
- Marcolungo, L.; Passera, A.; Maestri, S.; Segala, E.; Alfano, M.; Gaffuri, F.; Marturano, G.; Casati, P.; Bianco, P.A.; Delledonne, M. Real-Time On-Site Diagnosis of Quarantine Pathogens in Plant Tissues by Nanopore-Based Sequencing. Pathogens 2022, 11, 199. [Google Scholar] [CrossRef] [PubMed]
Haplotypes (n) and Sequence Length (bp) Per Locus | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
COI Barcode | COI-3’ | ND3 | ND6 | 16S-5′ 16S-3′ | Concatenated | ||||||
Family | Species | Genome Sequence Sources, n | Geographic Populations, n | 658 bp | 733 bp | 387 bp | 690 bp | 510 bp | 550 bp | 3528 bp | Ref. |
Diptera | |||||||||||
Calliphoridae | Lucilia cuprina | 11 | 2 | 3 | 3 | 2 | 2 | 2 | 3 | 4 | [55] |
Chrysomya megacephala | 46 | 4 | 3 | 2 | 4 | 2 | 2 | 3 | 8 | [36] | |
Drosophilidae | Drosophila santomea | 17 | 17 | 4 | 3 | 2 | 2 | 3 | 1 | 4 | [56] |
Drosophila yakuba | 31 | 31 | 4 | 11 | 5 | 8 | 2 | 3 | 15 | [56] | |
Drosophila simulans | 24 | 9 | 4 | 4 | 4 | 5 | 5 | 3 | 7 | [56] | |
Drosophila melanogaster | 13 | 4 | 4 | 5 | 4 | 1 | 4 | 8 | [57] | ||
Tephritidae | Bactrocera oleae | 21 | 10 | 13 | 10 | 8 | 11 | 5 | 4 | 18 | - |
Lepidoptera | |||||||||||
Bombycidae | Bombyx mori | 29 | 14 | 2 | 4 | 5 | 2 | 4 | 4 | 16 | [58] |
Geometridae | Biston panterinaria | 10 | 8 | 9 | 8 | 8 | 6 | 8 | 7 | 9 | [59] |
Papillionidae | Teinopalpus aureus | 9 | 5 | 3 | 4 | 4 | 4 | 2 | 5 | 4 | - |
Gene | Primer 2 | Sequence 3 | Gene Location 4 | Degeneracy 5 | Ref 6 |
---|---|---|---|---|---|
3′ COI | C1-J-2183-Dipt (F) | CAACAYTTATTYTGRTTYTTYGG | COI | 32 | [60] |
C1-N-2926-Dipt (R) | CATTCRATWGAWGARTTTARTTG | COI | 32 | a | |
C1-N-2776-Dipt (R) * | GGRTARTCNGARTAHCGNCGNGG | COI | 1536 | [61] | |
C1-N-2944-Dipt (R) * | GGNGGNGTRTTTTGRTAYCYTTC | COI | 256 | a | |
L2-N-3014-Dipt (R) | TYCAATGCACTADTCTGCCAHAHTA | trnL | 54 | [60] | |
C1-J-2195-Dipt (F) * | TTGRTTYTTYGGDCAYCCHGARGT | COI | 288 | [62] | |
C1-J-2441-Dipt (F) | ATYAARATTTTYAGHTGAHTDGC | COI | 216 | [60] | |
ND3 | ND3-J-Gly-Dipt (F) | TATATTTGACTTCCAATC | trnG | 0 | a |
ND3-N-5952-Dipt (R) | TAATATNCCTTGRTTTCATTC | ND3 | 8 | [60] | |
ND3-J-5463-Dipt (F) | GAAGCHGCHGCHTGATAYTGAC | COIII | 54 | [63] | |
ND6 | ND6-J-Thr-Dipt (F) | TAAAAACATTGGTCTTG | trnT | 0 | [64] |
ND6-N-10589-Dipt/Lepido (R) | TAAWGANCCRAARTTTCATC | CytB | 32 | a | |
ND6-J-Pro-Dipt (F) | TCATTAATCYCCAAARTTA | trnP | 4 | [65] | |
ND6-J-10070-Dipt (F) * | GGANTAATNYTWYTWRTHCAAAC | ND6 | 1536 | a | |
16S 5′ | LR-J-12888-Dipt/Lepido (F) | CCGGTTBGAACTCARATCAYGTA | 16S | 12 | [60] |
LR-N-13398-Dipt/Lepido (R) | CYCCTYTTTAWCAAAAMCAT | 16S | 16 | [60] | |
16S 3′ | LR-J-13342-Dipt/Lepido (F) | CCTTTGCACRGTYARRATACYGC | 16S | 32 | [60] |
LR-N-13889-Dipt/Lepido (R) | ATTTATHGTACCTTKKGTATCAG | 16S | 12 | [60] |
