Acute Effects of Whole-Body Vibration on Resting Metabolic Rate and Substrate Utilisation in Healthy Women
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Study Design
2.2. Participants
2.3. Somatic Measurements
2.4. Resting Metabolic Rate
2.5. Biochemical Analysis
2.6. Whole-Body Vibration
2.7. Statistical Analysis
3. Results
4. Discussion
5. Limitation of the Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cardinale, M.; Bosco, C. The use of vibration as an exercise intervention. Exerc. Sport Sci. Rev. 2003, 31, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Piotrowska, A.; Pilch, W.; Tota, Ł.; Maciejczyk, M.; Mucha, D.; Bigosińska, M.; Bujas, P.; Wiecha, S.; Sadowska-Krępa, E.; Pałka, T. Local Vibration Reduces Muscle Damage after Prolonged Exercise in Men. J. Clin. Med. 2021, 10, 5461. [Google Scholar] [CrossRef] [PubMed]
- Cardinale, M.; Wakeling, J. Whole body vibration exercise: Are vibrations good for you? Br. J. Sports Med. 2005, 39, 585–589. [Google Scholar] [CrossRef] [PubMed]
- Bemben, D.; Stark, C.; Taiar, R.; Bernardo-Filho, M. Relevance of Whole-Body Vibration Exercises on Muscle Strength/Power and Bone of Elderly Individuals. Dose Response. 2018, 16, 4. [Google Scholar] [CrossRef] [Green Version]
- Sá-Caputo, D.; Paineiras-Domingos, L.L.; Francisca-Santos, A.; Dos Anjos, E.M.; Reis, A.S.; Neves, M.F.T.; Oigman, W.; Oliveira, R.; Brandão, A.; Machado, C.B.; et al. Whole-body vibration improves the functional parameters of individuals with metabolic syndrome: An exploratory study. BMC Endocr Disord. 2019, 19, 6. [Google Scholar] [CrossRef] [Green Version]
- Sá-Caputo, D.C.; Paineiras-Domingos, L.L.; Oliveira, R.; Neves, M.F.T.; Brandão, A.; Marin, P.J.; Sañudo, B.; Furness, T.; Taiar, R.; Bernardo-Filho, M. Acute Effects of Whole-Body Vibration on the Pain Level, Flexibility, and Cardiovascular Responses in Individuals With Metabolic Syndrome. Dose Response 2018, 16, 4. [Google Scholar] [CrossRef] [Green Version]
- Dionello, C.F.; de Souza, P.L.; Sá-Caputo, D.; Morel, D.S.; Moreira-Marconi, E.; Paineiras-Domingos, L.L.; Frederico, E.H.F.F.; Guedes-Aguiar, E.; Paiva, P.C.; Taiar, R. Do whole body vibration exercises affect lower limbs neuromuscular activity in populations with a medical condition? A systematic review. Restor. Neurol. Neurosci. 2017, 35, 667–681. [Google Scholar] [CrossRef]
- Abercromby, F.J.; Amonette, W.E.; Layne, C.S.; McFarlin, B.K.; Hinman, M.R.; Paloski, W.H. Vibration exposure and biodynamic responses during whole-body vibration training. Med. Sci. Sports Exerc. 2009, 39, 1794–1800. [Google Scholar] [CrossRef]
- Button, C.; Anderson, N.; Bradford, C.; Cotter, J.D.; Ainslie, P.N. The effect of multidirectional mechanical vibration on peripheral circulation of humans. Clin. Physiol. Funct. Imaging 2007, 27, 211–216. [Google Scholar] [CrossRef]
- Rittweger, J.; Beller, G.; Felsenberg, D. Acute physiological effects of exhaustive whole-body vibration exercise in man. Clin. Physiol. 2000, 20, 134–142. [Google Scholar] [CrossRef]
- Games, K.E.; Sefton, J.M. Whole-body vibration influences lower extremity circulatory and neurological function. Scand. J. Med. Sci. Sports 2013, 23, 516–523. [Google Scholar] [CrossRef] [PubMed]
- Rittweger, J.; Mutschelknauss, M.; Felsenberg, D. Acute changes in neuromuscular excitability after exhaustive whole body vibration exercise as compared to exhaustion by squatting exercise. Clin. Physiol. Funct. Imaging 2003, 23, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Madou, K.H.; Cronin, J.B. The effects of whole body vibration on physical and physiological capability in special populations. Hong Kong Physiother. J. 2008, 26, 24–38. [Google Scholar] [CrossRef]
- van Heuvelen, M.J.; Rittweger, J.; Judex, S.; Sañudo, B.; Seixas, A.; Fuermaier, A.; Tucha, O.; Nyakas, C.; Marín, P.J.; Taiar, R.; et al. Reporting Guidelines for Whole-Body Vibration Studies in Humans, Animals and Cell Cultures: A Consensus Statement from an International Group of Experts. Biology 2021, 10, 965. [Google Scholar] [CrossRef] [PubMed]
- Wuestefeld, A.; Fuermaier, A.B.; Bernardo-Filho, M.; da Cunha de Sá-Caputo, D.; Rittweger, J.; Schoenau, E.; Stark, C.; Marin, P.J.; Seixas, A.; Judex, S.; et al. Towards reporting guidelines of research using whole-body vibration as training or treatment regimen in human subjects—A Delphi consensus study. PLoS ONE 2020, 15, e0235905. [Google Scholar] [CrossRef]
- Rittweger, J. Metabolic Responses to Whole-Body Vibration Exercise. In Manual of Vibration Exercise and Vibration Therapy; Springer: Cham, Switzerland, 2020; pp. 143–153. [Google Scholar] [CrossRef]
- Milanese, C.; Cavedon, V.; Sandri, M.; Tam, E.; Piscitelli, F.; Boschi, F.; Zancanaro, C. Metabolic effect of bodyweight whole-body vibration in a 20-min exercise session: A crossover study using verified vibration stimulus. PLoS ONE 2018, 13, e0192046. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.; Porfido, T.; Ismaili, C.; Selamie, S.; Kuper, J.; Bush, J.A.; Ratamess, N.A.; Faigenbaum, A.D. Metabolic responses to whole-body vibration: Effect of frequency and amplitude. Eur. J. Appl. Physiol. 2016, 116, 1829–1839. [Google Scholar] [CrossRef]
- Cardinale, M.; Pope, M.H. The effects of whole body vibration on humans: Dangerous or advantageous? Acta Physiol. Hung. 2003, 90, 195–206. [Google Scholar] [CrossRef]
- Cardinale, M.; Lim, J. Electromyography activity of vastus lateralis muscle during whole-body vibrations of different frequencies. J. Strength Cond. Res. 2003, 17, 621–624. [Google Scholar]
- Dickin, D.C.; McClain, M.A.; Hubble, R.P.; Doan, J.B.; Sessford, D. Changes in postural sway frequency and complexity in altered sensory environments following whole body vibrations. Hum. Mov. Sci. 2012, 31, 1238–1246. [Google Scholar] [CrossRef]