Gene | Primer 2 | Sequence 3 | Gene Location 4 | Degeneracy 5 | Ref 6 |
---|---|---|---|---|---|
3′ COI | C1-J-2183-Lepido (F) | CAACAYTTATTYTGATTYTTYGG | COI | 16 | [60] |
L2-N-3014-Lepido (R) | TCCATTACATRTADTCTGYCAYATTA | trnL | 24 | [60] | |
C1-J-2441-Lepido (F) | ATTAAAATTTTYAGHTGAHTRGC | COI | 36 | [60] | |
ND3 | ND3-J-Gly-Lepido (F) | AGTATATTTRAYTTCCAATC | trnG | 4 | a |
ND3-N-5952-Lepido (R) | TARTATNTTTTGRTHTCATTC | ND3 | 48 | [60] | |
ND3-N-Arg-Lepido (R) | CTTTTADGTCGAAAHTAAATGC | trnA | 9 | a | |
ND6 | ND6-J-10090-Lepido (F) | ATCWATAATCTCCAAAATTAT | trnP | 2 | [48] |
ND6-N-10624-Lepido (R) | GGNCCAWARAARATRTTDGT | ND6 | 192 | [48] | |
ND6-N-10589-Dipt/Lepido (R) | TAAWGANCCRAARTTTCATC | CytB | 32 | a | |
16S 5′ | LR-J-12888-Dipt/Lepido (F) | CCGGTTBGAACTCARATCAYGTA | 16S | 12 | [60] |
LR-N-13398-Dipt/Lepido (R) | CYCCTYTTTAWCAAAAMCAT | 16S | 16 | [60] | |
16S 3′ | LR-J-13342-Dipt/Lepido (F) | CCTTTGCACRGTYARRATACYGC | 16S | 32 | [60] |
LR-N-13889-Dipt/Lepido (R) | ATTTATHGTACCTTKKGTATCAG | 16S | 12 | [60] |
Superfamily | Family | Genus 3 | Species 3 | N 4 | D-COI-1 | D-COI-2 | D-COI-3 | D-COI-4 | D-ND3-1 | D-ND3-2 | D-ND6-1 | D-ND6-2 | D-16S-1 | D-16S-2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Chironomoidea | Simuliidae 5 | Austrosimulium | ungulatum | 2 | Y | Y | Y | Y | Y * | Y | Y | Y | Y | Y |
Culicoidea | Culicidae 5 | - | - | 1 | Y | Y | N | N | Y | Y | N | N | N | N |
Empidoidaea | Dolichopodidae | - | - | 1 | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
Dolichopodidae | Ostenia | robusta | 1 | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | |
Empididae | - | - | 1 | Y | Y | Y | Y | N | Y | Y | Y | Y | Y | |
Empididae | - | - | 1 | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | |
Syrphidae | Eristalis | tenax | 1 | Y | Y | Y | Y | Y | Y | Y * | Y | Y | Y | |
Syrphidae | Melangyna | novaezealandiae | 2 | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | |
Ephydroidea | Drosophilidae | Drosophila | melanogaster | 1 | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
Drosophilidae | Scuptomyza | flava | 1 | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | |
Ephydridae | Hydrelia | tritici | 3 | Y | Y | Y | Y | Y | Y | Y | N | Y | Y | |
Oestroidea | Calliphoridae 5 | Calliphora | stygia | 2 | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
Calliphoridae 5 | - | - | 1 | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | |
Tachinidae 5 | - | - | 1 | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | |
Opomyzoidea | Agromyzidae | Liriomyza | cicerina | 1 | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
Agromyzidae | Liriomyza | trifoli | 2 | Y | Y | Y | Y | Y | Y | Y | N | Y | Y | |
Agromyzidae | Liriomyza | - | 2 | Y | Y | Y | Y | Y | Y | Y/N | Y/N | Y | Y | |
Agromyzidae | - | - | 1 | Y | Y | Y | Y | Y | Y | Y | N | N | Y | |