- Sonza, A.; Robinson, C.C.; Achaval, M.; Zaro, M.A. Whole body vibration at different exposure frequencies: Infrared thermography and physiological effects. Sci. World J. 2015, 2015, 452657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weir, J.B. New methods for calculating metabolic rate with special reference to protein metabolism. J. Physiol. 1949, 109, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge Academic: New York, NY, USA, 1988. [Google Scholar] [CrossRef]
- Gojanovic, B.; Feihl, F.; Gremion, G.; Waeber, B. Physiological response to whole-body vibration in athletes and sedentary subjects. Physiol. Res. 2014, 63, 779–792. [Google Scholar] [CrossRef] [PubMed]
- Rosenberger, A.; Beijer, Å.; Schoenau, E.; Mester, J.; Rittweger, J.; Zange, J. Changes in motor unit activity and respiratory oxygen uptake during 6 weeks of progressive whole-body vibration combined with progressive, high intensity resistance training. J. Musculoskelet. Neuronal Interact. 2019, 19, 159–168. [Google Scholar]
- Burke, R.E.; Rymer, W.Z. Relative strength of synaptic input from short-latency pathways to motor units of defined type in cat medial gastrocnemius. J. Neurophysiol. 1976, 39, 447–458. [Google Scholar] [CrossRef]
- Bosco, C.; Colli, R.; Introini, E.; Cardinale, M.; Tsarpela, O.; Madella, A.; Tihanyi, J.; Viru, A. Adaptive responses of human skeletal muscle to vibration exposure. Clin. Physiol. 1999, 19, 183–187. [Google Scholar] [CrossRef]
- Zange, J.; Molitor, S.; Illbruck, A.; Müller, K.; Schönau, E.; Kohl-Bareis, M.; Rittweger, J. In the unloaded lower leg, vibration extrudes venous blood out of the calf muscles probably by direct acceleration and without arterial vasodilation. Eur. J. Appl. Physiol. 2014, 114, 1005–1012. [Google Scholar] [CrossRef] [Green Version]
- Fares, E.J.; Charrière, N.; Montani, J.P.; Schutz, Y.; Dulloo, A.G.; Miles-Chan, J.L. Energy expenditure and substrate oxidation in response to side-alternating whole body vibration across three commonly-used vibration frequencies. PLoS ONE 2016, 11, e0151552. [Google Scholar] [CrossRef]
- Di Loreto, C.; Ranchelli, A.; Lucidi, P.; Murdolo, G.; Parlanti, N.; De Cicco, A.; Tsarpela, O.; Annino, G.; Bosco, C.; Santeusanio, F.; et al. Effects of whole-body vibration exercise on the endocrine system of healthy men. J. Endocrinol. Investig. 2004, 27, 323–327. [Google Scholar] [CrossRef]
- Licurci, M.G.B.; Fagundes, A.A.; Arisawa, E.A.L.S. Whole body vibration and blood glucose levels in elderly people: A pilot study. Sci. Med. 2017, 27, 27604. [Google Scholar] [CrossRef] [Green Version]
- Bunker, D.J.; Rhea, M.R.; Simons, T.; Marin, P.J. The use of whole-body vibration as a golf warm-up. J. Strength Cond. Res. 2011, 25, 293–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, J.; Bushi, J.A.; Ratamess, N.A.; Faigenbaum, A.D.; Klei, S.; Maconi, D.; Kreckel, M. Acute effects of whole-body vibration on energy metabolism during aerobic exercise. J. Sports Med. Phys. Fit. 2015, 56, 834–842. [Google Scholar]