Platypezoidea | Lonchopteridae | Leuchoptera | bifurcata | 1 | Y | Y | Y | Y | Y * | Y | N | Y | Y | Y |
Sciaroidea | Mycetophilidae | - | - | 2 | Y ** | Y/N | Y | Y | N | N | N | N | Y | Y |
Sciaridae | - | - | 1 | Y | N | Y | Y | N | Y | N | N | Y | Y | |
Tephritoidea | Tephritidae | Anastrepha | fraterculus | 1 | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
Tephritidae | Anastrepha | obliqua | 2 | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | |
Tephritidae | Anastrepha | sorocula | 2 | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | |
Tephritidae | Anastrepha | zenilda | 2 | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | |
Tephritidae | Bactrocera | cucurbitae | 2 | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | |
Tephritidae | Bactrocera | dorsalis | 1 | N | N | N | Y | Y | Y | Y | Y | Y | Y | |
Tephritidae | Bactrocera | facialis | 1 | Y | Y | Y | Y | Y | Y | Y | Y | N | Y | |
Tephritidae | Bactrocera | jarvisi | 1 | Y | Y | Y | Y | Y | Y | Y * | Y * | Y | Y | |
Tephritidae | Bactrocera | oleae | 1 | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | |
Tephritidae | Bactrocera | psidii | 2 | Y *** | Y | Y | Y | Y | Y | Y | Y | Y | Y | |
Tephritidae | Bactrocera | tryoni | 1 | N | Y | N | Y | Y | Y | Y | Y | Y | Y | |
Tephritidae | Bactrocera | tryoni (complex) | 3 | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | |
Tephritidae | Bactrocera | xanthodes | 1 | N | Y | N | Y | Y | Y | Y | Y | N | Y | |
Tephritidae | Ceratitis | capitata | 3 | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | |
Tephritidae | Dacus | solominensis | 2 | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | |
Tephritidae | Dirioxa | pornia | 3 | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | |
Tephritidae | Rhagoletis | completa | 2 | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | |
Tephritidae | Rhagoletis | pomonella | 2 | Y | Y | Y | Y | Y | Y | Y * | N | Y | Y | |
None | Stratiomyidae | - | - | 1 | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
Superfamily | Family | Genus | Species 3 | N 4 | L-COI-1 | L-COI-2 | L-ND3-1 | L-ND3-2 | L-ND6-1 | L-ND6-2 | L-16S-1 | L-16S-2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Bombycoidea | Saturniidae | Argema | mittrei | 1 | Y | Y | Y | Y | Y | Y | Y | Y |
Saturniidae | Atherina | suraka | 1 | Y | Y | Y | Y | Y | Y | N | Y | |
Saturniidae | Graellsia | isabellae | 1 | Y | Y | Y | Y | Y | Y | Y | Y | |
Copromorphoidea | Carposinidae | Carposina | - | 1 | Y | Y | N | Y | Y | Y | Y | N |
Carposinidae | Coscinoptycha | improbana | 3 | Y | Y | Y | Y | Y | Y | Y | N | |
Gelechioidea | Blastobasidae | Blastobasis | tarda | 1 | Y | Y | Y | Y | Y | Y | Y | Y |
Oecophoridae | Leptocroca | scholaea | 1 | Y | Y | Y | Y | Y | Y | Y | Y | |
Oecophoridae | Barea | exacha | 2 | Y | Y | Y | Y | Y | N | Y | Y | |
Oecophoridae | Gymnobathra | coarctatella | 1 | Y | Y | Y | Y | Y | Y | Y | Y | |
Geometroidea | Geometridae | “Hydriomena” | deltoidata | 1 | Y | Y | Y | Y | Y | N | Y | Y |
Geometridae | Asaphodes | chlamydota | 1 | Y | Y | Y | Y | Y | Y | Y | Y | |
Geometridae | Chloroclystis | filata | 1 | Y | Y | Y | Y | Y | N | Y | Y | |
Geometridae | Declana | junctilinea | 3 | Y | Y | Y | Y | Y | N | Y | Y | |
Geometridae | Epyaxa | rosearia | 2 | Y | Y | Y | Y | N | Y | Y | Y | |
Geometridae | Poecilasthena | schistaria | 7 | Y | Y | Y | Y | Y | Y | Y | Y | |
Geometridae | Scopula | rubraria | 1 | N | Y | Y | Y | Y | N | Y | Y | |
Hepialoidea | Hepialidae | Wiseana | copularis | 3 | Y ** | N | N | Y | Y | Y | Y | Y |
Hepialidae | Wiseana | umbraculata | 1 | N | N | N | Y | N | N | Y | Y | |
Hepialidae | - | - | 1 | Y | N | Y | Y | Y | Y | Y | N | |
Micropterigoidea | Micropterigidae | Sabatinca | aurantissima | 1 | N | N | Y | N | N | N | Y | N |
Noctuoidea | Erebidae | Lymantria | dispar | 2 | Y | Y | Y | Y | Y | Y | Y | Y |
Erebiidae | Lymantria | matura | 2 | Y | Y | Y | Y | Y | NT | Y | Y | |
Erebiidae | Lymantria | - | 5 | Y | Y | Y | Y | Y | Y | Y | Y | |
Erebiidae | Nyctemera | annulata | 1 | Y | Y | Y | Y | Y | Y | Y | Y | |
Erebiidae | Nyctemera | - | 1 | Y | Y | Y | Y | Y | N | Y | Y | |
Erebiidae | Orgyia | antiqua | 1 | N | Y | Ya | Ya | Y | NT | N | N | |
Erebiidae | Orgyia | leucostigma | 2 | Y | Y | Y | Y | Y | NT | Y | Y | |
Erebiidae | Orgyia | pseudotsugata | 2 | Y | Y | Y | Y | Y | NT | Y | N | |
Erebiidae | Orgyia | thyellina | 2 | Y | Y | Y | Y | Y | NT | Y | N | |
Erebiidae | Rhapsa | scotosialis | 3 | Y | Y | Y | Y | Y | Y | Y | Y | |
Noctuidae | Graphania | mutans | 6 | Y | Y | Y | Y | Y | Y | Y | Y | |
Noctuidae | Graphania | ustistriga | 1 | Y | Y | Y | Y | Y | N | Y | Y | |
Noctuidae | Helicoverpa | armigera | 7 | Y | Y | Y | Y | N | Y | Y | N | |
Noctuidae | Meterana | decorata | 1 | Y | Y | Y | Y | Y | Y | Y | Y | |
Noctuidae | Proteuxoa | comma | 9 | Y | Y | Y | Y | Y | Y | Y | Y | |
Noctuidae | Spodoptera | litura | 3 | Y | Y | Y | Y | Y | Y | Y | Y | |
Noctuidae | Tmetolophota | atristriga | 1 | Y | Y | Y | Y | Y | Y | Y | Y | |
Papilionoidea | Lycaenidae | Lampides | boeticus | 1 | Y | Y | Y | Y | Y | Y | Y | Y |
Pieridae | Pieris | rapae | 1 | Y | Y | Y | Y | Y | Y | Y | Y | |
Pieridae | Pieris | brassicae | 2 | Y | Y | Y | Y | Y | Y | Y | Y | |
Pyraloidea | Crambidae | Crocidolomia | pavonana | 1 | N | N | N | NT | NT | NT | NT | NT |
Crambidae | Eudonia | octophora | 1 | Y | Y | Y | Y | Y | N | Y | Y | |
Crambidae | Eudonia | minualis | 3 | Y | Y | Y | Y | Y | N | Y | Y | |
Crambidae | Eudonia | philerga | 1 | Y | Y | Y | Y | N | N | Y | Y | |