- Goto, K.; Takamatsu, K. Hormone and lipolytic responses to whole body vibration in young men. Jpn. J. Physiol. 2005, 55, 279–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solomon, S.J.; Kurzer, M.S.; Calloway, D.H. Menstrual cycle and basal metabolic rate in women. Am. J. Clin. Nutr. 1982, 36, 611–616. [Google Scholar] [CrossRef] [Green Version]
- Erskine, J.; Smillie, I.; Leiper, J.; Ball, D.; Cardinale, M. Neuromuscular and hormonal responses to a single session of whole body vibration exercise in healthy young men. Clin. Physiol. Funct. Imaging 2007, 27, 242–248. [Google Scholar] [CrossRef]
- Bosco, C.; Iacovelli, M.; Tsarpela, O.; Cardinale, M.; Bonifazi, M.; Tihanyi, J.; Viru, M.; De Lorenzo, A.; Viru, A. Hormonal responses to whole-body vibration in men. Eur. J. Appl. Physiol. 2000, 81, 449–454. [Google Scholar] [CrossRef]
- Cardinale, M.; Leiper, J.; Erskine, J.; Milroy, M.; Bell, S. The acute effects of different whole body vibration amplitudes on the endocrine system of young healthy men: A preliminary study. Clin. Physiol. Funct. Imaging 2006, 26, 380–384. [Google Scholar] [CrossRef]
- Robbins, D.; Yoganathan, P.; Goss-Sampson, M. The influence of whole body vibration on the central and peripheral cardiovascular system. Clin. Physiol. Funct. Imaging 2014, 34, 364–369. [Google Scholar] [CrossRef]
- Cochrane, D.J.; Stannard, S.R.; Sargeant, A.J.; Rittweger, J. The rate of muscle temperature increase during acute whole-body vibration exercise. Eur. J. Appl. Physiol. 2008, 103, 441–448. [Google Scholar] [CrossRef]
Variable | Mode | BASELINE | TREATMENT | POST | POST (1 h) | Effect: Mode F (p) | Effect: Time F (p) | Interaction F (p) | p: Post Hoc [Cohen’s d] |
---|---|---|---|---|---|---|---|---|---|
I | II | III | IV | ||||||
VO2 (L/min) | WBV | 0.17 ± 0.04 | 0.20 ± 0.05 | 0.19 ± 0.05 | 0.19 ± 0.05 | 0.35 (0.62) | 0.67 (0.57) | 3.04 (0.03) | I–II:0.02 [0.67] |
PL | 0.18 ± 0.04 | 0.16 ± 0.04 | 0.19 ± 0.05 | 0.18 ± 0.04 | NS | ||||
VCO2 (L/min) | WBV | 0.15 ± 0.04 | 0.18 ± 0.04 | 0.16 ± 0.04 | 0.17 ± 0.04 | 0.02 (0.90) | 2.40 (0.07) | 1.52 (0.21) | NS |
PL | 0.15 ± 0.04 | 0.14 ± 0.04 | 0.16 ± 0.05 | 0.15 ± 0.04 | NS | ||||
RQ | VIBR | 0.87 ± 0.05 | 0.88 ± 0.03 | 0.86 ± 0.03 | 0.87 ± 0.05 | 0.27 (0.61) | 1.46 (0.23) | 2.55 (0.06) | NS |
PL | 0.85 ± 0.07 | 0.86 ± 0.06 | 0.86 ± 0.06 | 0.83 ± 0.06 | NS | ||||
RMR (kcal/kg/day) | WBV | 21.8 ± 6.6 | 25.1 ± 7.6 | 23.4 ± 7.3 | 23.8 ± 7.3 | 0.14 (0.70) | 0.67 (0.57) | 2.12 (0.10) | NS |
PL | 22.2 ± 6.4 | 19.8 ± 5.9 | 23.2 ± 7.6 | 21.6 ± 7.5 | NS | ||||
RMR/BSA (kg/m2/day) | WBV | 772.1 ± 222.2 | 889.2 ± 262.9 | 824.2 ± 237.4 | 843.1 ± 246.1 | 0.24 (0.62) | 0.62 (0.60) | 3.18 (0.02) | I–II: 0.01 [0.48] |
PL | 785.6 ± 205.1 | 701 ± 223.1 | 821.6 ± 248.5 | 759.3 ± 236.3 | NS | ||||
FAT (g/h) | WBV | 49.2 ± 24.8 | 55.2 ± 24.9 | 57.3 ± 18.7 | 58.5 ± 30.4 | 0.07 (0.79) | 1.17 (0.59) | 0.59 (0.62) | NS |
PL | 63.4 ± 37.4 | 48.7 ± 31.1 | 62 ± 30.8 | 64.9 ± 31.3 | NS | ||||