Crambidae | Eudonia | leptalea | 1 | Y | Y | Y | Y | Y | N | Y | Y | |
Crambidae | Eudonia | sabulosella | 4 | Y | Y | Y | Y | Y | N | Y | Y | |
Crambidae | Glaucocharis | auriscriptella | 1 | Y | Y | Y | Y | Y | N | Y | Y | |
Crambidae | Lucinodes | cordalis | 1 | N | N | N | Y | Y | N | Y | N | |
Crambidae | Orocrambus | flexuosellus | 3 | Y | Y | Y | Y | N | N | Y | Y | |
Crambidae | Scoparia | diphtheralis | 1 | Y | Y | Y | Y | Y | Y | Y | Y | |
Crambidae | Uresiphyta | polygonalis | 1 | N | N | N | Y | Y | N | Y | N | |
Pyralidae | Plodia | interpunctella | 1 | Y | Y | Y | Y | N | N | Y | Y | |
Tortricoidea | Tortricidae | Harmologa | amplexana | 1 | Y | Y | Y | Y | Y | Y | Y | Y |
Tortricidae | Epiphyas | postvittana | 5 | Y | Y | Y | Y | Y | NT | Y | Y | |
Tortricidae | Grapholita | molesta | 1 | N | N | N | Y | Y | Y | N | N | |
Tortricidae | Isotenes | miserana | 2 | Y | Y | Y | Y | Y | Y | Y | Y | |
Yponomeutoidea | Plutellidae | Plutella | xylostella | 1 | Y | Y | N | Y | Y | N | N | Y |
Family | Species | Sequences (n) | Locations (n) | Sequences in Each Location (n) | Haplotypes (n) | Haplotypes in Each Location (n) | Shared Haplotypes (n) | ||
---|---|---|---|---|---|---|---|---|---|
ND3 | COI | Concatenated | |||||||
Crambidae | Orocrambus flexuoselus | 5 | 2 | 3/2 | 2 | - | - | 1/2 | 1 |
Crambidae | Eudonia sabulosella | 6 | 2 | 3/2 | 4 | - | - | 3/2 | 1 |
Noctuidae | Graphania mutants | 5 | 2 | 1/4 | 2 | - | - | 1/2 | 1 |
Noctuidae | Proteuxoa comma | 11 | 2 | 10/1 | 4 | - | - | 3/1 | 0 |
Geometridae | Poecilasthena schistaria | 5 | 1 | 5 | 3 | 4 | 4 | - | - |
Geometridae | Poecilasthena purcharia | 5 | 1 | 5 | 5 | 5 | 5 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hiszczynska-Sawicka, E.; Li, D.; Armstrong, K.F. Universal Mitochondrial Multi-Locus Sequence Analysis (mtMLSA) to Characterise Populations of Unanticipated Plant Pest Biosecurity Detections. Biology 2022, 11, 654. https://doi.org/10.3390/biology11050654
Hiszczynska-Sawicka E, Li D, Armstrong KF. Universal Mitochondrial Multi-Locus Sequence Analysis (mtMLSA) to Characterise Populations of Unanticipated Plant Pest Biosecurity Detections. Biology. 2022; 11(5):654. https://doi.org/10.3390/biology11050654
Chicago/Turabian StyleHiszczynska-Sawicka, Ela, Dongmei Li, and Karen F. Armstrong. 2022. "Universal Mitochondrial Multi-Locus Sequence Analysis (mtMLSA) to Characterise Populations of Unanticipated Plant Pest Biosecurity Detections" Biology 11, no. 5: 654. https://doi.org/10.3390/biology11050654
APA StyleHiszczynska-Sawicka, E., Li, D., & Armstrong, K. F. (2022). Universal Mitochondrial Multi-Locus Sequence Analysis (mtMLSA) to Characterise Populations of Unanticipated Plant Pest Biosecurity Detections. Biology, 11(5), 654. https://doi.org/10.3390/biology11050654