PRO (g/h) | WBV | 14.2 ± 3.7 | 16.1 ± 4.6 | 15.1 ± 3.9 | 15.3 ± 4.1 | 0.22 (0.63) | 0.50 (0.68) | 2.61 (0.06) | NS |
PL | 14.1 ± 3.5 | 12.7 ± 3.9 | 14.9 ± 4.21 | 13.9 ± 3.6 | NS | ||||
EE_CHO (kcal/h) | WBV | 30.6 ± 13.0 | 36.1 ± 10.9 | 30.7 ± 11.7 | 31.9 ± 11.04 | 0.50 (0.48) | 1.37 (0.25) | 4.83 (0.004) | I–II:0.02 [0.46] II–III:0.03 |
PL | 25.6 ± 14.9 | 25.9 ± 15.3 | 28.7 ± 15.1 | 23.1 ± 16.6 | NS | ||||
EE_FAT (kcal/h) | WBV | 19.2 ± 9.6 | 21.3 ± 9.6 | 22 ± 7.4 | 22.4 ± 11.9 | 0.08 (0.76) | 1.07 (0.36) | 0.52 (0.67) | NS |
PL | 24.6 ± 14.4 | 19 ± 12.1 | 24 ± 11.9 | 25.1 ± 12.3 | NS | ||||
EE_PRO (kcal/h) | WBV | 2.3 ± 0.7 | 3 ± 0.89 | 2.4 ± 0.76 | 2.5 ± 0.87 | 0.13 (0.71) | 0.74 (0.53) | 3.65 (0.01) | I–II:0.004 [0.88] II–III:0.01 II–IV:0.04 |
PL | 2.3 ± 0.6 | 2.1 ± 0.7 | 2.6 ± 0.9 | 2.4 ± 0.7 | NS |
Variable | Mode | BASELINE | POST | POST (1h) | Effect: Mode F (p) | Effect: Time F (p) | Interaction F (p) | p (Post Hoc) |
---|---|---|---|---|---|---|---|---|
I | II | III | ||||||
GLU (mmol/L) | WBV | 5.11 ± 0.52 | 4.96 ± 0.32 | 4.86 ± 0.32 | 0.43 (0.52) | 2.72 (0.08) | 0.02 (0.97) | NS |
PL | 4.99 ± 0.70 | 4.81 ± 0.38 | 4.78 ± 0.37 | NS | ||||
TG (mmol/L) | WBV | 0.82 ± 0.31 | 0.73 ± 0.28 | 0.69 ± 0.25 | 0.005 (0.94) | 11.59 (<0.001) | 0.46 (0.63) | I–II: 0.04 I–III:0.002 |
PL | 0.83 ± 0.36 | 0.70 ± 0.30 | 0.70 ± 0.24 | I–II: 0.002 I–III:0.003 | ||||
FFA (mmol/L) | WBV | 0.42 ± 0.22 | 0.37 ± 0.41 | 0.40 ± 0.29 | 0.41 (0.52) | 5.26 (0.009) | 2.87 (0.06) | NS |
PL | 0.54 ± 0.25 | 0.32 ± 0.23 | 0.58 ± 0.38 | I–II:0.003 II–III: <0.001 | ||||
KB (mmol/L) | WBV | 0.04 ± 0.03 | 0.04 ± 0.04 | 0.06 ± 0.08 | 0.69 (0.41) | 2.63 (0.08) | 0.54 (0.58) | NS |
PL | 0.10 ± 0.13 | 0.07 ± 0.11 | 0.12 ± 0.23 | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maciejczyk, M.; Bawelski, M.; Więcek, M.; Szygula, Z.; Michailov, M.L.; Vadašová, B.; Kačúr, P.; Pałka, T. Acute Effects of Whole-Body Vibration on Resting Metabolic Rate and Substrate Utilisation in Healthy Women. Biology 2022, 11, 655. https://doi.org/10.3390/biology11050655
Maciejczyk M, Bawelski M, Więcek M, Szygula Z, Michailov ML, Vadašová B, Kačúr P, Pałka T. Acute Effects of Whole-Body Vibration on Resting Metabolic Rate and Substrate Utilisation in Healthy Women. Biology. 2022; 11(5):655. https://doi.org/10.3390/biology11050655
Chicago/Turabian StyleMaciejczyk, Marcin, Marek Bawelski, Magdalena Więcek, Zbigniew Szygula, Michail Lubomirov Michailov, Bibiana Vadašová, Peter Kačúr, and Tomasz Pałka. 2022. "Acute Effects of Whole-Body Vibration on Resting Metabolic Rate and Substrate Utilisation in Healthy Women" Biology 11, no. 5: 655. https://doi.org/10.3390/biology11050655
APA StyleMaciejczyk, M., Bawelski, M., Więcek, M., Szygula, Z., Michailov, M. L., Vadašová, B., Kačúr, P., & Pałka, T. (2022). Acute Effects of Whole-Body Vibration on Resting Metabolic Rate and Substrate Utilisation in Healthy Women. Biology, 11(5), 655. https://doi.org/10.3390/biology11050655